Posts Tagged structure function

Recent Postings from structure function

Ensemble X-ray variability of Active Galactic Nuclei. II. Excess Variance and updated Structure Function

Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the latest release of the XMM-Newton Serendipitous Source Catalogue, with redshift between 0.1 and 5, and X-ray luminosities, in the 0.5-4.5 keV band, between 10^{42} and 10^{47} erg/s. We caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light-curve duration in the rest-frame, on the basis of the knowledge of the variability behaviour gained by SF studies. We find an ensemble increase of the X-ray variability with the rest-frame time lag tau, given by tau^{0.12}. We confirm an inverse dependence on the X-ray luminosity, approximately as L_X^{-0.19}. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as nu^{-0.15}, corresponding to a softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest-frame, resulting in a moderate shift upwards (V-correction). Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects.

Ensemble X-ray variability of Active Galactic Nuclei. II. Excess Variance and updated Structure Function [Replacement]

Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between 0.1 and 5, and X-ray luminosities in the 0.5-4.5 keV band between 10^42 and 10^47 erg/s. We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, accounting for the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. We find an ensemble increase of the X-ray variability with the rest-frame time lag tau, given by tau^0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as L_X^-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as nu^-0.15, corresponding to a softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate shift upwards (V-correction). Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects.

The spin structure of the proton at low $x$ and low $Q^2$ in two-dimensional bins from COMPASS [Cross-Listing]

The longitudinal double spin asymmetries $A_1^p$ and the spin dependent structure function of the proton $g_1^p$ were extracted from COMPASS data in the region of low Bjorken scaling variable $x$ and low photon virtuality $Q^2$. The data were taken in 2007 and 2011 from scattering of polarised muons off polarised protons, resulting in a sample that is 150 times larger than the one from the previous experiment SMC that pioneered studies in this kinematic region. For the first time, $A_1^p$ and $g_1^p$ were evaluated in this region in two-dimensional bins of kinematic variables: $(x,Q^2)$, $(\nu ,Q^2)$, $(x,\nu)$ and $(Q^2,x)$. The following kinematic region was investigated: $4\times 10^{-5}<x<4\times 10^{-2}$, $0.001$~(GeV/$c$)$^2<Q^2<1$~(GeV/$c$)$^2$ and $14$~GeV$<\nu <194$~GeV. The obtained results were confronted with theoretical models.

Gluonic Transversity from Lattice QCD

We present an exploratory study of the gluonic structure of the $\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

Gluonic Transversity from Lattice QCD [Cross-Listing]

We present an exploratory study of the gluonic structure of the $\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

Gluonic Transversity from Lattice QCD [Replacement]

We present an exploratory study of the gluonic structure of the $\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

Gluonic Transversity from Lattice QCD [Replacement]

We present an exploratory study of the gluonic structure of the $\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

Nuclear longitudinal structure function in eA processes at the LHeC

The nucleon and nuclear longitudinal structure functions are determined by the Kharzeev-Levin-Nardin (KLN) model of the low $x$ gluon distribution. The behavior of the gluon distribution ratio $R_{g}=\frac{G^{A}}{AG^{p}}$ and the ratio $R_{L}^{total}=\frac{F_{L}^{A-total}}{AF_{L}^{p-total}}$ in this processes are found. The heavy longitudinal structure function ratios $R_{L}^{H}=\frac{F_{L}^{H(A)}}{AF_{L}^{H(p)}}$ in eA processes at the LHeC region are discussed. Heavy contributions to the total longitudinal structure function ratio $R^{H}_{L}$ are considerable and should not be neglected especially at smaller $x$ of the LHeC project. In the KLN model the new geometrical scaling for transition from the linear to nonlinear regions in accordance with the LHeC processes is used, whose results intensively depended on the heavy quarks mass effect.

Nuclear longitudinal structure function in eA processes at the LHeC [Replacement]

The nucleon and nuclear longitudinal structure functions are determined by the Kharzeev-Levin-Nardin (KLN) model of the low $x$ gluon distribution. The behavior of the gluon distribution ratio $R_{g}=\frac{G^{A}}{AG^{p}}$ and the ratio $R_{L}^{total}=\frac{F_{L}^{A-total}}{AF_{L}^{p-total}}$ in this processes are found. The heavy longitudinal structure function ratios $R_{L}^{H}=\frac{F_{L}^{H(A)}}{AF_{L}^{H(p)}}$ in eA processes at the LHeC region are discussed. Heavy contributions to the total longitudinal structure function ratio $R^{H}_{L}$ are considerable and should not be neglected especially at smaller $x$ of the LHeC project. In the KLN model the new geometrical scaling for transition from the linear to nonlinear regions in accordance with the LHeC processes is used, whose results intensively depended on the heavy quarks mass effect.

Measurements of the Separated Longitudinal Structure Function F_L from Hydrogen and Deuterium Targets at Low Q^2

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. While differences are found, the parameterizations generally agree with the data even at the very low Q^2 scale of the data. The deuterium data show a smaller longitudinal structure function, and smaller ratio of longitudinal to transverse cross section R, than the proton. This suggests either an unexpected difference in R for the proton and neutron or a suppression of the gluonic distribution in nuclei.

Lepton-Induced Reactions on Nuclei [Replacement]

Background: Long-Baseline experiments such as the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement with data from neutrino- and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus descriptions a good theoretical description of inclusive electron-, neutrino- and antineutrino-nucleus data over a wide range of energies, different neutrino flavors and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses. \end{description}

Lepton-Induced Reactions on Nuclei [Replacement]

Background: Long-Baseline experiments such as the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement with data from neutrino- and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus descriptions a good theoretical description of inclusive electron-, neutrino- and antineutrino-nucleus data over a wide range of energies, different neutrino flavors and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses. \end{description}

Lepton-Induced Reactions on Nuclei [Replacement]

Background: Long-Baseline experiments such as the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement with data from neutrino- and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus descriptions a good theoretical description of inclusive electron-, neutrino- and antineutrino-nucleus data over a wide range of energies, different neutrino flavors and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses. \end{description}

Transverse Momentum Dependent Parton Distributions with self-similarity at small $x$ and models of proton structure function

In this paper we make re-analysis of a self-similarity based model of the proton structure function at small $x$ pursued in recent years. The additional assumption is that it should be singularity free in the entire kinematic range $0\leq \textit{x}\leq 1$. Our analysis indicates that the singularity free version of the model is valid in a more restrictive range of $Q^{2}$. We then analyse the defining Transverse Momentum Dependent Parton Distributions (TMD) occurred in the models and show that the proper generalizations and initial conditions on them not only remove the undesired singularity but also results in a QCD compatible structure function with logarithmic growth in $Q^2$. The phenomenological range of validity is then found to be much larger than the earlier versions. We also extrapolate the models to large $x$ in a parameter free way.

Interpretation of the structure function of rotation measure in the interstellar medium

The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian & Pogosyan (2016) are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.

Interpretation of the structure function of rotation measure in the interstellar medium [Replacement]

The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian & Pogosyan (2016) are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.

Study of HERA ep Data at Low Q^2 and Low x_Bj and the Need for Higher-Twist Corrections to Standard pQCD Evolution

A detailed comparison of HERA data at low Bjorken-$x$ and low four-momentum-transfer squared, $Q^2$, with predictions based on $\ln{Q^2}$ evolution (DGLAP) in perturbative Quantum Chromo Dynamics suggests inadequacies of this framework. The standard DGLAP evolution was augmented by including an additional higher-twist term in the description of the longitudinal structure function, $F_{\rm L}$. This additional term, $F_{\rm L}~A_{\rm L}^{\rm HT}/Q^2$, improves the description of the reduced cross sections significantly. The resulting predictions for $F_{\rm L}$ suggest that further corrections are required for $Q^2$ less than about 2 GeV$^2$.

Study of HERA ep Data at Low Q^2 and Low x_Bj and the Need for Higher-Twist Corrections to Standard pQCD Evolution [Cross-Listing]

A detailed comparison of HERA data at low Bjorken-$x$ and low four-momentum-transfer squared, $Q^2$, with predictions based on $\ln{Q^2}$ evolution (DGLAP) in perturbative Quantum Chromo Dynamics suggests inadequacies of this framework. The standard DGLAP evolution was augmented by including an additional higher-twist term in the description of the longitudinal structure function, $F_{\rm L}$. This additional term, $F_{\rm L}~A_{\rm L}^{\rm HT}/Q^2$, improves the description of the reduced cross sections significantly. The resulting predictions for $F_{\rm L}$ suggest that further corrections are required for $Q^2$ less than about 2 GeV$^2$.

Exploring the nature of broadband variability in the FSRQ 3C 273

Detailed investigation of broadband flux variability in the blazar 3C 273 allows us to probe the location and size of emission regions and their physical conditions. We report the results on correlation studies of the flaring activity observed between 2008 and 2012. The observed broadband variations were investigated using the structure function and the discrete correlation function, and power spectral density analysis (PSD) methods. The PSD analysis showed that the optical/IR light curve slopes are consistent with the slope of white noise processes, while, the PSD slopes at radio, X-ray and gamma-ray energies are consistent with red-noise processes. The flux variations at gamma-ray and mm-radio bands are found to be significantly correlated. Using the estimated time lag of (110\pm27) days between gamma-ray and radio light curves, we constrained the location of the gamma-ray emission region at a de-projected distance of 1.2\pm0.9 pc from the jet apex. Flux variations at X-ray bands were found to have a significant correlation with variations at both radio and \gamma-rays energies. The correlation between X-rays and gamma-rays light curves suggests presence of two components responsible for the X-ray emission. A negative time lag of -(50\pm20) days, where the X-rays are leading the emission, suggests X-rays are emitted closer to the jet apex from a compact region at a distance of ~(0.5\pm0.4) pc from the jet apex. A positive time lag of (110\pm20) days suggests jet-base origin of the other X-ray component at ~(4--5)~pc from the jet apex. The flux variations at radio frequencies were found to be well correlated with each other such that the variations at higher frequencies are leading the lower frequencies, which could be expected in the standard shock-in-jet model.

Nuclear medium effects in $F_{2A}^{EM}(x,Q^2)$ and $F_{2A}^{Weak}(x,Q^2)$ structure functions

Recent phenomenological analysis of experimental data on DIS processes induced by charged leptons and neutrinos/antineutrinos beams on nuclear targets by CTEQ collaboration has confirmed the observation of CCFR and NuTeV collaborations, that weak structure function $F_{2A}^{Weak} (x,Q^2)$ is different from electromagnetic structure function $F_{2A}^{EM} (x,Q^2)$ in a nucleus like iron, specially in the region of low $x$ and $Q^2$. In view of this observation we have made a study of nuclear medium effects on $F_{2A}^{Weak} (x,Q^2)$ and $F_{2A}^{EM} (x,Q^2)$ for a wide range of $x$ and $Q^2$ using a microscopic nuclear model. We have considered Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects to incorporate nuclear medium effects. The calculations are performed in a local density approximation using a relativistic nucleon spectral function which includes nucleon correlations. The numerical results in the case of iron nucleus are compared with the experimental data.

Nuclear medium effects in $F_{2A}^{EM}(x,Q^2)$ and $F_{2A}^{Weak}(x,Q^2)$ structure functions [Replacement]

Recent phenomenological analysis of experimental data on DIS processes induced by charged leptons and neutrinos/antineutrinos beams on nuclear targets by CTEQ collaboration has confirmed the observation of CCFR and NuTeV collaborations, that weak structure function $F_{2A}^{Weak} (x,Q^2)$ is different from electromagnetic structure function $F_{2A}^{EM} (x,Q^2)$ in a nucleus like iron, specially in the region of low $x$ and $Q^2$. In view of this observation we have made a study of nuclear medium effects on $F_{2A}^{Weak} (x,Q^2)$ and $F_{2A}^{EM} (x,Q^2)$ for a wide range of $x$ and $Q^2$ using a microscopic nuclear model. We have considered Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects to incorporate nuclear medium effects. The calculations are performed in a local density approximation using a relativistic nucleon spectral function which includes nucleon correlations. The numerical results in the case of iron nucleus are compared with the experimental data.

Investigation of pionic contribution in the lepton and anti-lepton production cross section in p-Cu and p-Pt collision [Cross-Listing]

For detailed explanation of the experimental results of lepton production cross section in hadronic collisions such as nucleon-nucleon or nucleon-nuclei, it is of great importance to use quarks and sea quarks distribution function inside free and bound nucleons. In this paper the role of pion cloud inside the nucleus in the structure function of Cu and Pt nuclei and the EMC ratio of these nuclei were investigated by using harmonic oscillator model.

Investigation of pionic contribution in the lepton and anti-lepton production cross section in p-Cu and p-Pt collision

For detailed explanation of the experimental results of lepton production cross section in hadronic collisions such as nucleon-nucleon or nucleon-nuclei, it is of great importance to use quarks and sea quarks distribution function inside free and bound nucleons. In this paper the role of pion cloud inside the nucleus in the structure function of Cu and Pt nuclei and the EMC ratio of these nuclei were investigated by using harmonic oscillator model.

Progress on nuclear modifications of structure functions [Cross-Listing]

We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010's.

Progress on nuclear modifications of structure functions [Cross-Listing]

We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010's.

Progress on nuclear modifications of structure functions

We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010's.

Progress on nuclear modifications of structure functions [Cross-Listing]

We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010's.

A new approach to the variability characterization of active galactic nuclei

The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.

Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

We examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and the $\bar{d}-\bar{u}$ flavor asymmetry in the proton. A detailed $\chi^2$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $4 \times 10^{-4} \lesssim x_\pi \lesssim 0.05$ at a scale of $Q^2$=10 GeV$^2$. Based on the fit results, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.

Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry [Cross-Listing]

We examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and the $\bar{d}-\bar{u}$ flavor asymmetry in the proton. A detailed $\chi^2$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $4 \times 10^{-4} \lesssim x_\pi \lesssim 0.05$ at a scale of $Q^2$=10 GeV$^2$. Based on the fit results, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.

Recent progress in some exclusive and semi-exclusive processes in proton-proton collisions

We present the main results of our recent analyses of exclusive production of vector charmonia ($J/\psi$ and $\psi'$) in $k_t$-factorization approach and for $\gamma \gamma$ production of charged dilepton pairs in exclusive and semiinclusive processes in a new approach, similar in spirit to $k_t$-factorization. The results for charmonia are compared with recent results of the LHCb collaboration. We include some helicity flip contributions and quantify the effect of absorption correction. The effect of $c \bar c$ wave function is illustrated. We present uncertainties related to $F_2$ structure function which are the main ingredient of the approach. Our results are compared with recent CMS data for dilepton production with lepton isolation cuts imposed.

Helicity Evolution at Small-x [Cross-Listing]

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Helicity Evolution at Small-x [Replacement]

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Helicity Evolution at Small-x [Replacement]

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Helicity Evolution at Small-x [Replacement]

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Helicity Evolution at Small-x [Replacement]

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Helicity Evolution at Small-x

We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the $g_1$ structure function. These evolution equations resum powers of $\alpha_s \, \ln^2 (1/x)$ in the polarization-dependent evolution along with the powers of $\alpha_s \, \ln (1/x)$ in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-$N_c$ and large-$N_c \, \& \, N_f$ limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for $g_1$ structure function derived previously by Bartels, Ermolaev and Ryskin.

Novel QCD Phenomena at JLab

The $12~$GeV electron beam energy at Jefferson Laboratory provides ideal electroproduction kinematics for many novel tests of QCD in both the perturbative and nonperturbative domains. These include tests of the quark flavor dependence of the nuclear structure functions; measurements of the QCD running coupling at soft scales; measurements of the diffractive deep inelastic structure function; measurements of exclusive contributions to the $T-$ odd Sivers function; the identification of ``odderon" contributions; tests of the spectroscopic and dynamic features of light-front holography, as well as ``meson-nucleon supersymmetry"; the production of open and hidden charm states in the heavy-quark threshold domain; and the production of exotic hadronic states such as pentaquarks, tetraquarks and even octoquarks containing charm quarks. One can also study fundamental features of QCD at JLab$12$ such as the ``hidden color" of nuclear wavefunctions, the ``color transparency" of hard exclusive processes, and the ``intrinsic strangeness and charm" content of the proton wavefunction. I will also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent. I will also present arguments why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions. I will also briefly review new insights into the hadron mass scale, the hadron mass spectrum, the functional form of the QCD coupling in the nonperturbative domain predicted by light-front holography, and how superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons.

Mapping optically variable quasars towards the galactic plane

We present preliminary results of the CIDA Equatorial Variability Survey (CEVS), looking for quasar (hereafter QSO) candidates near the Galactic plane. The CEVS contains photometric data from extended and adjacent regions of the Milky Way disk ($\sim$ 500 sq. deg.). In this work 2.5 square degrees with moderately high temporal sampling in the CEVS were analyzed. The selection of QSO candidates was based on the study of intrinsic optical photometric variability of 14,719 light curves. We studied samples defined by cuts in the variability index (Vindex $>$ 66.5), periodicity index (Q $>$ 2), and the distribution of these sources in the plane (AT , ${\gamma}$), using a slight modification of the first-order of the structure function for the temporal sampling of the survey. Finally, 288 sources were selected as QSO candidates. The results shown in this work are a first attempt to develop a robust method to detect QSO towards the Galactic plane in the era of massive surveys such as VISTA and Gaia.

The O(\alpha_s^3) Heavy Flavor Contributions to the Charged Current Structure Function xF_3(x,Q^2) at Large Momentum Transfer

We calculate the massive Wilson coefficients for the heavy flavor contributions to the non-singlet charged current deep-inelastic scattering structure function $xF_3^{W^+}(x,Q^2)+xF_3^{W^-}(x,Q^2)$ in the asymptotic region $Q^2 \gg m^2$ to 3-loop order in Quantum Chromodynamics (QCD) at general values of the Mellin variable $N$ and the momentum fraction $x$. Besides the heavy quark pair production also the single heavy flavor excitation $s \rightarrow c$ contributes. Numerical results are presented for the charm quark contributions and consequences on the Gross-Llewellyn Smith sum rule are discussed.

The O(\alpha_s^3) Heavy Flavor Contributions to the Charged Current Structure Function xF_3(x,Q^2) at Large Momentum Transfer [Cross-Listing]

We calculate the massive Wilson coefficients for the heavy flavor contributions to the non-singlet charged current deep-inelastic scattering structure function $xF_3^{W^+}(x,Q^2)+xF_3^{W^-}(x,Q^2)$ in the asymptotic region $Q^2 \gg m^2$ to 3-loop order in Quantum Chromodynamics (QCD) at general values of the Mellin variable $N$ and the momentum fraction $x$. Besides the heavy quark pair production also the single heavy flavor excitation $s \rightarrow c$ contributes. Numerical results are presented for the charm quark contributions and consequences on the Gross-Llewellyn Smith sum rule are discussed.

Active Galactic Nuclei Discovered in the Kepler Mission

We report on candidate active galactic nuclei (AGN) discovered during the monitoring of $\sim$500 bright (r < 18 mag) galaxies over several years with the Kepler Mission. Most of the targets were sampled every 30 minutes nearly continuously for a year or more. Variations of 0.001 mag and often less could be detected reliably. About 4.0% (19) of our random sample continuously fluctuated with amplitudes increasing with longer timescales, but the majority are close to the limits of detectability with Kepler. We discuss our techniques to mitigate the long term instrumental trends in Kepler light curves and our resulting structure function curves. The amplitudes of variability over four month periods, as seen in the structure functions and PSDs, can dramatically change for many of these AGN candidates. Four of the candidates have features in their Structure Functions that may indicate quasi-periodic behavior, although other possibilities are discussed.

Do the Kepler AGN Light Curves Need Re-processing?

We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by \Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST database with a re-processed light curve constructed from raw pixel data (Williams & Carini, 2015). We use the first-order structure function, $SF(\delta t)$, to fit both light curves to the damped power-law PSD of Kasliwal, Vogeley & Richards, 2015. On short timescales, we find a steeper log-PSD slope ($\gamma = 2.90$ to within $10$ percent) for the re-processed light curve as compared to the light curve found on MAST ($\gamma = 2.65$ to within $10$ percent)---both inconsistent with a damped random walk which requires $\gamma = 2$. The log-PSD slope inferred for the re-processed light curve is consistent with previous results (Carini & Ryle, 2012, Williams & Carini, 2015) that study the same re-processed light curve. The turnover timescale is almost identical for both light curves ($27.1$ and $27.5$~d for the reprocessed and MAST database light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Re-processing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusion reached by Kasliwal et al. 2015---not all AGN light curves are consistent with the DRW.

High x Structure Function of the Virtually Free Neutron [Replacement]

The pole extrapolation method is applied to the semi-inclusive inelastic electron scattering off the deuteron with tagged spectator protons to extract the high-x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is in the possibility of suppression of the nuclear effects in a maximally model-independent way. The neutron structure functions obtained in this way demonstrate a surprising x dependence at $x\ge 0.6$ and $1.6 \leq Q^2 \leq 3.38$ GeV$^2$, indicating a possible rise of the neutron to proton structure function ratio. If the observed rise is valid in the true deep inelastic region then it may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton.

High x Structure Function of the Virtually Free Neutron [Replacement]

The pole extrapolation method is applied to the semi-inclusive inelastic electron scattering off the deuteron with tagged spectator protons to extract the high-x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is in the possibility of suppression of the nuclear effects in a maximally model-independent way. The neutron structure functions obtained in this way demonstrate a surprising x dependence at $x\ge 0.6$ and $1.6 \leq Q^2 \leq 3.38$ GeV$^2$, indicating a possible rise of the neutron to proton structure function ratio. If the observed rise is valid in the true deep inelastic region then it may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton.

High x Structure Function of the Virtually Free Neutron [Replacement]

The pole extrapolation method is applied to the semi-inclusive inelastic electron scattering off the deuteron with tagged spectator protons to extract the high-x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is in the possibility of suppression of the nuclear effects in a maximally model-independent way. The neutron structure functions obtained in this way demonstrate a surprising x dependence at $x\ge 0.6$ and $1.6 \leq Q^2 \leq 3.38$ GeV$^2$, indicating a possible rise of the neutron to proton structure function ratio. If the observed rise is valid in the true deep inelastic region then it may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton.

High x Structure Function of the Virtually Free Neutron

The pole extrapolation method is applied for the first time to data on semi-inclusive deep-inelastic scattering off the deuteron with tagged spectator protons to extract the high Bjorken x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the detected spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is that it makes it possible to suppress nuclear effects in a maximally model independent way. The neutron structure functions obtained in this way demonstrate surprising x dependence at x> 0.6, indicating the possibility of a rise in the neutron to proton structure function ratio. Such a rise may indicate new dynamics in the generation of high x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton resulting in d/u -> 1.

High x Structure Function of the Virtually Free Neutron [Replacement]

The pole extrapolation method is applied for the first time to the data on semi-inclusive inelastic scattering off the deuteron with tagged spectator protons to extract the high Bjorken x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is that it makes it possible to suppress nuclear effects in a maximally model independent way. The neutron structure functions obtained in this way demonstrate a surprising $x$ dependence at x\ge 0.6, indicating a possible rise of the neutron to proton structure function ratio. Such a rise may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton.

Mapping the Gas Turbulence in the Coma Cluster: Predictions for Astro-H [Replacement]

Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum--the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias.

Mapping the Gas Turbulence in the Coma Cluster: Predictions for Astro-H

Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum--the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically-motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^