Posts Tagged snr

Recent Postings from snr

Deep morphological and spectral study of the SNR RCW 86 with Fermi-LAT

RCW 86 is a young supernova remnant (SNR) showing a shell-type structure at several wavelengths and is thought to be an efficient cosmic-ray (CR) accelerator. Earlier \textit{Fermi} Large Area Telescope results reported the detection of $\gamma$-ray emission coincident with the position of RCW 86 but its origin (leptonic or hadronic) remained unclear due to the poor statistics. Thanks to 6.5 years of data acquired by the \textit{Fermi}-LAT and the new event reconstruction Pass 8, we report the significant detection of spatially extended emission coming from RCW 86. The spectrum is described by a power-law function with a very hard photon index ($\Gamma = 1.42 \pm 0.1_{\rm stat} \pm 0.06_{\rm syst}$) in the 0.1--500 GeV range and an energy flux above 100 MeV of ($2.91$ $\pm$ $0.8_{\rm stat}$ $\pm$ $0.12_{\rm syst}$) $\times$ $10^{-11}$ erg cm$^{-2}$ s$^{-1}$. Gathering all the available multiwavelength (MWL) data, we perform a broadband modeling of the nonthermal emission of RCW 86 to constrain parameters of the nearby medium and bring new hints about the origin of the $\gamma$-ray emission. For the whole SNR, the modeling favors a leptonic scenario in the framework of a two-zone model with an average magnetic field of 10.2 $\pm$ 0.7 $\mu$G and a limit on the maximum energy injected into protons of 2 $\times$ 10$^{49}$ erg for a density of 1 cm$^{-3}$. In addition, parameter values are derived for the North-East (NE) and South-West (SW) regions of RCW 86, providing the first indication of a higher magnetic field in the SW region.

Temporal Variability of Interstellar Na I Absorption Toward The Monoceros Loop

We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coud\'{e} feed spectra from this sightline taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the $\sim$1.3 mas yr$^{-1}$ proper motion of HD 47240 and a SNR distance of 1.6 kpc, this variation would imply $\sim$10 AU fluctuations within the SNR shell. Similar variations have been previously reported in the Vela supernova remnant, suggesting a connection between the expanding supernova remnant gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient ISM.

Discovery of X-ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB3 Supernova Remnant

We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB3.

Optical observations of the nearby galaxy IC342 with narrow band [SII] and H$\alpha$ filters. II - Detection of 16 Optically-Identified Supernova Remnant Candidates

We present the detection of 16 optical supernova remnant (SNR) candidates in the nearby spiral galaxy IC342. The candidates were detected by applying [SII]/H$\alpha$ ratio criterion on observations made with the 2 m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper, we report the coordinates, diameters, H$\alpha$ and [SII] fluxes for 16 SNRs detected in two fields of view in the IC342 galaxy. Also, we estimate that the contamination of total H$\alpha$ flux from SNRs in the observed portion of IC342 is 1.4%. This would represent the fractional error when the star formation rate (SFR) for this galaxy is derived from the total galaxy's H$\alpha$ emission.

A Systematic Survey for Broadened CO Emission Toward Galactic Supernova Remnants

We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in 12CO and 13CO J=2-1 with the Heinrich Hertz Submillimeter Telescope as part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). These observations reveal BML regions toward nineteen SNRs, including nine newly identified BML regions associated with SNRs (G08.3-0.0, G09.9-0.8, G11.2-0.3, G12.2+0.3, G18.6-0.2, G23.6+0.3, 4C-04.71, G29.6+0.1, G32.4+0.1). The remaining ten SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) HII region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR-MC interactions. One of the targets (G54.1+0.3) had previous indications of a BML region, but we did not detect broadened emission toward it. Although broadened 12CO J=2-1 line emission should be detectable toward virtually all SNR-MC interactions we find relatively few examples; therefore, the number of interactions is low. This result favors mechanisms other than SN feedback as the basic trigger for star formation. In addition, we find no significant association between TeV gamma-ray sources and MC interactions, contrary to predictions that SNR-MC interfaces are the primary venues for cosmic ray acceleration.

New Identification of the Mixed-Morphology Supernova Remnant G298.6-0.0 with Possible Gamma-ray Association

We present an X-ray analysis on the Galactic supernova remnant (SNR) G298.6-0.0 with Suzaku. The X-ray image shows a center-filled structure inside the radio shell, implying this SNR is categorized as a mixed-morphology (MM) SNR. The spectrum is well reproduced by a single temperature plasma model in ionization equilibrium, with a temperature of 0.78 (0.70-0.87) keV. The total plasma mass of 30 solar mass indicates that the plasma has interstellar medium origin. The association with a GeV gamma-ray source 3FGL J1214.0-6236 on the shell of the SNR is discussed, in comparison with other MM SNRs with GeV gamma-ray associations. It is found that the flux ratio between absorption-corrected thermal X-rays and GeV gamma-rays decreases as the MM SNRs evolve to larger physical sizes. The absorption-corrected X-ray flux of G298.6-0.0 and the GeV gamma-ray flux of 3FGL J1214.0-6236 closely follow this trend, implying that 3FGL J1214.0-6236 is likely to be the GeV counterpart of G298.6-0.0.

Radio emission from Supernova Remnants

The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.

Optical discovery and multiwavelength investigation of supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud

We present optical, radio and X-ray data that confirm a new supernova remnant (SNR) in the Large Magellanic Cloud (LMC) discovered using our deep H-alpha imagery. Optically, the new SNR has a somewhat filamentary morphology and a diameter of 56 x 64 arcsec (13.5 x 15.5 pc at the 49.9 kpc distance of the LMC). Spectroscopic follow-up of multiple regions show high [SII]/H-alpha emission-line ratios ranging from 0.66+/-0.02 to 0.93+/-0.01, all of which are typical of an SNR. We found radio counterparts for this object using our new Australia Telescope Compact Array (ATCA) 6cm pointed observations as well as a number of available radio surveys at 8 640 MHz, 4 850 MHz, 1 377 MHz and 843 MHz. With these combined data we provide a spectral index (alpha) = -0.5 between 843 and 8640 MHz. Both spectral line analysis and the magnetic field strength, ranging from 124 - 184 mG, suggest a dynamical age between 2,200 and 4,700 yrs. The SNR has a previously catalogued X-ray counterpart listed as HP 483 in the ROSAT Position Sensitive Proportional Counter (PSPC) catalogue.

3D Hydrodynamic Simulations of the Galactic Supernova Remnant CTB 109 [Replacement]

Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well-known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from $^{12}$CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. From parameter studies we obtained the position $(\ell , b)=(109.1545^\circ , -1.0078^\circ)$ for an elliptical cloud with $n_\text{cloud}=25~\text{cm}^{-3}$ based on the preshock density from Chandra data and a maximum diameter of 4.54 pc, whose encounter with the supernova (SN) shock wave generates the bright X-ray emission inside the SNR. The calculated age of the remnant is about 11,000 yr according to our simulations. In addition, we can also determine the most probable site of the SN explosion. Hydrodynamic simulations can reproduce the morphology and the observed size of the SNR CTB 109 remarkably well. Moreover, the simulations show that it is very plausible that the bright X-ray emission inside the SNR is the result of an elliptical dense cloud shocked by the SN explosion wave. We show that numerical simulations using observational data for an initial model can produce meaningful results.

3D Hydrodynamic Simulations of the Galactic Supernova Remnant CTB 109

Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well-known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from $^{12}$CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. From parameter studies we obtained the position $(\ell , b)=(109.1545^\circ , -1.0078^\circ)$ for an elliptical cloud with $n_\text{cloud}=25~\text{cm}^{-3}$ based on the preshock density from Chandra data and a maximum diameter of 4.54 pc, whose encounter with the supernova (SN) shock wave generates the bright X-ray emission inside the SNR. The calculated age of the remnant is about 11,000 yr according to our simulations. In addition, we can also determine the most probable site of the SN explosion. Hydrodynamic simulations can reproduce the morphology and the observed size of the SNR CTB 109 remarkably well. Moreover, the simulations show that it is very plausible that the bright X-ray emission inside the SNR is the result of an elliptical dense cloud shocked by the SN explosion wave. We show that numerical simulations using observational data for an initial model can produce meaningful results.

FERMI-LAT Observations of Supernova Remnant G5.7-0.1, Believed to be Interacting with Molecular Clouds

We report the detection of $\gamma$-ray emission coincident with the supernova remnant (SNR) G5.7-0.1 using data from the Large Area Telescope on board the {\it Fermi Gamma-ray Space Telescope}. SNR shocks are expected to be sites of cosmic ray acceleration, and clouds of dense material can provide effective targets for production of $\gamma$-rays from $\pi^0$-decay. The SNR is known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in its direction. The observations reveal a $\gamma$-ray source in the direction of SNR G5.7-0.1, positioned nearby the bright $\gamma$-ray source SNR W28. We model the broadband emission (radio to $\gamma$-ray) using a one-zone model, and after considering scenarios in which the MeV-TeV sources originate from either $\pi^0$-decay or leptonic emission, conclude that a considerable component of the $\gamma$-ray emission comes from the $\pi^0$-decay channel. Finally, constraints were placed on the reported ambiguity of the SNR distance through X-ray column densities measurements made using XMM-Newton observations. We conclude G5.7-0.1 is a significant $\gamma$-ray source positioned at a distance of $\sim 3$ kpc with luminosity in the 0.2-200 GeV range of $L_{\gamma} \approx 7.4 \times 10^{34}$

FERMI-LAT Observations of Supernova Remnant G5.7-0.1, Believed to be Interacting with Molecular Clouds [Replacement]

This work reports on the detection of $\gamma$-ray emission coincident with the supernova remnant (SNR) SNR G5.7-0.1 using data collected by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. The SNR is believed to be interacting with molecular clouds, based on 1720 MHz hydroxyl (OH) maser emission observations in its direction. This interaction is expected to provide targets for the production of $\gamma$-ray emission from $\pi^0$-decay. A $\gamma$-ray source was observed in the direction of SNR G5.7-0.1, positioned nearby the bright $\gamma$-ray source SNR W28. We model the emission from radio to $\gamma$-ray energies using a one-zone model. Following consideration of both $\pi^0$-decay and leptonically dominated emission scenarios for the MeV-TeV source, we conclude that a considerable component of the $\gamma$-ray emission must originate from the $\pi^0$-decay channel. Finally, constraints were placed on the reported ambiguity of the SNR distance through X-ray column density measurements made using XMM-Newton observations. We conclude SNR G5.7-0.1 is a significant $\gamma$-ray source positioned at a distance of $\sim 3$ kpc with luminosity in the 0.1--100 GeV range of $L_{\gamma} \approx 7.4 \times 10^{34}$ erg/s.

XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy

Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($\alpha$) and cutoff frequency ($\nu_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended source. We construct equivalent width (EW) maps based on continuum interpolation with the spectral model of each regions. We then compare the EW maps of OVII, OVIII, OVII K$\delta-\zeta$, Ne, Mg, SiXIII, SiXIV, and S lines constructed with this method to those constructed with linear interpolation. We further extract spectra from larger regions to confirm the features revealed by parameter and EW maps, which are often not directly detectable on X-ray intensity images. For example, O abundance is consistent with solar across the SNR, except for a low-abundance hole in the center. This "O Hole" has enhanced OVII K$\delta-\zeta$ and Fe emissions, indicating recently reverse shocked ejecta, but also has the highest $n_et$, indicating forward shocked ISM. Therefore, a multi-temperature model is needed to decompose these components. The asymmetric metal distributions suggest there is either an asymmetric explosion of the SN or an asymmetric distribution of the ISM.

IKT 16: the first X-ray confirmed composite SNR in the SMC

Aims: IKT 16 is an X-ray and radio-faint supernova remnant (SNR) in the Small Magellanic Cloud (SMC). A detailed X-ray study of this SNR with XMM-Newton confirmed the presence of a hard X-ray source near its centre, indicating the detection of the first composite SNR in the SMC. With a dedicated Chandra observation we aim to resolve the point source and confirm its nature. We also acquire new ATCA observations of the source at 2.1 GHz with improved flux density estimates and resolution. Methods: We perform detailed spatial and spectral analysis of the source. With the highest resolution X-ray and radio image of the centre of the SNR available today, we resolve the source and confirm its pulsar wind nebula (PWN) nature. Further, we constrain the geometrical parameters of the PWN and perform spectral analysis for the point source and the PWN separately. We also test for the radial variations of the PWN spectrum and its possible east west asymmetry. Results: The X-ray source at the centre of IKT 16 can be resolved into a symmetrical elongated feature centering a point source, the putative pulsar. Spatial modeling indicates an extent of 5.2 arcsec of the feature with its axis inclined at 82 degree east from north, aligned with a larger radio feature consisting of two lobes almost symmetrical about the X-ray source. The picture is consistent with a PWN which has not yet collided with the reverse shock. The point source is about three times brighter than the PWN and has a hard spectrum of spectral index 1.1 compared to a value 2.2 for the PWN. This points to the presence of a pulsar dominated by non-thermal emission. The expected E_{dot} is ~ 10^37 erg s^-1 and spin period < 100 ms. However, the presence of a compact nebula unresolved by Chandra at the distance of the SMC cannot completely be ruled out.

The Properties of the Progenitor Supernova, Pulsar Wind, and Neutron Star inside PWN G54.1+0.3

The evolution of a pulsar wind nebula (PWN) inside a supernova remnant (SNR) is sensitive to properties of the central neutron star, pulsar wind, progenitor supernova, and interstellar medium. These properties are both difficult to measure directly and critical for understanding the formation of neutron stars and their interaction with the surrounding medium. In this paper, we determine these properties for PWN G54.1+0.3 by fitting its observed properties with a model for the dynamical and radiative evolution of a PWN inside an SNR. Our modeling suggests that the progenitor of G54.1+0.3 was an isolated ~15-20 Solar Mass star which exploded inside a massive star cluster, creating a neutron star initially spinning with period ~30-80ms. We also find that >99.9% of the pulsar's rotational energy is injected into the PWN as relativistic electrons and positrons whose energy spectrum is well characterized by a broken power-law. Lastly, we propose future observations which can both test the validity of this model and better determine the properties of this source -- in particular, its distance and the initial spin period of the central pulsar.

Multi-wavelength analysis of the Galactic supernova remnant MSH 11-61A

Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$\textsc{i}$ and CO observations determined that the SNR is interacting with molecular clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of $\gamma$-ray emission coincident with MSH 11-61A, using 70 months of data from the Large Area Telescope on board the \textit{Fermi Gamma-ray Space Telescope}. To investigate the origin of this emission, we perform broadband modelling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the $\gamma$-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival \textit{Suzaku} observation of this remnant. Our investigation shows that the X-ray emission from MSH 11-61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, while the emission towards the east arises from an ionising plasma.

The southern molecular environment of SNR G18.8+0.3

In a previous paper we have investigated the molecular environment towards the eastern border of the SNR G18.8+0.3. Continuing with the study of the surroundings of this SNR, in this work we focus on its southern border, which in the radio continuum emission shows a very peculiar morphology with a corrugated corner and a very flattened southern flank. We observed two regions towards the south of SNR G18.8+0.3 using the Atacama Submillimeter Telescope Experiment (ASTE) in the 12CO J=3-2. One of these regions was also surveyed in 13CO and C18O J=3-2. The angular and spectral resolution of these observations were 22", and 0.11 km/s. We compared the CO emission to 20 cm radio continuum maps obtain as part of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and 870 um dust emission extracted from the APEX Telescope Large Area Survey of the Galaxy. We discovered a molecular feature with a good morphological correspondence with the SNR's southernmost corner. In particular, there are indentations in the radio continuum map that are complemented by protrusions in the molecular CO image, strongly suggesting that the SNR shock is interacting with a molecular cloud. Towards this region we found that the 12CO peak is not correlated with the observed 13CO peaks, which are likely related to a nearby \hii~region. Regarding the most flattened border of SNR G18.8+0.3, where an interaction of the SNR with dense material was previously suggested, our 12CO J=3-2 map show no obvious indication that this is occurring.

Supernova Feedback and the Hot Gas Filling Fraction of the Interstellar Medium

Supernovae are the most energetic among stellar feedback processes, and are crucial for regulating the interstellar medium (ISM) and launching galactic winds. We explore how supernova remnants (SNRs) create a multiphase medium by performing high resolution, 3D hydrodynamical simulations at various SN rates, $S$, and ISM average densities, $n$. We find that the evolution of a SNR in a self-consistently generated three-phase ISM is qualitatively different from that in a uniform or a two-phase warm/cold medium. By traveling faster and further in the cooling-inefficient hot phase, the spatial-temporal domain of a SNR is enlarged by $>10^{2.5}$ in a hot-dominated multiphase medium (HDMM) compared to the uniform case. We then examine the resultant ISM as we vary $n$ and $S$, finding that a steady state can only be achieved when the hot gas volume fraction \fvh $\lesssim 0.6\pm 0.1$. Above that, overlapping SNRs render connecting topology of the hot gas, and such a HDMM is subjected to thermal runaway with growing pressure and \fvh. Photoelectric heating (PEH) has a surprisingly strong impact on \fvh. For $n \gtrsim 3 cm^{-3}$, a reasonable PEH rate is able to suppress the ISM from undergoing thermal runaway. Overall, we determine that the critical SN rate for the onset of thermal runaway is roughly $S_{crit} = 200 (n/1cm^{-3})^k (E_{SN}/10^{51} erg)^{-1} kpc^{-3} Myr^{-1}$, where k=(1.2,2.7) for $n$ < 1 and >1 cm$^{-3}$, respectively. We present a fitting formula of the ISM pressure $P(n, S)$, which can be used as an effective equation of state in cosmological simulations. The observed velocities of OB stars imply that the core collapse SN are almost randomly located on scales $\lesssim$ 150 pc. Despite the 5 orders of magnitude span of $(n,S)$, the average Mach number shows very small variations: $M \approx 0.5\pm 0.2, 1.2\pm 0.3, 2.3\pm 0.9$ for the hot, warm and cold phases, respectively.

Radio spectral characteristics of the supernova remnant Puppis A and nearby sources

This paper presents a new study of the spectral index distribution of the supernova remnant (SNR) Puppis A. The nature of field compact sources is also investigated according to the measured spectral indices. This work is based on new observations of Puppis A and its surroundings performed with the Australia Telescope Compact Array in two configurations using the Compact Array Broad-band Backend centered at 1.75 GHz. We find that the global spectral index of Puppis A is -0.563 +/- 0.013. Local variations have been detected, however this global index represents well the bulk of the SNR. At the SE, we found a pattern of parallel strips with a flat spectrum compatible with small-scale filaments, although not correlated in detail. The easternmost filament agrees with the idea that the SN shock front is interacting with an external cloud. There is no evidence of the previously suggested correlation between emissivity and spectral index. A number of compact features are proposed to be evolved clumps of ejecta based on their spectral indices, although dynamic measurements are needed to confirm this hypothesis. We estimate precise spectral indices for the five previously known field sources, two of which are found to be double (one of them, probably triple), and catalogue 40 new sources. In the light of these new determinations, the extragalactic nature previously accepted for some compact sources is now in doubt.

Kepler's Supernova: An Overluminous Type Ia Event Interacting with a Massive Circumstellar Medium at a Very Late Phase

We have analyzed XMM-Newton, Chandra, and Suzaku observations of Kepler's supernova remnant (SNR) to investigate the properties of both the SN ejecta and the circumstellar medium (CSM). For comparison, we have also analyzed two similarly-aged, ejecta-dominated SNRs: Tycho's SNR, thought to be the remnant of a typical Type Ia SN, and SNR 0509-67.5 in the Large Magellanic Cloud, thought to be the remnant of an overluminous Type Ia SN. By simply comparing the X-ray spectra, we find that line intensity ratios of iron-group elements (IGE) to intermediate-mass elements (IME) for Kepler's SNR and SNR 0509-67.5 are much higher than those for Tycho's SNR. We therefore argue that Kepler is the product of an overluminous Type Ia SN. This inference is supported by our spectral modeling, which reveals the IGE and IME masses respectively to be ~0.95 M_sun and ~0.12 M_sun (Kepler's SNR), ~0.75 M_sun and ~0.34 M_sun (SNR 0509-67.5), and ~0.35 M_sun and ~0.70 M_sun (Tycho's SNR). We find that the CSM component in Kepler's SNR consists of tenuous diffuse gas (~0.3 M_sun) present throughout the entire remnant, plus dense knots (~0.035 M_sun). Both of these components have an elevated N abundance (N/H ~ 4 times the solar value), suggesting that they originate from CNO-processed material from the progenitor system. The mass of the diffuse CSM allows us to infer the pre-SN mass-loss rate to be ~1.5e-5 (V_w/10 km/s) M_sun/yr, in general agreement with results from recent hydrodynamical simulations. Since the dense knots have slow proper motions and relatively small ionization timescales, they were likely located a few pc away from the progenitor system. Therefore, we argue that Kepler's SN was an overluminous event that started to interact with massive CSM a few hundred years after the explosion. This supports the possible link between overluminous SNe and the so-called "Ia-CSM" SNe.

Late-time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS) that can occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ~ 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

Study of TeV shell supernova remnants at gamma-ray energies

The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{\deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1<E<100 GeV) gamma-rays and need to be investigated in order to draw the global picture of this class of SNRs and constrain the characteristics of the underlying population of accelerated particles. Using 6 years of Fermi P7 reprocessed data, we studied the HE counterpart of the SNRs HESS J1731-347 and SN 1006. The two SNRs are not detected in the data and given that there is no hint of detection, we do not expect any detection in the coming years from the SNRs. However in both cases, we derived upper limits that significantly constrain the gamma-ray emission mechanism and can rule out a standard hadronic scenario with a confidence level > 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar gamma-ray luminosity supporting the idea of a common emission mechanism. While the gamma-ray emission is likely to be leptonic dominated, this does not rule out efficient hadron acceleration in those SNRs.

Possible golden events for ringdown gravitational waves [Replacement]

There is a forbidden region in the parameter space of quasinormal modes of black holes in general relativity. Using both inspiral and ringdown phases of gravitational waves from binary black holes, we propose two methods to test general relativity. We also evaluate how our methods will work when we apply them to Pop III black-hole binaries with typical masses. Adopting simple mean of the estimated range of the event rate, we have the expected rate of 500 ${\rm yr^{-1}}$. Then, the rates of events with SNR $>20$ and SNR $>50$ are 32 ${\rm yr^{-1}}$ and 2 ${\rm yr^{-1}}$, respectively. Therefore, there is a good chance to confirm (or refute) the Einstein theory in the strong gravity region by observing the expected quasinormal modes.

Possible golden events for ringdown gravitational waves

There is a forbidden region in the parameter space of quasinormal modes of black holes in general relativity. Using both inspiral and ringdown phases of gravitational waves from binary black holes, we propose two methods to test general relativity. We also evaluate how our methods will work when we apply them to Pop III black-hole binaries with typical masses. Adopting simple mean of the estimated range of the event rate, we have the expected rate of 500 ${\rm yr^{-1}}$. Then, the rates of events with SNR $>20$ and SNR $>50$ are 32 ${\rm yr^{-1}}$ and 2 ${\rm yr^{-1}}$, respectively. Therefore, there is a good chance to confirm (or refute) the Einstein theory in the strong gravity region by observing the expected quasinormal modes.

Possible golden events for ringdown gravitational waves [Cross-Listing]

There is a forbidden region in the parameter space of quasinormal modes of black holes in general relativity. Using both inspiral and ringdown phases of gravitational waves from binary black holes, we propose two methods to test general relativity. We also evaluate how our methods will work when we apply them to Pop III black-hole binaries with typical masses. Adopting simple mean of the estimated range of the event rate, we have the expected rate of 500 ${\rm yr^{-1}}$. Then, the rates of events with SNR $>20$ and SNR $>50$ are 32 ${\rm yr^{-1}}$ and 2 ${\rm yr^{-1}}$, respectively. Therefore, there is a good chance to confirm (or refute) the Einstein theory in the strong gravity region by observing the expected quasinormal modes.

Possible golden events for ringdown gravitational waves [Replacement]

There is a forbidden region in the parameter space of quasinormal modes of black holes in general relativity. Using both inspiral and ringdown phases of gravitational waves from binary black holes, we propose two methods to test general relativity. We also evaluate how our methods will work when we apply them to Pop III black-hole binaries with typical masses. Adopting simple mean of the estimated range of the event rate, we have the expected rate of 500 ${\rm yr^{-1}}$. Then, the rates of events with SNR $>20$ and SNR $>50$ are 32 ${\rm yr^{-1}}$ and 2 ${\rm yr^{-1}}$, respectively. Therefore, there is a good chance to confirm (or refute) the Einstein theory in the strong gravity region by observing the expected quasinormal modes.

N49: the first robust discovery of a recombining plasma in an extra galactic supernova remnant

Recent discoveries of recombining plasmas (RPs) in supernova remnants (SNRs) have dramatically changed our understanding of SNR evolution. To date, a dozen of RP SNRs have been identified in the Galaxy. Here we present Suzaku deep observations of four SNRs in the Large Magellanic Cloud (LMC), N49, N49B, N23, and DEM L71, for accurate determination of their plasma state. Our uniform analysis reveals that only N49 is in the recombining state among them, which is the first robust discovery of a RP from an extra-galactic SNR. Given that RPs have been identified only in core-collapse SNRs, our result strongly suggests a massive star origin of this SNR. On the other hand, no clear evidence for a RP is confirmed in N23, from which detection of recombination lines and continua was previously claimed. Comparing the physical properties of the RP SNRs identified so far, we find that all of them are categorized into the "mixed-morphology" class and interacting with surrounding molecular clouds. This might be a key to solve formation mechanisms of the RPs.

Dynamical evolution of supernova remnants breaking through molecular clouds

We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud

Aims. We present an X-ray study of the supernova remnant SNR J0533-7202 in the Large Magellanic Cloud (LMC) and determine its physical characteristics based on its X-ray emission. Methods. We observed SNR J0533-7202 with XMM-Newton (flare-filtered exposure times of 18 ks EPIC-pn and 31 ks EPIC-MOS1/MOS2). We produced X-ray images of the SNR, performed an X-ray spectral analysis, and compared the results to multi-wavelength studies. Results. The distribution of X-ray emission is highly non-uniform, with the south-west region brighter than the north-east. The X-ray emission is correlated with the radio emission from the remnant. We determine that this morphology is likely due to the SNR expanding into a non-uniform ambient medium and not an absorption effect. We estimate the size to be 53.9 (\pm 3.4) x 43.6 (\pm 3.4) pc, with the major axis rotated ~64 degrees east of north. We find no spectral signatures of ejecta and infer that the X-ray plasma is dominated by swept-up interstellar medium. Using the spectral fit results and the Sedov self-similar solution, we estimate an age of ~17-27 kyr, with an initial explosion energy of (0.09-0.83) x 10^51 erg. We detected an X-ray source located near the centre of the remnant, namely XMMU J053348.2-720233. The source type could not be conclusively determined due to the lack of a multi-wavelength counterpart and low X-ray counts. We find that it is likely either a background active galactic nucleus or a low-mass X-ray binary in the LMC. Conclusions. We detected bright thermal X-ray emission from SNR J0533-7202 and determined that the remnant is in the Sedov phase of its evolution. The lack of ejecta emission prohibits us from typing the remnant with the X-ray data. Therefore, the likely Type Ia classification based on the local stellar population and star formation history reported in the literature cannot be improved upon.

Correcting systematic polarization effects in Keck LRISp spectropolarimetry to <0.05%

Spectropolarimetric measurements at moderate spectral resolutions are effective tracers of stellar magnetic fields and circumstellar environments when signal to noise ratios (SNRs) above 2000 can be achieved. The LRISp spectropolarimeter is capable of achieving these SNRs on faint targets with the 10m aperture of the Keck telescope, provided several instrumental artifacts can be suppressed. We describe here several methods to overcome instrumental error sources that are required to achieve these high SNRs on LRISp. We explore high SNR techniques such as defocusing and slit-stepping during integration with high spectral and spatial oversampling. We find that the instrument flexure and interference fringes introduced by the achromatic retarders create artificial signals at 0.5\% levels in the red channel which mimic real stellar signals and limit the sensitivity and calibration stability of LRISp. Careful spectral extraction and data filtering algorithms can remove these error sources. For faint targets and long exposures, cosmic ray hits are frequent and present a major limitation to the upgraded deep depletion red-channel CCD. These must be corrected to the same high SNR levels, requiring careful spectral extraction using iterative filtering algorithms. We demonstrate here characterization of these sources of instrumental polarization artifacts and present several methods used to successfully overcome these limitations. We have measured the linear to circular cross-talk and find it to be roughly 5\%, consistent with the known instrument limitations. We show spectropolarimetric signals on brown dwarfs are clearly detectable at 0.2\% amplitudes with sensitivities better than 0.05\% at full spectral sampling in atomic and molecular bands. Future LRISp users can perform high sensitivity observations with high quality calibration when following the described algorithms.

On the integrated continuum radio spectrum of supernova remnant W44 (G34.7-0.4): new insights from Planck [Replacement]

In this paper, the integrated continuum radio spectrum of supernova remnant (SNR) W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. The observations by the Planck space telescope made possible to analyze the high frequency part of radio emission from SNRs. Although the quality of radio continuum spectrum (a high scatter of data points at same frequencies) prevents us to make definite conclusions, the possibility of spinning dust emission detection towards this remnant is emphasized. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR.

On the integrated continuum radio-spectrum of supernova remnant W44 (G34.7-0.4): new insights from Planck's data

In this paper, the integrated continuum radio-spectrum of supernova remnant (SNR) W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. {\it Planck's} observations made possible to analyze the high frequency part of radio-emission from SNRs. Although the quality of radio-continuum spectrum (a high scatter of data points at same frequencies) prevents us to make definite conclusions, we emphasize the possibility of spinning-dust emission detection towards this remnant. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR.

Type Ia Supernova Remnants: Shaping by Iron Bullets

Using 2D numerical hydrodynamical simulations of type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g., SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed ears, such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

Type Ia Supernova Remnants: Shaping by Iron Bullets [Replacement]

Using 2D numerical hydrodynamical simulations of type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g., SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed ears, such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

A Spatially Resolved Study of the Synchrotron Emission and Titanium in Tycho's Supernova Remnant with NuSTAR

We report results from deep observations (750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set tight limits on its presence which exclude the reported Swift/BAT and INTEGRAL detections and correspond to an upper-limit 44Ti mass of M44 < 8.4e-5 Msun for a distance of 2.3 kpc. We perform spatially resolved spectroscopic analysis of sixty-six regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the roll-off frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

Supernova remnant mass cumulated along the star formation history of the z=3.8 radiogalaxies 4C41.17 and TN J2007-1316

In this paper, we show that the supernova remnant (SNR) masses cumulated from core-collapse supernovae along the star formation history of two powerful z=3.8 radio galaxies 4C41.17 and TN J2007-1316 reach up to > 10^9 Msun, comparable with supermassive black hole (SMBH) masses measured from the SDSS sample at similar redshifts. The SNR mass is measured from the already exploded supernova mass after subtraction of ejecta at the galaxy age where the mass of still luminous stars fits at best the observed spectral energy distribution (SED), continuously extended to the optical-Spitzer-Herschel-submm domains, with the help of the galaxy evolution model P\'egase.3. For the recent and old stellar populations, SNR masses vary on 10^(9 to 10) Msun and the SNR-to-star mass ratio between 1 and 0.1 percent is comparable to the observed low-z SMBH-to-star mass ratio. For the template radio galaxy 4C41.17, SNR and stellar population masses estimated from large aperture (>4arcsec=30kpc) observations are compatible, within one mass order, with the total mass of multiple optical HST (~700pc) structures, associated with VLA radio emissions, both at 0.1 arcsec. Probing the SNR accretion by central black holes is a simple explanation for SMBH growth, requiring physics on star formation, stellar and galaxy dynamics with consequences on various processes (quenching, mergers, negative feedback) and a key to the relation bulge-SMBH.

Old supernova dust factory revealed at the Galactic center

Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early Universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 $M_\odot$ of warm (~100 K) dust seen near the center of the ~10,000 yr-old Sgr A East SNR at the Galactic center. Our findings signify the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium ($n_e$ ~ 100 $\mathrm{cm}^{-3}$) and has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.

Calibrating and Stabilizing Spectropolarimeters with Charge Shuffling and Daytime Sky Measurements

Well-calibrated spectropolarimetry studies at resolutions of $R>$10,000 with signal-to-noise ratios (SNRs) better than 0.01\% across individual line profiles, are becoming common with larger aperture telescopes. Spectropolarimetric studies require high SNR observations and are often limited by instrument systematic errors. As an example, fiber-fed spectropolarimeters combined with advanced line-combination algorithms can reach statistical error limits of 0.001\% in measurements of spectral line profiles referenced to the continuum. Calibration of such observations is often required both for cross-talk and for continuum polarization. This is not straightforward since telescope cross-talk errors are rarely less than $\sim$1\%. In solar instruments like the Daniel K. Inouye Solar Telescope (DKIST), much more stringent calibration is required and the telescope optical design contains substantial intrinsic polarization artifacts. This paper describes some generally useful techniques we have applied to the HiVIS spectropolarimeter at the 3.7m AEOS telescope on Haleakala. HiVIS now yields accurate polarized spectral line profiles that are shot-noise limited to 0.01\% SNR levels at our full spectral resolution of 10,000 at spectral sampling of $\sim$100,000. We show line profiles with absolute spectropolarimetric calibration for cross-talk and continuum polarization in a system with polarization cross-talk levels of essentially 100\%. In these data the continuum polarization can be recovered to one percent accuracy because of synchronized charge-shuffling model now working with our CCD detector. These techniques can be applied to other spectropolarimeters on other telescopes for both night and day-time applications such as DKIST, TMT and ELT which have folded non-axially symmetric foci.

Searching for Overionized Plasma in the Gamma-ray Emitting Supernova Remnant G349.7$+$0.2

G349.7$+$0.2 is a supernova remnant (SNR) expanding in a dense medium of molecular clouds and interacting with clumps of molecular material emitting gamma rays. We analyzed the gamma-ray data of Large Area Telescope on board Fermi Gamma Ray Space Telescope and detected G349.7$+$0.2 in the energy range of 0.2$-$300 GeV with a significance of $\sim$13$\sigma$ showing no extended morphology. Modeling of the gamma-ray spectrum revealed that the GeV gamma-ray emission dominantly originates from the decay of neutral pions, where the protons follow a broken power-law distribution with a spectral break at $\sim$12 GeV. To search for features of radiative recombination continua in the eastern and western regions of the remnant, we analyzed the Suzaku data of G349.7$+$0.2 and found no evidence for overionized plasma. In this paper we discuss possible scenarios to explain the hadronic gamma-ray emission in G349.7$+$0.2 and the mixed morphology nature of this SNR.

Optical Spectroscopy of Supernova Remnants in M81 and M82

We present spectroscopy of 28 SNR candidates as well as one H II region in M81, and two SNR candidates in M82. Twenty six out of the M81 candidates turn out to be genuine SNRs, and two in M82 may be shocked condensations in the galactic outflow or SNRs. The distribution of [N II]/H{\alpha} ratios of M81 SNRs is bimodal. M81 SNRs are divided into two groups in the spectral line ratio diagrams: an [O III]-strong group and an [O III]-weak group. The latter have larger sizes, and may have faster shock velocity. [N II]/H{\alpha} ratios of the SNRs show a strong correlation with [S II]/H{\alpha} ratios. They show a clear radial gradient in [N II]/H{\alpha} and [S II]/H{\alpha} ratios: dLog ([N II]/H{\alpha})/dLog R = -0.018 {\pm} 0.008 dex/kpc and dLog ([S II]/H{\alpha})/dLog R = -0.016 {\pm} 0.008 dex/kpc where R is a deprojected galactocentric distance. We estimate the nitrogen and oxygen abundance of the SNRs from the comparison with shock-ionization models. We obtain a value for the nitrogen radial gradient, dLog(N/H)/dLogR = -0.023 {\pm} 0.009 dex/kpc, and little evidence for the gradient in oxygen. This nitrogen abundance shows a few times flatter gradient than those of the planetary nebulae and H II regions. We find that five SNRs are matched with X-ray sources. Their X-ray hardness colors are consistent with thermal SNRs.

Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946

RX J1713.7-3946 is the brightest shell-type Supernova remnant (SNR) of the TeV gamma-ray sky. Earlier Fermi-LAT results on low-energy gamma-ray emission suggested that, despite large uncertainties in the background determination, the spectrum is inconsistent with a hadronic origin. We update the GeV-band spectra using improved estimates for the diffuse galactic gamma-ray emission and more than doubled data volume. We further investigate the viability of hadronic emission models for RX J1713.7-3946. We produced a high-resolution map of the diffuse Galactic gamma-ray background corrected for HI self-absorption and used it in the analysis of more than 5~years worth of Fermi-LAT data. We used hydrodynamic scaling relations and a kinetic transport equation to calculate the acceleration and propagation of cosmic-rays in SNR. We then determined spectra of hadronic gamma-ray emission from RX J1713.7-3946, separately for the SNR interior and the cosmic-ray precursor region of the forward shock, and computed flux variations that would allow to test the model with observations. We find that RX J1713.7-3946 is now detected by Fermi-LAT with very high statistical significance, and the source morphology is best described by that seen in the TeV band. The measured spectrum of RX J1713.7-3946 is hard with index gamma=1.53 +/- 0.07, and the integral flux above 500 MeV is F = (5.5 +/- 1.1)e-9 photons/cm^2/s. We demonstrate that scenarios based on hadronic emission from the cosmic-ray precursor region are acceptable for RX J1713.7-3946, and we predict a secular flux increase at a few hundred GeV at the level of around 15% over 10 years, which may be detectable with the upcoming CTA observatory.

Fermi/LAT Study of the Cygnus Loop Supernova Remnant: Discovery of a Point-like Source and of Spectral Differences in its gamma-ray emission

The Cygnus Loop is a nearby supernova remnant (SNR) observed across the electromagnetic spectrum. With the analysis of 6 years of Fermi/LAT data we find that, what previous studies had considered a single source, consists of an extended source plus a point-like source south-east of the SNR. The extended gamma-ray emission is well correlated with the thermal X-ray emission of the SNR, and the energy spectrum displays a pronounced maximum at $\sim0.6$\,GeV. However, in a region where the radio emission is strongly and distinctly polarized, the gamma-ray spectrum shows no sign of a break. Therefore, the spatially resolved gamma-ray emission permits the study of different interaction conditions of the SNR and the surrounding medium.

Fermi/LAT Study of the Cygnus Loop Supernova Remnant: Discovery of a Point-like Source and of Spectral Differences in its gamma-ray emission [Replacement]

The Cygnus Loop is a nearby supernova remnant (SNR) observed across the electromagnetic spectrum. With the analysis of 6 years of Fermi/LAT data we find that, what previous studies had considered a single source, consists of an extended source plus a point-like source south-east of the SNR. The extended gamma-ray emission is well correlated with the thermal X-ray emission of the SNR, and the energy spectrum displays a pronounced maximum at $\sim0.6$\,GeV. However, in a region where the radio emission is strongly and distinctly polarized, the gamma-ray spectrum shows no sign of a break. Therefore, the spatially resolved gamma-ray emission permits the study of different interaction conditions of the SNR and the surrounding medium.

GeV Gamma-ray Emission Detected by Fermi-LAT Likely Associated with the Supernova Remnant Kesteven 41 in a Molecular Environment

Hadronic emission from supernova remnant (SNR)--molecular cloud (MC) association systems has been widely regarded as a probe of the shock accelerated cosmic protons. We here report on the detection of a $\gamma$-ray emission source, with a significance of $24\sigma$ in 0.2--300 GeV, projectively on the northwest of SNR Kesteven 41, using 5.6 yr Fermi-LAT observation data. The $3\sigma$ error circle, 0.09 degree in radius, covers the 1720MHz OH maser and is essentially consistent with the location of the $V_{LSR}~-50 km/s $ MC with which the SNR interacts. The source emission has a power-law spectrum with a photon index $2.38\pm0.03$ and a 0.2--300 GeV luminosity $~1.6*10^{36} erg /s$ at a distance 12 kpc. There is no radio pulsar in the $3\sigma$ circle responsible for the high luminosity. While the inverse Compton scattering scenario would lead to a difficulty in the electron energy budget, the source emission can be naturally explained with the hadronic interaction between the relativistic protons accelerated by the shock of SNR~Kesteven~41 and the adjacent northwestern MC.

GeV {\gamma}-ray Emission Detected by Fermi-LAT Probably Associated with the Thermal Composite Supernova Remnant Kesteven 41 in a Molecular Environment [Replacement]

Hadron emission from supernova remnant (SNR)-molecular cloud (MC) association systems has been widely regarded as a probe of the shock-accelerated cosmic-ray protons. Here, we report on the detection of a {\gamma}-ray emission source, with a significance of 24{\sigma} in 0.2-300 GeV, projected to lie to the northwest of the thermal composite SNR Kesteven 41, using 5.6 years of Fermi-Large Area Telescope (LAT) observation data. No significant long-term variability in the energy range 0.2--300 GeV is detected around this source. The 3{\sigma} error circle, 0.09 degree; in radius, covers the 1720MHz OH maser and is essentially consistent with the location of the V_{LSR} ~-50 km/s MC with which the SNR interacts. The source emission has an exponential cutoff power-law spectrum with a photon index of 1.9+/-0.1 and a cutoff energy of 4.0+/-0.9 GeV, and the corresponding 0.2-300 GeV luminosity is ~1.3*10^36 erg/s at a distance of 12 kpc. There is no radio pulsar in the 3{\sigma} circle responsible for the high {\gamma}-ray luminosity. While the inverse Compton scattering scenario would lead to a difficulty in the electron energy budget, the source emission can naturally be explained by the hadronic interaction between the relativistic protons accelerated by the shock of SNR Kesteven 41 and the adjacent northwestern MC. In this paper, we present a list of Galactic thermal composite SNRs detected at GeV {\gamma}-ray energies by Fermi-LAT is presented.

GeV Gamma-ray Emission Detected by Fermi-LAT Likely Associated with the Supernova Remnant Kesteven 41 in a Molecular Environment [Replacement]

Hadronic emission from supernova remnant (SNR)--molecular cloud (MC) association systems has been widely regarded as a probe of the shock accelerated cosmic ray protons. We here report on the detection of a $\gamma$-ray emission source, with a significance of $24\sigma$ in 0.2--300 GeV, projectively on the northwest of SNR Kesteven 41, using 5.6 yr Fermi-LAT observation data. The $3\sigma$ error circle, 0.09 degree in radius, covers the 1720MHz OH maser and is essentially consistent with the location of the $V_{LSR}~-50 km/s $ MC with which the SNR interacts. The source emission has a power-law spectrum with a photon index $2.38\pm0.03$ and a 0.2--300 GeV luminosity $~1.6*10^{36} erg /s$ at a distance 12 kpc. There is no radio pulsar in the $3\sigma$ circle responsible for the high luminosity. While the inverse Compton scattering scenario would lead to a difficulty in the electron energy budget, the source emission can be naturally explained with the hadronic interaction between the relativistic protons accelerated by the shock of SNR~Kesteven~41 and the adjacent northwestern MC.

The Metal-enriched Thermal Composite Supernova Remnant Kesteven 41 (G337.8-0.1) in a Molecular Environment

The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8-0.1) and performed a millimeter observation toward this source in the $^{12}$CO, $^{13}$CO, and C$^{18}$O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3-2.6 keV and an ionization timescale of 0.1-1.2$\times$10$^{12}$ cm$^{-3}$ s. The metal species S and Ar are overabundant, with 1.2-2.7 and 1.3-3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of -50 km s$^{-1}$ and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an HI cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of $\gtrsim$18 M$_{\odot}$ for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper.

Discovery of an OB Runaway Star Inside SNR S147

We present first results of a long term study: Searching for OB--type runaway stars inside supernova remnants (SNRs). We identified spectral types and measured radial velocities (RV) by optical spectroscopic observations and we found an early type runaway star inside SNR S147. HD 37424 is a B0.5V type star with a peculiar velocity of 74$\pm$8 km s$^{-1}$. Tracing back the past trajectories via Monte Carlo simulations, we found that HD 37424 was located at the same position as the central compact object, PSR J0538+2817, $30\!\pm\!4$ kyr ago. This position is only $\sim$4 arcmin away from the geometrical center of the SNR. So, we suggest that HD 37424 was the pre--supernova binary companion to the progenitor of the pulsar and the SNR. We found a distance of 1333$^{+103}_{-112}$ pc to the SNR. The zero age main sequence progenitor mass should be greater than 13 $M_\odot$. The age is $30\pm4$ kyr and the total visual absorption towards the center is 1.28$\pm$0.06 mag. For different progenitor masses, we calculated the pre--supernova binary parameters. The Roche Lobe radii suggest that it was an interacting binary in the late stages of the progenitor.

Cosmic Ray Origins in Supernova Blast Waves

We extend the self-similar solution derived by Chevalier for a Sedov blast wave accelerating cosmic rays (CR) to show that the Galactic CR population can be divided into: (A) CR with energies above ~200GeV released upstream during CR acceleration by supernova remnants (SNR), (B) CR advected into the interior of the SNR during expansion and then released from the SNR at the end of its life to provide the Galactic CR component below ~200GeV. The intersection between the two populations may correspond to a measured change in the Galactic CR spectral index at this energy.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^