Posts Tagged scenarios

Recent Postings from scenarios

Modified gravity in three dimensional metric-affine scenarios

We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. Such scenarios are supported by the physics of crystalline structures with microscopic defects and, in particular, those that can be effectively treated as bi-dimensional (like graphene). We first study the case of $f(R)$ theories, finding deviations near the center as compared to the solutions of General Relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

Modified Supersymmetric Dark Sectors

SUSY models with a modified dark sector require constraints to be reinterpreted, which may allow for scenarios with low tuning. A modified dark sector can also change the phenomenology greatly. The addition of the QCD axion to the Minimal Supersymmetric Standard Model (MSSM) solves the strong CP problem and also modifies the dark sector with new dark matter candidates. While SUSY axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axion’s superpartner, the axino may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular this work focuses on the KSVZ axino. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. This signature of displaced decays to axinos is compared to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. The cosmological viability of such a scenario is also considered briefly.

The tensor bi-spectrum in a matter bounce [Cross-Listing]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Cross-Listing]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

Two Higgs bosons near 125 GeV in the complex NMSSM and the LHC Run-I data [Replacement]

We analyse the impact of explicit CP-violation in the Higgs sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) on its consistency with the Higgs boson data from the Large Hadron Collider (LHC). Through detailed scans of the parameter space of the complex NMSSM for certain fixed values of one of its CP-violating (CPV) phases, we obtain a large number of points corresponding to five phenomenologically relevant scenarios containing $\sim 125$ GeV Higgs boson(s). We focus, in particular, on the scenarios where the visible peaks in the experimental samples can actually be explained by two nearly mass-degenerate neutral Higgs boson states. We find that some points corresponding to these scenarios give an overall slightly improved fit to the data, more so for non-zero values of the CPV phase, compared to the scenarios containing a single Higgs boson near 125 GeV.

Two Higgs bosons near 125 GeV in the complex NMSSM and the LHC Run-I data

We analyse the impact of explicit CP-violation in the Higgs sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) on its consistency with the Higgs boson data from the Large Hadron Collider (LHC). Through detailed scans of the parameter space of the complex (natural) NMSSM for certain fixed values of one of its CP-violating (CPV) phases, we obtain a large number of points corresponding to five phenomenologically relevant scenarios containing $\sim 125$ GeV Higgs boson(s). We focus, in particular, on the scenarios where the visible peaks in the experimental samples can actually be explained by two nearly mass-degenerate neutral Higgs boson states. We find that these scenarios give an overall improved fit to the data for non-zero values of the CPV phase, compared not only to their CP-conserving limit but also to the scenarios containing a single Higgs boson near 125 GeV.

Signs of Tops from Highly Mixed Stops

Supersymmetric extensions of the Standard Model with highly mixed squark flavours beyond minimal flavour violation provide interesting scenarios of new physics, which have so far received limited attention. We propose a calculable realization of such scenarios in models of gauge mediation augmented with an extra interaction between the messengers and the up type squark. We compute the supersymmetric spectrum and analyze the flavour physics constraints on such models. In a simplified model approach, we show that scenarios with maximal squark flavour mixing result in interesting phenomenological signatures at the LHC. We show that the model can be probed up to masses of $m_{\tilde{u}} \lesssim 950$ GeV in the single-top event topology at LHC14 with as little as 300 fb$^{-1}$. The most distinctive signature of highly mixed scenarios, the same sign positive charge di-top, can be probed to comparable squark masses at high luminosity LHC14.

Signs of Tops from Highly Mixed Stops [Replacement]

Supersymmetric extensions of the Standard Model with highly mixed squark flavours beyond minimal flavour violation provide interesting scenarios of new physics, which have so far received limited attention. We propose a calculable realization of such scenarios in models of gauge mediation augmented with an extra interaction between the messengers and the up type squark. We compute the supersymmetric spectrum and analyze the flavour physics constraints on such models. In a simplified model approach, we show that scenarios with maximal squark flavour mixing result in interesting phenomenological signatures at the LHC. We show that the model can be probed up to masses of $m_{\tilde{u}} \lesssim 950$ GeV in the single-top event topology at LHC14 with as little as 300 fb$^{-1}$. The most distinctive signature of highly mixed scenarios, the same sign positive charge di-top, can be probed to comparable squark masses at high luminosity LHC14.

Phenomenological constraints on light mixed sneutrino dark matter scenarios

In supersymmetric models with Dirac neutrinos, the lightest sneutrino can be an excellent thermal dark matter candidate when the soft sneutrino trilinear parameter is large. We focus on scenarios where the mass of the mixed sneutrino is of the order of GeV and sensitivity of dark matter direct detection is weak. We investigate phenomenological constraints on the model parameter space including the vacuum stability bound. We show that the allowed regions can be explored by measuring Higgs boson properties at future collider experiments.

Isospin violating dark matter in St\"uckelberg portal scenarios [Cross-Listing]

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z’ bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Isospin violating dark matter in St\"uckelberg portal scenarios

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z’ bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Isospin violating dark matter in St\"uckelberg portal scenarios [Cross-Listing]

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z’ bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Stellar Motion around Spiral Arms: Gaia Mock Data

We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios using our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.

Large pseudoscalar Yukawa couplings in the complex 2HDM [Replacement]

We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of $300 \, fb^{-1}$ and $3000 \, fb^{-1}$ are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle $\phi_\tau$, between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay $h \to \tau^+ \tau^-$ will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of $\phi_t$ in the vertex $\bar t t h$ could help to constrain the low $\tan \beta$ region in the Type I model.

Large pseudoscalar Yukawa couplings in the complex 2HDM

We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of $300 \, fb^{-1}$ and $3000 \, fb^{-1}$ are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle $\phi_\tau$, between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay $h \to \tau^+ \tau^-$ will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of $\phi_t$ in the vertex $\bar t t h$ could help to constrain the low $\tan \beta$ region in the Type I model.

Heavy neutralino relic abundance with Sommerfeld enhancements - a study of pMSSM scenarios [Cross-Listing]

We present a detailed discussion of Sommerfeld enhancements in neutralino dark matter relic abundance calculations for several popular benchmark scenarios in the general MSSM. Our analysis is focused on models with heavy wino- and higgsino-like neutralino LSP and models interpolating between these two scenarios. This work is the first phenomenological application of effective field theory methods that we have developed in earlier work and that allow for the consistent study of Sommerfeld enhancements in non-relativistic neutralino and chargino co-annihilation reactions within the general MSSM, away from the pure-wino and pure-higgsino limits.

Heavy neutralino relic abundance with Sommerfeld enhancements - a study of pMSSM scenarios

We present a detailed discussion of Sommerfeld enhancements in neutralino dark matter relic abundance calculations for several popular benchmark scenarios in the general MSSM. Our analysis is focused on models with heavy wino- and higgsino-like neutralino LSP and models interpolating between these two scenarios. This work is the first phenomenological application of effective field theory methods that we have developed in earlier work and that allow for the consistent study of Sommerfeld enhancements in non-relativistic neutralino and chargino co-annihilation reactions within the general MSSM, away from the pure-wino and pure-higgsino limits.

CMS kinematic edge from s-bottoms [Replacement]

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

CMS kinematic edge from s-bottoms

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

CMS kinematic edge from s-bottoms [Replacement]

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

Sequestered de Sitter String Scenarios: Soft-terms [Cross-Listing]

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Sequestered de Sitter String Scenarios: Soft-terms

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Sequestered de Sitter String Scenarios: Soft-terms

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Revisiting the Emission from Relativistic Blast Waves in a Density-Jump Medium

Re-brightening bumps are frequently observed in gamma-ray burst (GRB) afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. (1999). This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps can not be produced under common conditions, only short plateau may emerge even when the encounter occurs at early time ($< 10^4$ s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be due to other scenarios.

Revisiting the Emission from Relativistic Blast Waves in a Density-Jump Medium [Replacement]

Re-brightening bumps are frequently observed in gamma-ray burst (GRB) afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. (1999). This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps can not be produced under common conditions, only short plateau may emerge even when the encounter occurs at early time ($< 10^4$ s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be due to other scenarios.

Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases

We examine the renormalization group evolution (RGE) for different mixing scenarios in the presence of seesaw threshold effects from high energy scale (GUT) to the low electroweak (EW) scale in the Standard Model (SM) and the Minimal Supersymmetric Standard Model (MSSM). We consider four mixing scenarios namely Tri-Bimaximal Mixing, Bimaximal Mixing, Hexagonal Mixing and Golden Ratio Mixing which come from different flavor symmetries at the GUT scale. All these mixing scenarios give vanishing reactor angle ($\theta_{13}$) and maximal atmospheric mixing angle. The solar mixing angle has different value for all four cases. In the light of non zero value of $\theta_{13}$ it becomes interesting to study the present status of these symmetries, i.e. whether they can generate the current neutrino oscillation data at low energy scale or not. We find that the Majorana phases play an important role in the RGE running of these mixing patterns along with the seesaw threshold corrections. We present a comparative study of the RGE of all these mixing scenarios both with and without Majorana CP phases when seesaw threshold corrections are taken into consideration. We find that in the absence of these Majorana phases both the RGE running and seesaw effects may lead to $\theta_{13}< $5$^\circ$ at low energies both in the SM and the MSSM. However, if the Majorana phases are incorporated to the mixing matrix the running can be enhanced both in the SM and the MSSM. Even by incorporating non zero Majorana CP phases in the SM, we do not get $\theta_{13}$ in its present 3$\sigma$ range. The current values of the two mass squared differences and mixing angles including $\theta_{13}$ can be produced in the MSSM case with tan$\beta$ = 10 and non zero Majorana CP phases at low energy.

Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases [Replacement]

We examine the renormalization group evolution (RGE) for different mixing scenarios in the presence of seesaw threshold effects from high energy scale (GUT) to the low electroweak (EW) scale in the Standard Model (SM) and Minimal Supersymmetric Standard Model (MSSM). We consider four mixing scenarios namely Tri-Bimaximal Mixing, Bimaximal Mixing, Hexagonal Mixing and Golden Ratio Mixing which come from different flavor symmetries at the GUT scale. We find that the Majorana phases play an important role in the RGE running of these mixing patterns along with the seesaw threshold corrections. We present a comparative study of the RGE of all these mixing scenarios both with and without Majorana CP phases when seesaw threshold corrections are taken into consideration. We find that in the absence of these Majorana phases both the RGE running and seesaw effects may lead to $\theta_{13}<$ 5$^\circ$ at low energies both in the SM and MSSM. However, if the Majorana phases are incorporated to the mixing matrix the running can be enhanced both in the SM and MSSM. Even by incorporating non zero Majorana CP phases in the SM, we do not get $\theta_{13}$ in its present 3$\sigma$ range. The current values of the two mass squared differences and mixing angles including $\theta_{13}$ can be produced in the MSSM case with tan$\beta$ = 10 and non zero Majorana CP phases at low energy. We also calculate the order of effective Majorana mass and Jarlskog Invariant for each scenario under consideration.

Cosmological scenarios in modified gravity with non-dynamical fields

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Collisional modelling of the debris disc around HIP 17439

We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. A good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not supported, although not ruled out, by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of discriminating between the competing scenarios by future observations are discussed.

Phenomenology of $E_6$-Inspired Leptophobic $Z'$ Boson at the LHC [Replacement]

We study collider phenomenology of a leptophobic $Z’$ boson existing in eight scenarios of the $E_6$ grand unified theory, differing in particle embeddings. We first review the current bound on the $Z’$ mass $m_{Z’}$ based upon the LHC data of $pp\to t\bar{t}$ process at 8 TeV collisions with an integrated luminosity of 19.6 fb$^{-1}$. Most scenarios have a lower bound of about 1 TeV. However, this constraint does not apply to the case where $m_{Z’} < 2 m_t$, and other methods need to be employed for this lower mass regime. Using existing UA2 constraints and dijet data at the LHC, we find that only one of the eight scenarios is excluded at 95\% confidence level. No bound can be obtained from $Wjj$ and $Zjj$ measurements. We propose to use the photon associated production of the $Z’$ boson that subsequently decays into a pair of bottom quarks, $pp\to Z’\gamma \to b\bar{b}\gamma$, at the LHC to explore the constraints in the lower mass regime. We compute the expected signal significance as a function of $m_{Z’}$ using detailed simulations of signal and irreducible background events. We find constraints for two more scenarios using the 8-TeV data and taking appropriate kinematical cuts. We also show the discovery reach for each scenario at the 14-TeV LHC machine.

Radiative neutrino mass generation linked to neutrino mixing and neutrinoless double beta decay predictions

We discuss the connection between the origin of neutrino masses and their mixings which arises in a class of scenarios with radiatively induced neutrino masses. In these scenarios, the neutrino mass matrix acquires textures with two entries close to zero in the basis where the charged-lepton mass matrix is diagonal. This results in specific constraints on the neutrino mixing parameters,which leads to the prediction of (i) a normal ordering of neutrino masses with the lightest neutrino mass in the $\sim$meV range, and (ii) testable correlations among the various mixing angles, including a non-zero $\theta_{13}$ angle with its exact value correlated with the values of the atmospheric angle $\theta_{23}$ and the CP phase $\delta$. We quantify the impact of deviations from exact zeroes in the mass matrix texture, and connect it to the amount of hierarchy among Yukawa couplings. These scenarios of radiative neutrino mass generation also give rise to new short-range contributions to neutrinoless double beta decay, which dominate over the usual light-neutrino exchange contribution. As a result, this class of models can have a sizable neutrinoless double beta decay rate, in the range of upcoming experiments despite the normal mass ordering of neutrinos.

Radiative neutrino mass generation linked to neutrino mixing and $0\nu\beta\beta$-decay predictions [Replacement]

We discuss the connection between the origin of neutrino masses and their mixings which arises in a class of scenarios with radiatively induced neutrino masses. In these scenarios, the neutrino mass matrix acquires textures with two entries close to zero in the basis where the charged-lepton mass matrix is diagonal. This results in specific constraints on the neutrino mixing parameters, which leads to the prediction of (i) a normal ordering of neutrino masses with the lightest neutrino mass in the $\sim$ meV range and (ii) testable correlations among the various mixing angles, including a nonzero $\theta_{13}$ angle with its exact value correlated with the values of the atmospheric angle $\theta_{23}$ and the $CP$ phase $\delta$. We quantify the impact of deviations from exact zeroes in the mass matrix texture and connect it to the amount of hierarchy among Yukawa couplings. These scenarios of radiative neutrino mass generation also give rise to new short-range contributions to neutrinoless double beta decay, which dominate over the usual light-neutrino exchange contribution. As a result, this class of models can have a sizable neutrinoless double beta decay rate, in the range of upcoming experiments despite the normal mass ordering of neutrinos.

High-energy collisions inside black holes and their counterpart in the flat space-time

Two particles can collide inside a black hole in such a way that the energy E_{c.m.} in their centre of mass frame becomes as large as one likes. We show that this effect can be understood with the help of simple analogy with particle collision in the flat space-time. We also expand our previous results and demonstrate new scenarios with unbound E_{c.m.}. In contrast to the previous scenarios which required proximity of collision to the bifurcation point, now this is not necessary. Full classification of scenarios with unbound E_{c.m.} is suggested.

High-energy collisions inside black holes and their counterpart in the flat space-time [Cross-Listing]

Two particles can collide inside a black hole in such a way that the energy E_{c.m.} in their centre of mass frame becomes as large as one likes. We show that this effect can be understood with the help of simple analogy with particle collision in the flat space-time. We also expand our previous results and demonstrate new scenarios with unbound E_{c.m.}. In contrast to the previous scenarios which required proximity of collision to the bifurcation point, now this is not necessary. Full classification of scenarios with unbound E_{c.m.} is suggested.

The prompt-early afterglow connection in GRBs

We study the observed correlations between the duration and luminosity of the early afterglow plateau and the isotropic gamma-ray energy release during the prompt phase. We discuss these correlations in the context of two scenarios for the origin of the plateaus. In the first one the afterglow is made by the forward shock and the plateau results from variations of the microphysics parameters while in the second one the early afterglow is made by a long-lived reverse shock propagating in a low Lorentz factor tail of the ejecta.

A search for long-lived gravitational-wave transients coincident with long gamma-ray bursts [Replacement]

Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

A search for long-lived gravitational-wave transients coincident with long gamma-ray bursts [Replacement]

Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

A search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

A search for long-lived gravitational-wave transients coincident with long gamma-ray bursts [Cross-Listing]

Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

Numerical simulations of composite supernova remnants for small $\sigma$ pulsar wind nebulae

Composite supernova remnants consist of a pulsar wind nebula located inside a shell-type remnant. The presence of a shell has implications on the evolution of the nebula, although the converse is generally not true. The purpose of this paper is two-fold. The first aim is to determine the effect of the pulsar’s initial luminosity and spin-down rate, the supernova ejecta mass, and density of the interstellar medium on the evolution of a spherically-symmetric, composite supernova remnant expanding into a homogeneous medium. The second aim is to investigate the evolution of the magnetic field in the pulsar wind nebula when the the composite remnant expands into a non-uniform interstellar medium. The Euler conservation equations for inviscid flow, together with the magnetohydrodynamic induction law in the kinematic limit, are solved numerically for a number of scenarios where the ratio of magnetic to particle energy is $\sigma < 0.01$. The simulations in the first part of the paper is solved in a one-dimensional configuration. In the second part of the paper, the effect of an inhomogeneous medium on the evolution is studied using a two-dimensional, axis-symmetric configuration.

Order and chaos in hydrodynamic BL Her models

Many dynamical systems of different complexity, e.g. 1D logistic map, the Lorentz equations, or real phenomena, like turbulent convection, show chaotic behaviour. Despite huge differences, the dynamical scenarios for these systems are strikingly similar: chaotic bands are born through the series of period doubling bifurcations and merge through interior crises. Within chaotic bands periodic windows are born through the tangent bifurcations, preceded by the intermittent behaviour. This is a universal behaviour of dynamical systems (Feigenbaum 1983). We demonstrate such behaviour in models of pulsating stars.

Scale-free primordial cosmology

The large-scale structure of the universe suggests that the physics underlying its early evolution is scale-free. This was the historic motivation for the Harrison-Zel’dovich-Peebles spectrum and for inflation. Based on a hydrodynamical approach, we identify scale-free forms for the background equation-of-state for both inflationary and cyclic scenarios and use these forms to derive predictions for the spectral tilt and tensor-to-scalar ratio of primordial density perturbations. For the case of inflation, we find three classes of scale-free models with distinct predictions. Including all classes, we show that scale-free inflation predicts tensor-to-scalar ratio $r > 10^{-4}$. We show that the observationally favored class is theoretically disfavored because it suffers from an initial conditions problem and the hydrodynamical form of an unlikeliness problem similar to that identified recently for certain inflaton potentials. We contrast these results with those for scale-free cyclic models.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^