Posts Tagged solar system

Recent Postings from solar system

Hungaria region as possible source of Trojans and satellites in the inner solar-system

The Hungaria Family (the closest region of the Main Belt to Mars) is an important source of Planet-Crossing-Asteroids and even impactors of terrestrial planets. We present the possibility that asteroids coming from the Hungaria Family get captured into co-orbital motion with the terrestrial planets in the inner solar system. Therefore we carried out long term numerical integrations (up to 100 Myr) to analyze the migrations from their original location - the Hungaria family region- into the inner solar system. During the integration time we observed whether or not the Hungarias get captured into a co-orbital motion with the terrestrial planets. Our results show that 5.5% of 200 Hungarias, selected as a sample of the whole group, escape from the Hungaria region and the probability from that to become co-orbital objects (Trojans, satellites or horseshoes) turns out to be about 3.3%: 1.8% for Mars and 1.5% for the Earth. In addition, we distinguished in which classes of co-orbital motion the asteroids get captured and for how long they stay there in stable motion. Most of the escaped Hungarias become Quasi-satellites and the ones captured as Trojans favor the L_5 lagrangian point. This work highlights that the Hungaria region is a source of Mars and also Earth co-orbital objects.

The Precise and Powerful Chaos of the 5:2 Mean Motion Resonance with Jupiter

This work reexamines the dynamics of the 5:2 mean motion resonance with Jupiter located in the Outer Belt at $a\sim 2.82$ AU. First, we compute dynamical maps revealing the precise structure of chaos inside the resonance. Being interested to verify the chaotic structures as sources of natural transportation routes, we additionally integrate 1000 massless particles initially placed along them and follow their orbital histories up to 5 Myr. As many as 99.5\% of our test particles became Near-Earth Objects, 23.4\% migrated to semi-major axis below 1 AU and more than 57\% entered the Hill sphere of Earth. We have also observed a borderline defined by the $q \simeq 2.6$ AU perihelion distance along which particles escape from the Solar System.

Asteroid-Comet Continuum Objects in the Solar System

In this review presented at the Royal Society meeting, "Cometary Science After Rosetta", I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as "transition objects", these bodies are perhaps more appropriately described as "continuum objects", to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical, and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g., relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.

Composition of Solar System Small Bodies

The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then use this information to i) discuss current dynamical models (Nice and Grand Tack models), ii) mention possible caveats in these models if any, and iii) draw a preliminary version of the primordial compositional gradient across the solar system before planetary migrations occured. Note that the composition of both planetary satellites (the regular ones) and that of the transient populations (NEOs, centaurs) is not discussed here. We strictly focus on the composition of the main reservoirs of small bodies. The manuscript's objective is to provide a global and synthetic view of small bodies' compositions rather than a very detailed one, for specific reviews regarding the composition of small bodies, see papers by Burbine (2014) for asteroids, Emery et al. (2015) for Jupiter trojans, Mumma and Charnley (2011) for comets, and Brown (2012) for KBOs.

Goldstone Cosmology

We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its $\Lambda$-CDM counterpart whilst cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force whilst it is enhanced in the convex case. In both cases, the departures from the $\Lambda$-CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the $\Lambda$-CDM scenario.

A laboratory study of water ice erosion by low-energy ions

Water ice covers the surface of various objects in the outer Solar system. Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.

Trojan capture by terrestrial planets

The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean motion resonance especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. This temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing like jumping from one Lagrange point to the other one.

Solar-system tests of the relativistic gravity

In 1859, Le Verrier discovered the Mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 156 years to 2016, the precisions and accuracies of laboratory and space experiments, and of astrophysical and cosmological observations on relativistic gravity have been improved by 3-4 orders of magnitude. The improvements have been mainly from optical observations at first followed by radio observations. The achievements for the past 50 years are from radio Doppler tracking and radio ranging together with lunar laser ranging. At the present, the radio observations and lunar laser ranging experiments are similar in the accuracy of testing relativistic gravity. We review and summarize the present status of solar-system tests of relativistic gravity. With planetary laser ranging, spacecraft laser ranging and interferometric laser ranging (laser Doppler ranging) together with the development of drag-free technology, the optical observations will improve the accuracies by another 3-4 orders of magnitude in both the equivalence principle tests and solar-system dynamics tests of relativistic gravity. Clock tests and atomic interferometry tests of relativistic gravity will reach an ever-increasing precision. These will give crucial clues in both experimental and theoretical aspects of gravity, and may lead to answers to some profound issues in gravity and cosmology.

Influence of the Centaurs and TNOs on the main belt and its families

Centaurs are objects whose orbits are found between those of the giant planets. They are supposed to originate mainly from the TransNeptunian objects, and they are among the sources of NearEarth Objects.TransNeptunian Objects (TNOs) cross Neptune's orbit and produce the Centaurs. We investigate their interactions with main belt asteroids to determine if chaotic scattering caused by close encounters and impacts by these bodies may have played a role in the dynamical evolution of the main belt. We find that Centaurs and TNOs that reach the inner Solar System can modify the orbits of main belt asteroids, though only if their mass is of the order of 1 billion less the mass of the sun for single encounters or, one order less in the case of multiple close encounters. Centaurs and TNOs are unlikely to have significantly dispersed young asteroid families in the main belt, but they can have perturbed some old asteroid families. Current main belt asteroids that originated as Centaurs or Trans-Neptunian Objects may lie in the outer belt with short lifetime less than 4 My, most likely between 2.8 au and 3.2 au at larger eccentricities than typical of main belt asteroids.

Future 100 TeV colliders' safety in the context of stable micro black holes production [Cross-Listing]

In the theories with extra dimensions the higher-dimensional Planck mass could be as small as 1 TeV, that entails the possibility that a considerable amount of microscopic black holes can be produced during runs of future high energy colliders. According to the laws of quantum theory, these black holes are supposed to evaporate immediately; however, due to the lack of the experimental data confirming this process as well as in absence of a reliable theory of quantum gravity, for the exhaustive analysis of safety one has to consider the worst case in which the micro black holes could be stable. In this paper we consider the theories with the different number of extra dimensions and deduce which of them yield Earth's accretion times smaller than the lifetime of the Solar system. We calculate the cross sections of the black hole production at the 100 TeV collider, the fraction of the black holes trapped inside the Earth and the resulting rate of production. We study the astrophysical consequences of stable micro black holes existence, in particular its influence on the stability of white dwarfs and neutron stars. Several mechanisms of the micro black hole production, which were not considered before, are taken into account. Finally, using the astrophysical constraints we derive expected number of 'dangerous' black holes from the future 100 TeV terrestrial experiments.

Future 100 TeV colliders' safety in the context of stable micro black holes production [Cross-Listing]

In the theories with extra dimensions the higher-dimensional Planck mass could be as small as 1 TeV, that entails the possibility that a considerable amount of microscopic black holes can be produced during runs of future high energy colliders. According to the laws of quantum theory, these black holes are supposed to evaporate immediately; however, due to the lack of the experimental data confirming this process as well as in absence of a reliable theory of quantum gravity, for the exhaustive analysis of safety one has to consider the worst case in which the micro black holes could be stable. In this paper we consider the theories with the different number of extra dimensions and deduce which of them yield Earth's accretion times smaller than the lifetime of the Solar system. We calculate the cross sections of the black hole production at the 100 TeV collider, the fraction of the black holes trapped inside the Earth and the resulting rate of production. We study the astrophysical consequences of stable micro black holes existence, in particular its influence on the stability of white dwarfs and neutron stars. Several mechanisms of the micro black hole production, which were not considered before, are taken into account. Finally, using the astrophysical constraints we derive expected number of 'dangerous' black holes from the future 100 TeV terrestrial experiments.

Future 100 TeV colliders' safety in the context of stable micro black holes production

In the theories with extra dimensions the higher-dimensional Planck mass could be as small as 1 TeV, that entails the possibility that a considerable amount of microscopic black holes can be produced during runs of future high energy colliders. According to the laws of quantum theory, these black holes are supposed to evaporate immediately; however, due to the lack of the experimental data confirming this process as well as in absence of a reliable theory of quantum gravity, for the exhaustive analysis of safety one has to consider the worst case in which the micro black holes could be stable. In this paper we consider the theories with the different number of extra dimensions and deduce which of them yield Earth's accretion times smaller than the lifetime of the Solar system. We calculate the cross sections of the black hole production at the 100 TeV collider, the fraction of the black holes trapped inside the Earth and the resulting rate of production. We study the astrophysical consequences of stable micro black holes existence, in particular its influence on the stability of white dwarfs and neutron stars. Several mechanisms of the micro black hole production, which were not considered before, are taken into account. Finally, using the astrophysical constraints we derive expected number of 'dangerous' black holes from the future 100 TeV terrestrial experiments.

On the incidence of \textit{WISE} infrared excess among solar analog, twin and sibling stars

This study presents a search for IR excess in the 3.4, 4.6, 12 and 22 $\mu$m bands in a sample of 216 targets, composed of solar sibling, twin and analog stars observed by the \textit{WISE} mission. In general, an infrared excess suggests the existence of warm dust around a star. We detected 12 $\mu$m and/or 22 $\mu$m excesses at the 3$\sigma$ level of confidence in five solar analog stars, corresponding to a frequency of 4.1 $\%$ of the entire sample of solar analogs analyzed, and in one out of 29 solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with infrared excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4 $\mu$m) and W2 (4.6 $\mu$m) \textit{WISE} bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the sixty solar twin stars analyzed in this work, no \textit{WISE} photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence.

Stellar Pulsations in Beyond Horndeski Gravity Theories

Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

Stellar Pulsations in Beyond Horndeski Gravity Theories [Cross-Listing]

Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula

The distribution of heavy elements is anomalously low in the asteroid main belt region compared with elsewhere in the solar system. Observational surveys also indicate a deficit in the number of small ($ \le 50$~km size) asteroids that is two orders of magnitude lower than what is expected from the single power-law distribution that results from a collisional coagulation and fragmentation equilibrium. Here, we consider the possibility that a major fraction of the original asteroid population may have been cleared out by Jupiter's secular resonance, as it swept through the main asteroid belt during the depletion of the solar nebula. This effect leads to the excitation of the asteroids' orbital eccentricities. Concurrently, hydrodynamic drag and planet-disk tidal interaction effectively damp the eccentricities of sub-100 km-size and of super-lunar-size planetesimals, respectively. These combined effects lead to the asteroids' orbital decay and clearing from the present-day main belt region ($\sim 2.1-3.3$~AU). The intermediate-size (50 to several hundreds of kilometers) planetesimals therefore preferentially remain as main belt asteroids near their birthplaces, with modest asymptotic eccentricities. The smaller asteroids are the fragments of subsequent disruptive collisions at later times as suggested by the present-day asteroid families. This scenario provides a natural explanation for both the observed low surface density and the size distribution of asteroids in the main belt. It also offers an explanation for the confined spatial extent of the terrestrial planet building blocks without the requirement of extensive migration of Jupiter.

Predictions for the Period Dependence of the Transition Between Rocky Super-Earths and Gaseous Sub-Neptunes and Implications for $\eta_{\mathrm{\oplus}}$

One of the most significant advances by NASA's Kepler Mission was the discovery of an abundant new population of highly irradiated planets with sizes between that of the Earth and Neptune, unlike anything found in the Solar System. Subsequent analysis showed that at ~1.5 $R_{\mathrm{\oplus}}$ there is a transition from a population of predominantly rocky super-Earths to non-rocky sub-Neptunes, which must have substantial volatile envelopes to explain their low densities. Determining the origin of these highly irradiated rocky planets will be critical to our understanding of low-mass planet formation and the frequency of potentially habitable Earth-like planets. These short-period rocky super-Earths could simply be the stripped cores of sub-Neptunes, which have lost their envelopes due to atmospheric photo-evaporation or other processes, or they might instead be a separate population of inherently rocky planets, which never had significant envelopes. We suggest an observational path forward to distinguish between these scenarios. Using models of atmospheric photo-evaporation we show that if most bare rocky planets are the evaporated cores of sub-Neptunes then the transition radius should decrease as surveys push to longer orbital periods. On the other hand, if most rocky planets formed after their disks dissipate then these planets will have formed without initial gaseous envelopes. In this case, we use N-body simulations of planet formation to show that the transition radius should increase with orbital period. Moreover, we show that distinguishing between these two scenarios should be possible in coming years with radial velocity follow-up of planets found by TESS. Finally, we discuss the broader implications of this work for current efforts to measure $\eta_{\mathrm{\oplus}}$, which may yield significant overestimates if most rocky planets form as evaporated cores.

Very Long-period Pulsations before the Onset of Solar Flares [Replacement]

Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. So far, it is still a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite (GOES), this work reported a new discovery of very long-periodic pulsations occurred in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations are typically with period of 8 - 30 min and last for about 1 - 2 hours. They are possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. The preflare-VLP provides an essential information for understanding the triggering mechanism and origin of solar flares, and may help us to response to solar explosions and the corresponding disastrous space weather events as a convenient precursory indicator.

Very Long-period Pulsations before the Onset of Solar Flares

Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. So far, it is still a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite (GOES), this work reported a new discovery of very long-periodic pulsations occurred in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations are typically with period of 8 - 30 min and last for about 1 - 2 hours. They are possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. The preflare-VLP provides an essential information for understanding the triggering mechanism and origin of solar flares, and may help us to response to solar explosions and the corresponding disastrous space weather events as a convenient precursory indicator.

The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

[Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a NLTE Li abundance of 1.52 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log(R'HK) (-5.05) and low jitter. Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the refractory elements. [Conclusions]. The super-Neptune planet candidate is too massive for in situ formation, and therefore its current location is most likely the result of planet migration that could also have driven other planets towards its host star, enhancing thus the abundance of lithium and refractory elements in HIP 68468. The intriguing evidence of planet accretion warrants further observations to verify the existence of the planets that are indicated by our data and to better constrain the nature of the planetary system around this unique star.

Parameterized Post-Newtonian Cosmology

Einstein's theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein's theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as "parameterized post-Newtonian cosmology" (PPNC).

The Puzzling Detection of X-rays From Pluto by Chandra

Using Chandra ACIS-S, we have obtained imaging Xray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. 174 ksec of observations were obtained on 4 visits in Feb 2014 to Aug 2015. We measured a net signal of 6.8 counts and a noise level of 1.2 counts in a comoving 11 x 11 pixel box (100 x 100 R_Pluto) in the 0.31 to 0.60 keV passband for a detection at > 99.95 C.L. The Pluto photons do not match the background spectrum, are coincident with a 90% flux aperture comoving with Pluto, and are not sky source confused. The mean 0.31 to 0.60 keV Xray power from Pluto is 200 MW, in the midrange of Xray power levels seen for known solar system emission sources: auroral precipitation, solar Xray scattering, and charge exchange (CXE) between solar wind (SW) ions & atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field & the New Horizons Alice UV spectrometer detected no airglow from Pluto during the flyby. Nano-scale atmospheric haze particles could lead to enhanced resonant scattering of solar X-rays from Pluto, but the energy signature of the detected photons does not match the solar spectrum and estimates of Plutos scattered Xray emission are > 100 times below the 3.9e-5 cps found in our observations. CXE emission from SW carbon, nitrogen, and oxygen ions can produce the energy signature seen, and the 6e25 neutral gas escape rate from Pluto deduced from New Horizons data can support the 3.0e24 Xray photons/sec emission rate required by our observations. Using the SW proton density and speed measured by the Solar Wind Around Pluto (SWAP) instrument in the vicinity of Pluto at the time of the photon emissions, we find too few SW minor ions flowing into the 11 x 11 pixel box centered on Pluto than are needed to support the observed emission rate unless the SW is significantly focused and enhanced in this region.

Cameras a Million Miles Apart: Stereoscopic Imaging Potential with the Hubble and James Webb Space Telescopes

The two most powerful optical/IR telescopes in history -- NASA's Hubble and James Webb Space Telescopes -- will be in space at the same time. We have a unique opportunity to leverage the 1.5 million kilometer separation between the two telescopic nodal points to obtain simultaneously captured stereoscopic images of asteroids, comets, moons and planets in our Solar System. Given the recent resurgence in stereo-3D movies and the recent emergence of VR-enabled mobile devices, these stereoscopic images provide a unique opportunity to engage the public with unprecedented views of various Solar System objects. Here, we present the technical requirements for acquiring stereoscopic images of Solar System objects, given the constraints of the telescopic equipment and the orbits of the target objects, and we present a handful of examples.

Spitzer Observations Confirm and Rescue the Habitable-Zone Super-Earth K2-18b for Future Characterization

The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the Solar System. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using HST and JWST. Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33-day orbit and ruling out the alternative scenario of two similarly-sized, long-period planets transiting only once within the 75-day K2 observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hours (7-sigma) before the predicted transit time. Our joint analysis of the Spitzer and K2 photometry reveals that this early occurrence of the transit is not caused by transit timing variations (TTVs), but the result of an inaccurate K2 ephemeris due to a previously undetected data anomaly in the K2 photometry likely caused by a cosmic ray hit. We refit the ephemeris and find that K2-18b would have been lost for future atmospheric characterizations with HST and JWST if we had not secured its ephemeris shortly after the discovery. We caution that immediate follow-up observations as presented here will also be critical in confirming and securing future planets discovered by TESS, in particular if only two transit events are covered by the relatively short 27-day TESS campaigns.

Solar system tests for realistic $f(T)$ models with nonminimal torsion-matter coupling

In the previous paper, we have constructed two $f(T)$ models with nonminimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era, and the present accelerating expansion. Meantime, the significant advantage of these models is that they could avoid the cosmological constant problem of $\Lambda$CDM. However, the nonminimal coupling between matter and torsion will affect the tests of Solar system. In this paper, we study the effects of Solar system in these models, including the gravitation redshift, geodetic effect and perihelion preccesion. We find that Model I can pass all three of the Solar system tests. For Model II, the parameter is constrained by the measure of the perihelion precession of Mercury.

Hunting modifications of gravity: from the lab to cosmology via compact objects [Cross-Listing]

Modifications of gravity have been considered to model the primordial inflation and the late-time cosmic acceleration. Provided that modified gravity models do not suffer from theoretical instabilities, they must be confronted with observations, not only at the cosmological scales, but also with the local tests of gravity, in the lab and in the Solar System, as well as at the astrophysical scales. Considering in particular sub-classes of the Horndeski gravity, we study their observational predictions at different scales. In order to pass the local tests of gravity while allowing for long-range interactions in cosmology, Horndeski gravity exhibits screening mechanisms, among them the chameleon. The chameleon screening mechanism has been tested recently using atom interferometry in a vacuum chamber. Numerical simulations are provided in this thesis in order to refine the analytical predictions. At the astrophysical scale, Horndeski gravity predicts a variation of the gravitational coupling inside compact stars. Focusing on Higgs inflation, we discuss to what extent the Higgs vacuum expectation value varies inside stars and conclude whether the effect is detectable in gravitational and nuclear physics. Finally, the covariant Galileon model exhibits non-linearities in the scalar field kinetic term such that it might pass the local tests of gravity thanks to the Vainshtein screening mechanism. We discuss if a sub-class of the covariant Galileon theory dubbed the Fab Four model leads to a viable inflationary phase and provide combined analysis with neutron stars and Solar System observables.

Hunting modifications of gravity: from the lab to cosmology via compact objects

Modifications of gravity have been considered to model the primordial inflation and the late-time cosmic acceleration. Provided that modified gravity models do not suffer from theoretical instabilities, they must be confronted with observations, not only at the cosmological scales, but also with the local tests of gravity, in the lab and in the Solar System, as well as at the astrophysical scales. Considering in particular sub-classes of the Horndeski gravity, we study their observational predictions at different scales. In order to pass the local tests of gravity while allowing for long-range interactions in cosmology, Horndeski gravity exhibits screening mechanisms, among them the chameleon. The chameleon screening mechanism has been tested recently using atom interferometry in a vacuum chamber. Numerical simulations are provided in this thesis in order to refine the analytical predictions. At the astrophysical scale, Horndeski gravity predicts a variation of the gravitational coupling inside compact stars. Focusing on Higgs inflation, we discuss to what extent the Higgs vacuum expectation value varies inside stars and conclude whether the effect is detectable in gravitational and nuclear physics. Finally, the covariant Galileon model exhibits non-linearities in the scalar field kinetic term such that it might pass the local tests of gravity thanks to the Vainshtein screening mechanism. We discuss if a sub-class of the covariant Galileon theory dubbed the Fab Four model leads to a viable inflationary phase and provide combined analysis with neutron stars and Solar System observables.

Long Term Sunspot Cycle Phase Coherence with Periodic Phase Disruptions [Replacement]

In 1965 Paul D. Jose published his discovery that both the motion of the Sun about the center of mass of the solar system and periods comprised of eight Hale magnetic sunspot cycles with a mean period of ~22.375 years have a matching periodicity of ~179 years. We have investigated the implied link between solar barycentric torque cycles and sunspot cycles and have found that the unsigned solar torque values from 1610 to 2058 are consistently phase and magnitude coherent in ~179 year Jose Cycles. We are able to show that there is also a surprisingly high degree of sunspot cycle phase coherence for times of minima in addition to magnitude correlation of peaks between the nine Schwabe sunspot cycles of 1878 through 1976 (SC12 through SC20) and those of 1699 through 1797 (SC[-5] through SC4). We further identify subsequent subcycles of predominantly non-coherent sunspot cycle phase. In addition we have analyzed the empirical solar motion triggers of both sunspot cycle phase coherence and phase coherence disruption, from which we boldly predict a future return to sunspot cycle phase coherence at times of minima with SC12 to SC20 for SC28 through SC35 (2057 to 2144) will be phase coherent at times of minima and amplitude correlated at maxima with SC12 through SC19. The resulting predicted start times, +/- 1 year, 1 sigma, of future sunspot cycles SC28 to SC36 are tabulated.

Long Term Sunspot Cycle Phase Coherence with Periodic Phase Disruptions

In 1965 Paul D. Jose published his discovery that both the motion of the Sun about the center of mass of the solar system and periods comprised of eight Hale magnetic sunspot cycles with a mean period of ~22.375 years have a matching periodicity of ~179 years. We have investigated the implied link between solar barycentric torque cycles and sunspot cycles and have found that the unsigned solar torque values from 1610 to 2058 are consistently phase and magnitude coherent in ~179 year Jose Cycles. We are able to show that there is also a surprisingly high degree of sunspot cycle phase coherence for times of minima in addition to magnitude correlation of peaks between the nine Schwabe sunspot cycles of 1878 through 1976 (SC12 through SC20) and those of 1699 through 1797 (SC[-5] through SC4). We further identify subsequent subcycles of predominantly non-coherent sunspot cycle phase. In addition we have analyzed the empirical solar motion triggers of both sunspot cycle phase coherence and phase coherence disruption, from which we boldly predict a future return to sunspot cycle phase coherence at times of minima with SC12 to SC20 for SC28 to SC36. The resulting predicted start times, +/- 1 year, 1 sigma, of future sunspot cycles SC28 to SC36 are tabulated.

Maximizing Science in the Era of LSST: A Community-Based Study of Needed US Capabilities

The Large Synoptic Survey Telescope (LSST) will be a discovery machine for the astronomy and physics communities, revealing astrophysical phenomena from the Solar System to the outer reaches of the observable Universe. While many discoveries will be made using LSST data alone, taking full scientific advantage of LSST will require ground-based optical-infrared (OIR) supporting capabilities, e.g., observing time on telescopes, instrumentation, computing resources, and other infrastructure. This community-based study identifies, from a science-driven perspective, capabilities that are needed to maximize LSST science. Expanding on the initial steps taken in the 2015 OIR System Report, the study takes a detailed, quantitative look at the capabilities needed to accomplish six representative LSST-enabled science programs that connect closely with scientific priorities from the 2010 decadal surveys. The study prioritizes the resources needed to accomplish the science programs and highlights ways that existing, planned, and future resources could be positioned to accomplish the science goals.

Cosmological self-tuning and local solutions in generalized Horndeski theories

We study both the cosmological self-tuning and the local predictions (inside the Solar system) of the most general shift-symmetric beyond Horndeski theory. We first show that the cosmological self-tuning is generic in this class of theories: By adjusting a mass parameter entering the action, a large bare cosmological constant can be effectively reduced to a small observed one. Requiring then that the metric should be close enough to the Schwarzschild solution in the Solar system, to pass the experimental tests of general relativity, and taking into account the renormalization of Newton's constant, we select a subclass of models which presents all desired properties: It is able to screen a big vacuum energy density, while predicting an exact Schwarzschild-de Sitter solution around a static and spherically symmetric source. As a by-product of our study, we identify a general subclass of beyond Horndeski theory for which regular self-tuning black hole solutions exist, in presence of a time-dependent scalar field. We discuss possible future development of the present work.

Cosmological self-tuning and local solutions in generalized Horndeski theories [Replacement]

We study both the cosmological self-tuning and the local predictions (inside the Solar system) of the most general shift-symmetric beyond Horndeski theory. We first show that the cosmological self-tuning is generic in this class of theories: By adjusting a mass parameter entering the action, a large bare cosmological constant can be effectively reduced to a small observed one. Requiring then that the metric should be close enough to the Schwarzschild solution in the Solar system, to pass the experimental tests of general relativity, and taking into account the renormalization of Newton's constant, we select a subclass of models which presents all desired properties: It is able to screen a big vacuum energy density, while predicting an exact Schwarzschild-de Sitter solution around a static and spherically symmetric source. As a by-product of our study, we identify a general subclass of beyond Horndeski theory for which regular self-tuning black hole solutions exist, in presence of a time-dependent scalar field. We discuss possible future development of the present work.

The rate of stellar encounters along a migrating orbit of the Sun

The frequency of Galactic stellar encounters the Solar system experienced depends on the local density and velocity dispersion along the orbit of the Sun in the Milky Way galaxy. We aim at determining the effect of the radial migration of the solar orbit on the rate of stellar encounters. As a first step we integrate the orbit of the Sun backwards in time in an analytical potential of the Milky Way. We use the present-day phase-space coordinates of the Sun, according to the measured uncertainties. The resulting orbits are inserted in an N-body simulation of the Galaxy, where the stellar velocity dispersion is calculated at each position along the orbit of the Sun. We compute the rate of Galactic stellar encounters by employing three different solar orbits ---migrating from the inner disk, without any substantial migration, and migrating from the outer disk. We find that the rate for encounters within $4\times10^5$ AU from the Sun is approximately 21, 39 and 63 Myr$^{-1}$, respectively. The stronger encounters establish the outer limit of the so-called parking zone, which is the region in the plane of the orbital eccentricities and semi-major axes where the planetesimals of the Solar system have been perturbed only by interactions with stars belonging to the Sun's birth cluster. We estimate the outer edge of the parking zone at semi-major axes of 250--1300 AU (the outward and inward migrating orbits reaching the smallest and largest values, respectively), which is one order of magnitude smaller than the determination made by Portegies Zwart & J\'ilkov\'a (2015). We further discuss the effect of stellar encounters on the stability of the hypothetical Planet 9.

Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis

The nearly circular (mean eccentricity <e>~0.06) and coplanar (mean mutual inclination <i>~3 deg) orbits of the Solar System planets motivated Kant and Laplace to put forth the hypothesis that planets are formed in disks, which has developed into the widely accepted theory of planet formation. Surprisingly, the first several hundred extrasolar planets (mostly Jovian) discovered using the Radial Velocity (RV) technique are commonly on eccentric orbits (<e> ~ 0.3). This raises a fundamental question: Are the Solar System and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the LAMOST observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), while the other half are multiple-transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with <e>~0.3, while the multiples are on nearly circular (<e> = 0.04^{+0.03}_{-0.04}) and coplanar (<i> = 1.4^{+0.8}_{-1.1} deg) orbits similar to the Solar System planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation <e>~(1-2)x<i> between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.

Gravitational focusing of Imperfect Dark Matter [Replacement]

Motivated by the projectable Horava--Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of Imperfect Dark Matter passing near the Sun. This entails strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce a stringent constraint on the unique constant of the model.

Gravitational focusing of Imperfect Dark Matter [Replacement]

Motivated by the projectable Horava--Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of Imperfect Dark Matter passing near the Sun. This entails strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce a stringent constraint on the unique constant of the model.

Gravitational focusing of Imperfect Dark Matter [Cross-Listing]

Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of {\it Imperfect Dark Matter} passing near the Sun. This entails the strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce the stringent constraint on the unique constant of the model.

Gravitational focusing of Imperfect Dark Matter

Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of {\it Imperfect Dark Matter} passing near the Sun. This entails the strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce the stringent constraint on the unique constant of the model.

Gravitational focusing of Imperfect Dark Matter [Cross-Listing]

Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of {\it Imperfect Dark Matter} passing near the Sun. This entails the strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce the stringent constraint on the unique constant of the model.

Gravitational focusing of Imperfect Dark Matter [Replacement]

Motivated by the projectable Horava--Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of Imperfect Dark Matter passing near the Sun. This entails strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\beta_{PPN}$, we deduce a stringent constraint on the unique constant of the model.

The Spherically Symmetric Vacuum in Covariant $F(T) = T + \frac{\alpha}{2}T^{2} + \mathcal{O}(T^{\gamma})$ Gravity Theory [Cross-Listing]

Recently, a fully covariant version of the theory of $F(T)$ torsion gravity has been introduced (arXiv:1510.08432v2 [gr-qc]). In covariant $F(T)$ gravity the Schwarzschild solution is not a vacuum solution for $F(T)\neq T$ and therefore determining the spherically symmetric vacuum is an important open problem. Within the covariant framework we perturbatively solve the spherically symmetric vacuum gravitational equations around the Schwarzschild solution for the scenario with $F(T)=T + (\alpha/2)\, T^{2}$, representing the dominant terms in theories governed by Lagrangians analytic in the torsion scalar. From this we compute the perihelion shift correction to solar system planetary orbits as well as perturbative gravitational effects near neutron stars. This allows us to set an upper bound on the magnitude of the coupling constant, $\alpha$, which governs deviations from General Relativity. We find the bound on this nonlinear torsion coupling constant by specifically considering the uncertainty in the perihelion shift of Mercury. We also analyze a bound from a similar comparison with the periastron orbit of the binary pulsar PSR J0045-7319 as an independent check for consistency. Setting bounds on the dominant nonlinear coupling is important in determining if other effects in the solar system or greater universe could be attributable to nonlinear torsion.

The Spherically Symmetric Vacuum in Covariant $F(T) = T + \frac{\alpha}{2}T^{2} + \mathcal{O}(T^{\gamma})$ Gravity Theory

Recently, a fully covariant version of the theory of $F(T)$ torsion gravity has been introduced (arXiv:1510.08432v2 [gr-qc]). In covariant $F(T)$ gravity the Schwarzschild solution is not a vacuum solution for $F(T)\neq T$ and therefore determining the spherically symmetric vacuum is an important open problem. Within the covariant framework we perturbatively solve the spherically symmetric vacuum gravitational equations around the Schwarzschild solution for the scenario with $F(T)=T + (\alpha/2)\, T^{2}$, representing the dominant terms in theories governed by Lagrangians analytic in the torsion scalar. From this we compute the perihelion shift correction to solar system planetary orbits as well as perturbative gravitational effects near neutron stars. This allows us to set an upper bound on the magnitude of the coupling constant, $\alpha$, which governs deviations from General Relativity. We find the bound on this nonlinear torsion coupling constant by specifically considering the uncertainty in the perihelion shift of Mercury. We also analyze a bound from a similar comparison with the periastron orbit of the binary pulsar PSR J0045-7319 as an independent check for consistency. Setting bounds on the dominant nonlinear coupling is important in determining if other effects in the solar system or greater universe could be attributable to nonlinear torsion.

SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of sys- tematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precision differential photometry that exploits the choice of specifically selected narrow-band filters and novel ideas for the execution of simultaneous VIS and NIR measurements. Starting from the fundamental system requirements driven by the science case at hand, we describe a set of three opto-mechanical solutions for the instrument prototype: 1) a radial distribution of the optical flux using dichroic filters for the wavelength separation and narrow-band filters or liquid crystal filters for the observations; 2) a tree distribution of the optical flux (implying 2 separate foci), with the same technique used for the beam separation and filtering; 3) an exotic solution consisting of the study of a complete optical system (i.e. a brand new telescope) that exploits the chromatic errors of a reflecting surface for directing the different wavelengths at different foci.

The Asteroid Belt as a Relic From a Chaotic Early Solar System

The orbital structure of the asteroid belt holds a record of the Solar System's dynamical history. The current belt only contains ${\rm \sim 10^{-3}}$ Earth masses yet the asteroids' orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have been excited by Jupiter's orbital migration. The terrestrial planets can also be reproduced without invoking a migrating Jupiter; however, as it requires a severe mass deficit beyond Earth's orbit, this model systematically under-excites the asteroid belt. Here we show that the orbits of the asteroids may have been excited to their current state if Jupiter and Saturn's early orbits were chaotic. Stochastic variations in the gas giants' orbits cause resonances to continually jump across the main belt and excite the asteroids' orbits on a timescale of tens of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion resonance at the end of the gaseous disk phase, small perturbations could have driven them into a chaotic but stable state. The gas giants' current orbits were achieved later, during an instability in the outer Solar System. Although it is well known that the present-day Solar System exhibits chaotic behavior, our results suggest that the early Solar System may also have been chaotic.

ET Probes: Looking Here as Well as There [Cross-Listing]

Almost all SETI searches to date have explicitly targeted stars in the hope of detecting artificial radio or optical transmissions. It is argued that extra-terrestrials (ET) might regard sending physical probes to our own Solar System as a more efficient means for sending large amounts of information to Earth. Probes are more efficient in terms of energy and time expenditures; may solve for the vexing problem of Drake's L factor term, namely, that the civilization wishing to send information may not coexist temporally with the intended recipient; and they alleviate ET's reasonable fear that the intended recipient might prove hostile. It is argued that probes may be numerous and easier to find than interstellar beacons.

Solar System constraints on Renormalization Group extended General Relativity: The PPN and Laplace-Runge-Lenz analyses with the external potential effect

General Relativity extensions based on Renormalization Group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post Newtonian limits of a realisation called Renormalization Group extended General Relativity (RGGR). Special attention is taken to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter $\bar \nu_\odot$, and this parameter is such that for $\bar \nu_\odot = 0$ one fully recovers GR in the Solar System. Previously this parameter was constrained to be $|\bar \nu_\odot| \lesssim 10^{-21}$, without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the Parametrised Post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on $\bar \nu_\odot$, either considering or not the external potential effect. With the external potential effect the new bound reads $|\bar \nu_\odot| \lesssim 10^{-16}$. We discuss the possible consequences of this bound to the dark matter abundance in galaxies.

Solar System constraints on Renormalization Group extended General Relativity: The PPN and Laplace-Runge-Lenz analyses with the external potential effect [Replacement]

General Relativity extensions based on Renormalization Group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post Newtonian limits of a realisation called Renormalization Group extended General Relativity (RGGR). Special attention is taken to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter $\bar \nu_\odot$, and this parameter is such that for $\bar \nu_\odot = 0$ one fully recovers GR in the Solar System. Previously this parameter was constrained to be $|\bar \nu_\odot| \lesssim 10^{-21}$, without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the Parametrised Post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on $\bar \nu_\odot$, either considering or not the external potential effect. With the external potential effect the new bound reads $|\bar \nu_\odot| \lesssim 10^{-16}$. We discuss the possible consequences of this bound to the dark matter abundance in galaxies.

A pebbles accretion model with chemistry and implications for the solar system [Replacement]

We investigate the chemical composition of the solar system's giant planets atmospheres using a physical formation model with chemistry. The model incorporate disk evolution, pebbles and gas accretion, type I and II migration, simplified disk photoevaporation and solar system chemical measurements. We track the chemical compositions of the formed giant planets and compare them to the observed values. Two categories of models are studied: with and without disk chemical enrichment via photoevaporation. Predictions for the Oxygen and Nitrogen abundances, core masses, and total amount of heavy elements for the planets are made for each case. We find that in the case without disk PE, both Jupiter and Saturn will have a small residual core and comparable total amounts of heavy elements in the envelopes. We predict oxygen abundances enrichments in the same order as carbon, phosphorus and sulfur for both planets. Cometary Nitrogen abundances does not allow to easily reproduce Jupiter's nitrogen observations. In the case with disk PE, less core erosion is needed to reproduce the chemical composition of the atmospheres, so both planets will end up with possibly more massive residual cores, and higher total mass of heavy elements. It is also significantly easier to reproduce Jupiter's Nitrogen abundance. No single was disk was found to form both Jupiter and Saturn with all their constraints in the case without photoevaporation. No model was able to fit the constraints on Uranus & Neptune, hinting toward a more complicated formation mechanism for these planets. The predictions of these models should be compared to the upcoming Juno measurements to better understand the origins of the solar system giant planets.

Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph

Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. The use of the high-contrast/high-resolution technique can overcome present limitations by combining a ~10^3-10^4 contrast enhancement from SPHERE to a ~10^4 gain from ESPRESSO. Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).

The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters

The composition of a planet's atmosphere is determined by its formation, evolution, and present-day insolation. A planet's spectrum therefore may hold clues on its origins. We present a "chain" of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet's formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with JWST and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon as in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) Envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called "dry" and "wet" planets, respectively. (2) Both the "dry" and "wet" planets are oxygen-rich (C/O<1) due to the oxygen-rich nature of the solid building blocks. The "dry" planet's C/O ratio is <0.2 for standard carbon depletion, while the "wet" planet has typical C/O values between 0.1 and 0.5 depending mainly on the clathrate formation efficiency. Only non-standard disk chemistries without carbon depletion lead to carbon-rich C/O ratios >1 for the "dry" planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^