### Thermal conductivity of the neutron star crust: A reappraisal

(0 votes over all institutions)

We use classical and quantum Monte Carlo techniques to study the static structure function $S(q)$ of a one-component ion lattice and use it to calculate the thermal conductivity $\kappa$ of high-density solid matter expected in the neutron star crust. We also calculate the phonon spectrum using the dynamic-matrix method and use it to obtain $\kappa$ in the one-phonon approximation. We compare the results obtained with these methods and assess the validity of some commonly used approximations in the literature. We find that quantum effects became relevant for the calculation of $\kappa$ when the temperature $T\lesssim 0.3~\Omega_\mathrm{P}$, where $\Omega_\mathrm{P}$ is the ion plasma frequency. Dynamical information beyond the static structure becomes relevant when $T\lesssim 0.1~\Omega_\mathrm{P}$. We discuss the implications of these findings for calculations of $\kappa$ in multi-component systems and identify strategies for using Monte Carlo techniques in future work.