Posts Tagged scenarios

Recent Postings from scenarios

LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model [Cross-Listing]

We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low mass and high mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group.

LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model

We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low mass and high mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group.

How plausible are the proposed formation scenarios of CEMP-r/s stars?

CEMP-$r/s$ stars are metal-poor stars with enhanced abundances of carbon and heavy elements associated with the slow ($s$-) and rapid ($r$-) neutron-capture process. It is believed that carbon and $s$-elements were accreted from the wind of an AGB primary star, a scenario that is generally accepted to explain the formation of CEMP stars that are only enhanced in $s$-elements (CEMP-$s$ stars). The origin of $r$-element-enrichment in CEMP-$r/s$ stars is debated and many formation scenarios have been put forward. We aim to determine the likelihood of the scenarios proposed to explain the formation of CEMP-$r/s$ stars. We calculate the frequency of CEMP-$r/s$ stars among CEMP-$s$ stars for a variety of scenarios, and we compare it with that determined from an observed sample of CEMP-$r/s$ stars collected from the literature. The theoretical frequency of CEMP-$r/s$ stars predicted in most scenarios underestimates the observed ratio by at least a factor of 5. If the enrichments in $s$- and $r$-elements are independent, the model ratio of CEMP-$r/s$ to CEMP-$s$ stars is about 22%, that is approximately consistent with the lowest estimate of the observed ratio. However, this model predicts that about one third of all carbon-normal stars have [Ba/Fe] and [Eu/Fe] higher than 1, and that 40% of all CEMP stars have [Ba/Eu]$\le0$. Stars with these properties are at least ten times rarer in our observed sample. The $intermediate$ or $i$-process, which is supposedly active in some circumstances during the AGB phase, could provide an explanation of the origin of CEMP-$r/s$ stars, similar to that of CEMP-$s$ stars, in the context of wind mass accretion in binary systems. Further calculations of the nucleosynthesis of the $i$-process and of the detailed evolution of late AGB stars are needed to investigate if this scenario predicts a CEMP-$r/s$ star frequency consistent with the observations.

Constraints on Primordial Magnetic Fields from Inflation

We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T_{reh} <~ 10^2 MeV can magnetic fields of 10^{-15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

Constraints on Primordial Magnetic Fields from Inflation [Cross-Listing]

We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T_{reh} <~ 10^2 MeV can magnetic fields of 10^{-15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

Constraints on Primordial Magnetic Fields from Inflation [Cross-Listing]

We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T_{reh} <~ 10^2 MeV can magnetic fields of 10^{-15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

The Super-Natural Supersymmetry and Its Classic Example: M-Theory Inspired NMSSM

We briefly review the super-natural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the Minimal Supersymmetric Standard model (MSSM), the Next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for super-natural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on $S^1/Z_2$. In these scenarios, SUSY is broken by one and only one $F$-term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the K\"ahler potential and superpotential from Calabi-Yau compactification of M-theory on $S^1/Z_2$. Thus, as predicted by super-natural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can be even as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier than squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remain the same but we have heavier spectra as compared to moduli dominant SUSY breaking scenario. In addition to it, we have Higgs $H_{2}/A_{1}$-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. V. Constraints on Formation Scenarios

We build on the evidence provided by our Legacy Survey of Galactic globular clusters (GC) to submit to a crucial test four scenarios currently entertained for the formation of multiple stellar generations in GCs. The observational constraints on multiple generations to be fulfilled are manifold, including GC specificity, ubiquity, variety, predominance, discreteness, supernova avoidance, p-capture processing, helium enrichment and mass budget. We argue that scenarios appealing to supermassive stars, fast rotating massive stars and massive interactive binaries violate in an irreparable fashion two or more among such constraints. Also the scenario appealing to AGB stars as producers of the material for next generation stars encounters severe difficulties, specifically concerning the mass budget problem and the detailed chemical composition of second generation stars. We qualitatively explore ways possibly allowing one to save the AGB scenario, specifically appealing to a possible revision of the cross section of a critical reaction rate destroying sodium, or alternatively by a more extensive exploration of the vast parameter space controlling the evolutionary behavior of AGB stellar models. Still, we cannot ensure success for these efforts and totally new scenarios may have to be invented to understand how GCs formed in the early Universe.

A critical assessment of models for the origin of multiple populations in globular clusters

A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the "mass budget problem" for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.

Exploring central opacity and asymptotic scenarios in elastic hadron scattering [Replacement]

In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio $X$ between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m energy interval 5 GeV - 8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for $X$, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio $\bar{X}$ = 0.30 $\pm$ 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for $X$ and physical aspects related to a change of curvature in this quantity at 80 - 100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

Exploring central opacity and asymptotic scenarios in elastic hadron scattering

In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio $X$ between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m energy interval 5 GeV - 8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for $X$, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio $\bar{X}$ = 0.30 $\pm$ 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for $X$ and physical aspects related to a change of curvature in this quantity at 80 - 100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

Exploring central opacity and asymptotic scenarios in elastic hadron scattering [Replacement]

In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio $X$ between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m energy interval 5 GeV - 8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for $X$, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio $\bar{X}$ = 0.30 $\pm$ 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for $X$ and physical aspects related to a change of curvature in this quantity at 80 - 100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

Exploring central opacity and asymptotic scenarios in elastic hadron scattering [Cross-Listing]

In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio $X$ between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m energy interval 5 GeV - 8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for $X$, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio $\bar{X}$ = 0.30 $\pm$ 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for $X$ and physical aspects related to a change of curvature in this quantity at 80 - 100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

Exploring central opacity and asymptotic scenarios in elastic hadron scattering [Replacement]

In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio $X$ between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m energy interval 5 GeV - 8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for $X$, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio $\bar{X}$ = 0.30 $\pm$ 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for $X$ and physical aspects related to a change of curvature in this quantity at 80 - 100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

Modified gravity in three dimensional metric-affine scenarios

We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. Such scenarios are supported by the physics of crystalline structures with microscopic defects and, in particular, those that can be effectively treated as bi-dimensional (like graphene). We first study the case of $f(R)$ theories, finding deviations near the center as compared to the solutions of General Relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

Modified Supersymmetric Dark Sectors

SUSY models with a modified dark sector require constraints to be reinterpreted, which may allow for scenarios with low tuning. A modified dark sector can also change the phenomenology greatly. The addition of the QCD axion to the Minimal Supersymmetric Standard Model (MSSM) solves the strong CP problem and also modifies the dark sector with new dark matter candidates. While SUSY axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axion's superpartner, the axino may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular this work focuses on the KSVZ axino. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. This signature of displaced decays to axinos is compared to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. The cosmological viability of such a scenario is also considered briefly.

The tensor bi-spectrum in a matter bounce [Cross-Listing]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Cross-Listing]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce [Replacement]

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

The tensor bi-spectrum in a matter bounce

Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter $h_{_{\rm NL}}$ that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

Two Higgs bosons near 125 GeV in the complex NMSSM and the LHC Run-I data [Replacement]

We analyse the impact of explicit CP-violation in the Higgs sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) on its consistency with the Higgs boson data from the Large Hadron Collider (LHC). Through detailed scans of the parameter space of the complex NMSSM for certain fixed values of one of its CP-violating (CPV) phases, we obtain a large number of points corresponding to five phenomenologically relevant scenarios containing $\sim 125$ GeV Higgs boson(s). We focus, in particular, on the scenarios where the visible peaks in the experimental samples can actually be explained by two nearly mass-degenerate neutral Higgs boson states. We find that some points corresponding to these scenarios give an overall slightly improved fit to the data, more so for non-zero values of the CPV phase, compared to the scenarios containing a single Higgs boson near 125 GeV.

Two Higgs bosons near 125 GeV in the complex NMSSM and the LHC Run-I data

We analyse the impact of explicit CP-violation in the Higgs sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) on its consistency with the Higgs boson data from the Large Hadron Collider (LHC). Through detailed scans of the parameter space of the complex (natural) NMSSM for certain fixed values of one of its CP-violating (CPV) phases, we obtain a large number of points corresponding to five phenomenologically relevant scenarios containing $\sim 125$ GeV Higgs boson(s). We focus, in particular, on the scenarios where the visible peaks in the experimental samples can actually be explained by two nearly mass-degenerate neutral Higgs boson states. We find that these scenarios give an overall improved fit to the data for non-zero values of the CPV phase, compared not only to their CP-conserving limit but also to the scenarios containing a single Higgs boson near 125 GeV.

Signs of Tops from Highly Mixed Stops

Supersymmetric extensions of the Standard Model with highly mixed squark flavours beyond minimal flavour violation provide interesting scenarios of new physics, which have so far received limited attention. We propose a calculable realization of such scenarios in models of gauge mediation augmented with an extra interaction between the messengers and the up type squark. We compute the supersymmetric spectrum and analyze the flavour physics constraints on such models. In a simplified model approach, we show that scenarios with maximal squark flavour mixing result in interesting phenomenological signatures at the LHC. We show that the model can be probed up to masses of $m_{\tilde{u}} \lesssim 950$ GeV in the single-top event topology at LHC14 with as little as 300 fb$^{-1}$. The most distinctive signature of highly mixed scenarios, the same sign positive charge di-top, can be probed to comparable squark masses at high luminosity LHC14.

Signs of Tops from Highly Mixed Stops [Replacement]

Supersymmetric extensions of the Standard Model with highly mixed squark flavours beyond minimal flavour violation provide interesting scenarios of new physics, which have so far received limited attention. We propose a calculable realization of such scenarios in models of gauge mediation augmented with an extra interaction between the messengers and the up type squark. We compute the supersymmetric spectrum and analyze the flavour physics constraints on such models. In a simplified model approach, we show that scenarios with maximal squark flavour mixing result in interesting phenomenological signatures at the LHC. We show that the model can be probed up to masses of $m_{\tilde{u}} \lesssim 950$ GeV in the single-top event topology at LHC14 with as little as 300 fb$^{-1}$. The most distinctive signature of highly mixed scenarios, the same sign positive charge di-top, can be probed to comparable squark masses at high luminosity LHC14.

Phenomenological constraints on light mixed sneutrino dark matter scenarios

In supersymmetric models with Dirac neutrinos, the lightest sneutrino can be an excellent thermal dark matter candidate when the soft sneutrino trilinear parameter is large. We focus on scenarios where the mass of the mixed sneutrino is of the order of GeV and sensitivity of dark matter direct detection is weak. We investigate phenomenological constraints on the model parameter space including the vacuum stability bound. We show that the allowed regions can be explored by measuring Higgs boson properties at future collider experiments.

Isospin violating dark matter in St\"uckelberg portal scenarios [Cross-Listing]

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z' bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Isospin violating dark matter in St\"uckelberg portal scenarios

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z' bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Isospin violating dark matter in St\"uckelberg portal scenarios [Cross-Listing]

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z' bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated St\"uckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from plus and minus 1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/ap.

Stellar Motion around Spiral Arms: Gaia Mock Data

We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios using our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.

Large pseudoscalar Yukawa couplings in the complex 2HDM

We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of $300 \, fb^{-1}$ and $3000 \, fb^{-1}$ are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle $\phi_\tau$, between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay $h \to \tau^+ \tau^-$ will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of $\phi_t$ in the vertex $\bar t t h$ could help to constrain the low $\tan \beta$ region in the Type I model.

Large pseudoscalar Yukawa couplings in the complex 2HDM [Replacement]

We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of $300 \, fb^{-1}$ and $3000 \, fb^{-1}$ are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle $\phi_\tau$, between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay $h \to \tau^+ \tau^-$ will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of $\phi_t$ in the vertex $\bar t t h$ could help to constrain the low $\tan \beta$ region in the Type I model.

Heavy neutralino relic abundance with Sommerfeld enhancements - a study of pMSSM scenarios [Cross-Listing]

We present a detailed discussion of Sommerfeld enhancements in neutralino dark matter relic abundance calculations for several popular benchmark scenarios in the general MSSM. Our analysis is focused on models with heavy wino- and higgsino-like neutralino LSP and models interpolating between these two scenarios. This work is the first phenomenological application of effective field theory methods that we have developed in earlier work and that allow for the consistent study of Sommerfeld enhancements in non-relativistic neutralino and chargino co-annihilation reactions within the general MSSM, away from the pure-wino and pure-higgsino limits.

Heavy neutralino relic abundance with Sommerfeld enhancements - a study of pMSSM scenarios

We present a detailed discussion of Sommerfeld enhancements in neutralino dark matter relic abundance calculations for several popular benchmark scenarios in the general MSSM. Our analysis is focused on models with heavy wino- and higgsino-like neutralino LSP and models interpolating between these two scenarios. This work is the first phenomenological application of effective field theory methods that we have developed in earlier work and that allow for the consistent study of Sommerfeld enhancements in non-relativistic neutralino and chargino co-annihilation reactions within the general MSSM, away from the pure-wino and pure-higgsino limits.

CMS kinematic edge from s-bottoms [Replacement]

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

CMS kinematic edge from s-bottoms

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

CMS kinematic edge from s-bottoms [Replacement]

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

Sequestered de Sitter String Scenarios: Soft-terms [Cross-Listing]

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Sequestered de Sitter String Scenarios: Soft-terms

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Sequestered de Sitter String Scenarios: Soft-terms

We analyse soft supersymmetry breaking in type IIB de Sitter string vacua after moduli stabilisation, focussing on models in which the Standard Model is sequestered from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically smaller than the gravitino mass $m_{3/2}$. Due to this feature, these models are compatible with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli problem. We determine the influence on soft-terms of concrete realisations of de Sitter vacua constructed from supersymmetric effective actions. One of these scenarios provides the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau manifold with all moduli stabilised. Depending on the moduli dependence of the Kaehler metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino masses are suppressed with respect to scalar masses: $M_{1/2} \sim m_{3/2} \epsilon \ll m_0 \sim m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$ for $\epsilon \sim m_{3/2}/M_P \ll 1$; (ii) a typical MSSM scenario where all soft-terms are of the same order: $M_{1/2} \sim m_0 \sim m_{3/2} \epsilon \ll m_{3/2}$. Background fluxes determine the numerical coefficients of the soft-terms allowing for small variations of parameters as is necessary to confront data and to interpolate between different scenarios. We comment on different stringy origins of the mu-term and potential sources of desequestering.

Revisiting the Emission from Relativistic Blast Waves in a Density-Jump Medium

Re-brightening bumps are frequently observed in gamma-ray burst (GRB) afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. (1999). This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps can not be produced under common conditions, only short plateau may emerge even when the encounter occurs at early time ($< 10^4$ s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be due to other scenarios.

Revisiting the Emission from Relativistic Blast Waves in a Density-Jump Medium [Replacement]

Re-brightening bumps are frequently observed in gamma-ray burst (GRB) afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. (1999). This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps can not be produced under common conditions, only short plateau may emerge even when the encounter occurs at early time ($< 10^4$ s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be due to other scenarios.

Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases

We examine the renormalization group evolution (RGE) for different mixing scenarios in the presence of seesaw threshold effects from high energy scale (GUT) to the low electroweak (EW) scale in the Standard Model (SM) and the Minimal Supersymmetric Standard Model (MSSM). We consider four mixing scenarios namely Tri-Bimaximal Mixing, Bimaximal Mixing, Hexagonal Mixing and Golden Ratio Mixing which come from different flavor symmetries at the GUT scale. All these mixing scenarios give vanishing reactor angle ($\theta_{13}$) and maximal atmospheric mixing angle. The solar mixing angle has different value for all four cases. In the light of non zero value of $\theta_{13}$ it becomes interesting to study the present status of these symmetries, i.e. whether they can generate the current neutrino oscillation data at low energy scale or not. We find that the Majorana phases play an important role in the RGE running of these mixing patterns along with the seesaw threshold corrections. We present a comparative study of the RGE of all these mixing scenarios both with and without Majorana CP phases when seesaw threshold corrections are taken into consideration. We find that in the absence of these Majorana phases both the RGE running and seesaw effects may lead to $\theta_{13}< $5$^\circ$ at low energies both in the SM and the MSSM. However, if the Majorana phases are incorporated to the mixing matrix the running can be enhanced both in the SM and the MSSM. Even by incorporating non zero Majorana CP phases in the SM, we do not get $\theta_{13}$ in its present 3$\sigma$ range. The current values of the two mass squared differences and mixing angles including $\theta_{13}$ can be produced in the MSSM case with tan$\beta$ = 10 and non zero Majorana CP phases at low energy.

Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases [Replacement]

We examine the renormalization group evolution (RGE) for different mixing scenarios in the presence of seesaw threshold effects from high energy scale (GUT) to the low electroweak (EW) scale in the Standard Model (SM) and Minimal Supersymmetric Standard Model (MSSM). We consider four mixing scenarios namely Tri-Bimaximal Mixing, Bimaximal Mixing, Hexagonal Mixing and Golden Ratio Mixing which come from different flavor symmetries at the GUT scale. We find that the Majorana phases play an important role in the RGE running of these mixing patterns along with the seesaw threshold corrections. We present a comparative study of the RGE of all these mixing scenarios both with and without Majorana CP phases when seesaw threshold corrections are taken into consideration. We find that in the absence of these Majorana phases both the RGE running and seesaw effects may lead to $\theta_{13}<$ 5$^\circ$ at low energies both in the SM and MSSM. However, if the Majorana phases are incorporated to the mixing matrix the running can be enhanced both in the SM and MSSM. Even by incorporating non zero Majorana CP phases in the SM, we do not get $\theta_{13}$ in its present 3$\sigma$ range. The current values of the two mass squared differences and mixing angles including $\theta_{13}$ can be produced in the MSSM case with tan$\beta$ = 10 and non zero Majorana CP phases at low energy. We also calculate the order of effective Majorana mass and Jarlskog Invariant for each scenario under consideration.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields [Replacement]

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

Cosmological scenarios in modified gravity with non-dynamical fields

In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity through non-dynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter and dark energy dominated regimes. Furthermore, an interesting possibility such as the emergence of a self-tuning mechanism to the cosmological constant problem in the radiation dominated era is also discussed.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^