Array ( [0] => tag/sach/ ) sach « Vox Charta

Posts Tagged sach

Recent Postings from sach

On the signature of nearby superclusters and voids in the Integrated Sachs-Wolfe effect

Through a large ensemble of Gaussian simulations and a suite of large-volume $N$-body simulations, we show that in a standard LCDM scenario, supervoids and superclusters in the redshift range (0.4<z<0.7) should leave a small signature on the Integrated Sachs Wolfe (ISW) effect of the order ~2 \mu K. We perform aperture photometry on WMAP data, centred on such superstructures identified from SDSS LRG data, and find amplitudes at the level of 8 — 11 \mu K — thus confirming the earlier work of (Granett et al. 2008). If we focus on apertures of the size ~3.6 degrees, then our simulations indicate that LCDM is discrepant at the level of ~4 \sigma. However, if we combine all aperture scales considered, ranging from 1–20 degrees, then the discrepancy becomes ~2 \sigma. Full-sky ISW maps generated from our N-body simulations show that this discrepancy cannot be alleviated by appealing to Rees-Sciama (RS) mechanisms, since their impact on the scales probed by our filters is negligible. We perform a series of tests on the WMAP data for systematics. We check for foreground contaminants and show that the signal does not display the correct dependence on the aperture size expected for a residual foreground tracing the density field. The signal also proves robust against rotation tests of the CMB maps, and seems to be spatially associated to the angular positions of the supervoids and superclusters. We explore whether the signal can be explained by the presence of primordial non-Gaussianities of the local type. We show that for models with f_NL=+/-100, whilst there is a change in the pattern of temperature anisotropies, all amplitude shifts are well below <1 \mu K. If primordial non-Gaussianity were to explain the result, then f_NL would need to be several times larger than currently permitted by WMAP constraints.

The stacked ISW signal of rare superstructures in \Lambda CDM

A detection of the stacked integrated Sachs-Wolfe (ISW) signal in the CMB of rare superstructures identified in the SDSS Luminous Red Galaxy catalogue has been reported at very high statistical significance. The magnitude of the observed signal has previously been argued to be more than 3 standard deviations larger than the theoretical \Lambda CDM expectation. However, this calculation was made in the linear approximation, and relied on assumptions that may potentially have caused the \Lambda CDM expectation to be underestimated. Here we update the theoretical model calculation and compare it with an analysis of ISW maps obtained from N-body simulations of a \Lambda CDM universe. The differences between model predictions and the map analyses are found to be small and cannot explain the discrepancy with observation, which remains at >3 s.d. significance. We discuss the cosmological significance of this anomaly and speculate on the potential of alternative models to explain it.

An improved estimator for non-Gaussianity in cosmic microwave background observations

An improved estimator for the amplitude fnl of local-type non-Gaussianity from the cosmic microwave background (CMB) bispectrum is discussed. The standard estimator is constructed to be optimal in the zero-signal (i.e., Gaussian) limit. When applied to CMB maps which have a detectable level of non-Gaussianity the standard estimator is no longer optimal, possibly limiting the sensitivity of future observations to a non-Gaussian signal. Previous studies have proposed an improved estimator by using a realization-dependent normalization. Under the approximations of a flat sky and a vanishingly thin last-scattering surface, these studies showed that the variance of this improved estimator can be significantly smaller than the variance of the standard estimator when applied to non-Gaussian CMB maps. Here this technique is generalized to the full sky and to include the full radiation transfer function, yielding expressions for the improved estimator that can be directly applied to CMB maps. The ability of this estimator to reduce the variance as compared to the standard estimator in the face of a significant non-Gaussian signal is re-assessed using the full CMB transfer function. As a result of the late time integrated Sachs-Wolfe effect, the performance of the improved estimator is degraded. If CMB maps are first cleaned of the late-time ISW effect using a tracer of foreground structure, such as a galaxy survey or a measurement of CMB weak lensing, the new estimator does remove a majority of the excess variance, allowing a higher significance detection of fnl.

Contributions to the nonlinear integrated Sachs-Wolfe effect: Birkinshaw-Gull effect and gravitational self-energy density

In this paper, we recompute contributions to the spectrum of the nonlinear integrated Sachs-Wolfe (iSW)/Rees-Sciama effect in a dark energy cosmology. Focusing on the moderate nonlinear regime, all dynamical fields involved are derived from the density contrast in Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are similar to that derived in previous work. With our purely analytical approach we identify two distinct contributions to the signal of the nonlinear iSW-effect: the change of the gravitational self-energy density of the large scale structure with (conformal) time and gravitational lenses moving with the large scale matter stream. In the latter we recover the Birkinshaw-Gull effect. As the nonlinear iSW-effect itself is inherently hard to detect, observational discrimination between its individual contributions is almost excluded. Our analysis, however, yields valuable insights into the theory of the nonlinear iSW-effect as a post-Newtonian relativistic effect on propagating photons.

Dynamics of Dark Matter in Baryon-Radiation Plasma: Perspectives using Meschersky equation

With an aim to argue for the truly collisionless nature of cold dark matter between epochs of equality and recombination, we assume a model, wherein strongly coupled baryon-radiation plasma ejects out of small regions of concentrated cold dark matter without losing its equilibrium. We use the Meschersky equation to describe the dynamics of cold dark matter in the presence of varying mass of strongly coupled baryon-radiation plasma. Based on this model, we discuss the growth of perturbations in cold dark matter both in the Jeans theory and in the expanding universe using Newton’s theory. We see the effect of the perturbations in the cold dark matter potential on the cosmic microwave background anisotropy that originated at redshifts between equality and recombination i.e. $1100 < z < z_{eq}$. Also we obtain an expression for the Sachs-Wolfe effect, i.e. the CMB temperature anisotropy at decoupling in terms of the perturbations in cold dark matter potential. We obtain similar solutions both in the static and in the expanding universe, for epochs of recombination. From this, we infer about the time scale when the dark energy starts to dominate.

Cross bispectra and trispectra of the non-linear integrated Sachs-Wolfe effect and the tracer galaxy density field

In order to investigate possibilities to measure non-Gaussian signatures of the non-linear iSW effect, we study in this work the family of mixed bispectra <tau^q gamma^(3-q)> and trispectra <tau^q gamma^(4-q)> between the integrated Sachs-Wolfe (iSW) temperature perturbation tau and the galaxy over-density gamma. We use standard Eulerian perturbation theory restricted to tree level expansion for predicting the cosmic matter field. As expected, the spectra are found to decrease in amplitude with increasing q. The transition scale between linear domination and the scales, on which non-linearities take over, moves to larger scales with increasing number of included iSW source fields q. We derive the cumulative signal-to-noise ratios for a combination of Planck CMB data and the galaxy sample of a Euclid-like survey. Including scales down to l_max = 1000 we find sobering values of sigma = 0.83 for the mixed bispectrum and sigma = 0.19 in case of the trispectrum for q=1. For higher values of q the polyspectra <tau^2 gamma> and <tau^3 gamma> are found to be far below the detection limit.

Anisotropic Universe Models in f(T) Gravity [Replacement]

We investigate the cosmological reconstruction in anisotropic universe for both homogeneous and inhomogeneous content of the universe. Special attention is attached to three interesting cases: Bianchi type-I, Bianchi type-III and Kantowski-Sachs models. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. Moreover, for the general exponential solutions, from which the de Sitter and power-law solutions may be obtained, we obtain models which reproduce the early universe, assumed as the inflation, and the late time accelerated expanding universe. The models obtained for the late time universe are consistent with a known result in literature where a power-law type correction in T is added to a power-law type of f(T) for guaranteeing the avoidance of the Big Rip and the Big Freeze.

Anisotropic Universe Models in f(T) Gravity [Replacement]

We investigate the cosmological reconstruction in anisotropic universe for both homogeneous and inhomogeneous content of the universe. Special attention is attached to three interesting cases: Bianchi type-I, Bianchi type-III and Kantowski-Sachs models. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. Moreover, for the general exponential solutions, from which the de Sitter and power-law solutions may be obtained, we obtain models which reproduce the early universe, assumed as the inflation, and the late time accelerated expanding universe. The models obtained for the late time universe are consistent with a known result in literature where a power-law type correction in T is added to a power-law type of f(T) for guaranteeing the avoidance of the Big Rip and the Big Freeze.

Anisotropic Universe Models in f(T) Gravity [Cross-Listing]

We investigate the cosmological reconstruction in anisotropic universe for both homogeneous and inhomogeneous content of the universe. Special attention is attached to three interesting cases: Bianchi type-I, and Bianchi type-III and Kantowski-Sachs models. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. Moreover, for the general exponential solutions, from which the de Sitter and power-law solutions may be obtained, we obtain models which reproduce the early universe, assumed as the inflation, and the late time accelerated expanding universe. The models obtained for the late time universe are consistent with a known result in literature where a power-law type correction in T is added to a power-law type of f(T) for guaranteeing the avoidance of the Big Rip and the Big Freeze.

The significance of the integrated Sachs-Wolfe effect revisited

We revisit the state of the integrated Sachs-Wolfe (ISW) effect measurements in light of newly available data and address criticisms about the measurements which have recently been raised. We update the data set previously assembled by Giannantonio et al. to include new data releases for both the cosmic microwave background (CMB) and the large-scale structure (LSS) of the Universe. We find that our updated results are consistent with previous measurements. By fitting a single template amplitude, we now obtain a combined significance of the ISW detection at the 4.4 sigma level, which fluctuates by 0.4 sigma when alternative data cuts and analysis assumptions are considered. We also make new tests for systematic contaminations of the data, focusing in particular on the issues raised by Sawangwit et al. Amongst them, we address the rotation test, which aims at checking for possible systematics by correlating pairs of randomly rotated maps. We find results consistent with the expected data covariance, no evidence for enhanced correlation on any preferred axis of rotation, and therefore no indication of any additional systematic contamination. We publicly release the results, the covariance matrix, and the sky maps used to obtain them.

Integrated Sachs-Wolfe map recovery from NVSS and WMAP 7yr data

We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linear filter. This combination improves the quality of the map that would be obtained using information only from the Large Scale Structure data. In order to apply the filter, a given cosmological model needs to be assumed. In particular, we consider the standard LCDM model. As a test of consistency, we show that the reconstructed map is in agreemet with the assumed model, which is also favoured against a scenario where no correlation between the CMB and NVSS catalogue is considered.

Probing CMB Secondary Anisotropies through Minkowski Functionals

Secondary contributions to the anisotropy of the Cosmic Microwave Background (CMB), such as the integrated Sachs-Wolfe (ISW) effect, the thermal Sunyaev-Zel’dovich effect (tSZ), and the effect of gravitational lensing, have distinctive non-Gaussian signatures, and full descriptions therefore require information beyond that contained in their power spectra. In this paper we use the recently introduced skew-spectra associated with the Minkowski Functionals (MF) to probe the topology of CMB maps to probe the secondary non-Gaussianity as a function of beam-smoothing in order to separate various contributions. We devise estimators for these spectra in the presence of a realistic observational masks and present expressions for their covariance as a function of instrumental noise. Specific results are derived for the mixed ISW-lensing and tSZ-lensing bispectra as well as contamination due to point sources for noise levels that correspond to the Planck (143 GHz channel) and EPIC (150 GHz channel) experiments. The cumulative signal to noise ration $S/N$ for one-point generalized skewness-parameters can reach an order of ${\cal O}(10)$ for Planck and two orders of magnitude higher for EPIC, i.e. ${\cal O}(10^3)$. We also find that these three spectra skew-spectra are correlated, having correlation coefficients $r \sim 0.5-1.0$; higher $l$ modes are more strongly correlated. Though the values of $S/N$ increase with decreasing noise, the triplets of skew-spectra that determine the MFs bcome more correlated; the $S/N$ ratios of lensing-induced skew-spectra are smaller compared to that of a frequency-cleaned tSZ map.

How Flat is Our Universe Really?

Distance measurement provide no constraints on curvature independent of assumptions about the dark energy, raising the question, how flat is our Universe if we make no such assumptions? Allowing for general evolution of the dark energy equation of state with 20 free parameters that are allowed to cross the phantom divide, $w(z) = -1$, we show that while it is indeed possible to match the first peak in the Cosmic Microwave Background with non-flat models and arbitrary Hubble constant, $H_0$, the full WMAP7 and supernova data alone imply -0.12 < \Omega_k < 0.01 ($2\sigma$). If we add the HST $H_0$ prior, this tightens significantly to \Omega_k = 0.002 \pm 0.009. These constitute the most conservative and model-independent constraints on curvature available today, and illustrate that the curvature-dynamics degeneracy is broken by current data, with a key role played by the Integrated Sachs Wolfe effect rather than the distance to the surface of last scattering. If one imposes a quintessence prior on the dark energy ($-1 \leq w(z) \leq 1$) then just the WMAP7 and supernova data alone force the Universe to near flatness: \Omega_k = 0.013 \pm 0.012. Finally, allowing for curvature, we find that all datasets are consistent with a Harrison-Zel’dovich spectral index, $n_s = 1$, at $2\sigma$.

Nonlinear general relativistic corrections to redshift space distortions, gravitational lensing magnification and cosmological distances

The next generation of telescopes will usher in an era of precision cosmology, capable of determining the cosmological model to percent level and beyond. For this to be effective, the theoretical model must be understood to at least the same level of precision. A range of subtle relativistic effects remain to be explored theoretically, and offer the potential for probing general relativity in this new regime. We present the distance-redshift relation to second order in cosmological perturbation theory. This relation determines the magnification of sources at high precision, as well as nonlinear aspects of redshift space distortions. We identify a range of new lensing effects, including: double-integrated and nonlinear integrated Sach-Wolfe contributions, transverse Doppler effects in redshift space distortions, lensing from the induced vector mode and gravitational wave backgrounds, in addition to lensing from the second-order potential. Finally, we identify a new double-coupling between the density fluctuations integrated along the line of sight, and gradients in the density fluctuations coupled to transverse velocities along the line of sight. These can be large in certain situations, and so offer important new probes of gravitational lensing.

Dissipation of dark matter [Replacement]

Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\lesssim 10^7$ Pa$\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, $\lesssim 10^{-3}$ Pa$\cdot$s.

On the dissipation of the dark matter

Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\lesssim 10^7$ Pa$\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We also investigate the small-scale formation of viscous dark matter halos. This analysis places significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for very small values of the dark matter viscosity, $\lesssim 10^{-3}$ Pa$\cdot$s.

Dissipation of dark matter [Replacement]

Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\lesssim 10^7$ Pa$\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, $\lesssim 10^{-3}$ Pa$\cdot$s.

Electromagnetic radiation produces frame dragging [Replacement]

It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi–Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super–Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.

Electromagnetic radiation produces frame dragging [Cross-Listing]

It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi–Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super–Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.

Correlation of supernovae redshifts with temperature fluctuations of the Cosmic Microwave Background

Redshifts of a supernova (SN) and gamma-ray burst (GRB) samples are compared with the pixel temperatures of the Wilkinson Microwave Anisotropy Probe (WMAP) seven-years data near the pixels locations corresponding to the SN and GRB sky coordinates. We have found a statistically significant correlation of the SNe redshifts with the WMAP data, the average temperature deviation being +29.9 +-4.4 microK for the redshifts z ranging from 0.5 to 1.0 and +8.6 +-1.3 microK for z within the range (0.0,0.4). The latter value accords with the theoretical estimates for the distortion of the cosmic microwave background due to the integrated Sachs-Wolfe effect, whereas the larger anomaly for higher redshifts should be studied in more detail in the future.

Correlation of supernova redshifts with temperature fluctuations of the Cosmic Microwave Background [Replacement]

Redshifts of a supernova (SN) and gamma-ray burst (GRB) samples are compared with the pixel temperatures of the Wilkinson Microwave Anisotropy Probe (WMAP) seven-years data, the pixels locations corresponding to the SN and GRB sky coordinates. We have found a statistically significant correlation of the SN redshifts with the WMAP data, the average temperature deviation being +29.9 +-4.4 microK for the redshifts z ranging from 0.5 to 1.0 and +8.6 +-1.3 microK for z within the range (0.0,0.4). The latter value accords with the theoretical estimates for the distortion of the cosmic microwave background due to the integrated Sachs-Wolfe effect, whereas the larger anomaly for higher redshifts should be studied in more detail in the future.

Cosmic Microwave and Infrared Backgrounds cross-correlation for ISW detection

We investigate the cross-correlation between the cosmic infrared and microwave backgrounds (CIB & CMB) anisotropies through the integrated Sachs-Wolfe effect. We first describe the CIB anisotropies using a linearly biased power spectrum, then derive the theoretical angular power spectrum of the CMB-CIB cross-correlation for different instruments and frequencies. We discuss the detectability of the ISW signal by performing a signal-to-noise (SNR) analysis with our predicted spectra. The significances obtained range from 6{\sigma} to 7{\sigma} in an ideal case, depending on the frequency ; in realistic cases which account for the presence of noise including astrophysical contaminants, the results span the range 2-5{\sigma}, depending strongly on the major contribution to the noise term.

Spatial curvature and cosmological tests of general relativity [Replacement]

It is well-known that allowing for spatial curvature affects constraints on cosmological parameters such as the dark energy equation of state parameters. Here we study the effect of curvature on constraints on parameters used to test general relativity (GR) at cosmological scales, commonly known as modified growth (MG) parameters, as while current data taken in the context of the $\Lambda$CDM model points to a universe that is flat or very close to it, this constraint may not hold in modified theories of gravity. Using the latest cosmological data sets we find that MG parameters are correlated with the curvature parameter $\Omega_k$ and the constraints on the MG parameters are weakened compared to when $\Omega_k$ is not included in the parameter analysis. We next use various future simulated data sets, including cosmic microwave background, weak lensing, and Integrated Sachs-Wolfe-galaxy cross-correlations, where the fiducial model is spatially curved but we assume a flat model when fitting the MG parameters. We find the assumption of a spatially flat model on a spatially curved universe does indeed cause an artificial shift in the constraints on the MG parameters, in some cases even producing an apparent deviation from GR in the MG parameter space. For our simulated data, tension with GR begins to manifest itself for fiducial models with $\abs{\Omega_k} \geq 0.02$ and apparent deviations appear for $\abs{\Omega_k} \geq 0.05$. We find that for negatively curved models the apparent deviation is more significant. The manifestation of this apparent deviation from GR due to the assumption of spatial flatness above leads one to conclude that, when using future high-precision data to perform these tests, spatial curvature must be included in the parameter analysis along with the other core cosmological parameters and the MG parameters.

Nonsingular Chaplygin gas cosmologies in universes connected by wormhole [Cross-Listing]

We present some exact solutions of the Einstein equations with anisotropic fluid exploiting the Chaplygin equation of state. The solutions describe spacetimes with two identical T regions and an intermediate static spherically symmetric R region containing a wormhole. The metric in the T region represents an anisotropic Kantowski-Sachs cosmological model. Its evolution starts from an event horizon and develops according to different scenarios including eternal expansion, contraction and also a finite universe lifetime.

Parametrised modified gravity and the CMB Bispectrum

We forecast the constraints on modified theories of gravity from the cosmic microwave background (CMB) anisotropies bispectrum that arises from correlations between lensing and the Integrated Sachs-Wolfe effect. In models of modified gravity the evolution of the metric potentials is generally altered and the contribution to the CMB bispectrum signal can differ significantly from the one expected in the standard cosmological model.We adopt a parametrised approach and focus on three different classes of models: Linder’s growth index, Chameleon-type models and f(R) theories. We show that the constraints on the parameters of the models will significantly improve with future CMB bispectrum measurements.

All sky CMB map from cosmic strings integrated Sachs-Wolfe effect [Replacement]

By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.

All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.

Scalar field dark energy perturbations and the Integrated Sachs Wolfe effect

Dark energy perturbation affects the growth of matter perturbations even in scenarios with noninteracting dark energy. We investigate the Integrated Sachs Wolfe (ISW) effect in various canonical scalar field models with perturbed dark energy. We do this analysis for models belonging to the thawing and freezing classes. We show that between these classes there is no clear difference for the ISW effect. We show that on taking perturbations into account, the contribution due to different models is closer to each other and to the cosmological constant model as compared to the case of a smooth dark energy. Therefore considering dark energy to be homogeneous gives an overestimate in distinction between different models. However there are significant difference between contribution to the angular power spectrum due to different models.

Scalar field dark energy perturbations and the Integrated Sachs Wolfe effect [Replacement]

Dark energy perturbation affects the growth of matter perturbations even in scenarios with noninteracting dark energy. We investigate the Integrated Sachs Wolfe (ISW) effect in various canonical scalar field models with perturbed dark energy. We do this analysis for models belonging to the thawing and freezing classes. We show that between these classes there is no clear difference for the ISW effect. We show that on taking perturbations into account, the contribution due to different models is closer to each other and to the cosmological constant model as compared to the case of a smooth dark energy. Therefore considering dark energy to be homogeneous gives an overestimate in distinction between different models. However there are significant difference between contribution to the angular power spectrum due to different models.

Fingerprinting Dark Energy III: distinctive marks of viscosity

The characterisation of dark energy is one of the primary goals in cosmology especially now that many new experiments are being planned with the aim of reaching a high sensitivity on cosmological parameters. It is known that if we move away from the simple cosmological constant model then we need to consider perturbations in the dark energy fluid. This means that dark energy has two extra degrees of freedom: the sound speed $\cs$ and the anisotropic stress $\sigma$. If dark energy is inhomogenous at the scales of interest then the gravitational potentials are modified and the evolution of the dark matter perturbations is also directly affected. In this paper we add an anisotropic component to the dark energy perturbations. Following the idea introduced in \cite{Sapone:2009mb}, we solve analytically the equations of perturbations in the dark sector, finding simple and accurate approximated solutions. We also find that the evolution of the density perturbations is governed by an effective sound speed which depends on both the sound speed and the anisotropic stress parameter. We then use these solutions to look at the impact of the dark energy perturbations on the matter power spectrum and on the Integrated Sachs-Wolfe effect in the Cosmic Microwave Background.

Cross-correlation of WISE Galaxies with the Cosmic Microwave Background

We estimated the cross-power spectra of a galaxy sample from the Wide-field Infrared Survey Explorer (WISE) survey with the 7-year Wilkinson Microwave Anisotropy Probe (WMAP) temperature anisotropy maps. A conservatively-selected galaxy sample covers ~13000sq.deg, with a median redshift of z=0.15. Cross-power spectra show correlations between the two data sets with no discernible dependence on the WMAP Q, V and W frequency bands. We interpret these results in terms of the the Integrated Sachs-Wolfe (ISW) effect: for the |b|>20 deg sample at l=6-87, we measure the amplitude (normalized to be 1 for vanilla LambdaCDM expectation) of the signal to be 3.4+-1.1, i.e., 3.1 sigma detection. We discuss other possibilities, but at face value, the detection of the linear ISW effect in a flat universe is caused by large scale decaying potentials, a sign of accelerated expansion driven by Dark Energy.

CMB power spectrum parameter degeneracies in the era of precision cosmology

Cosmological parameter constraints from the CMB power spectra alone suffer several well-known degeneracies. These degeneracies can be broken by numerical artefacts and also a variety of physical effects that become quantitatively important with high-accuracy data e.g. from the Planck satellite. We study degeneracies in models with flat and non-flat spatial sections, non-trivial dark energy and massive neutrinos, and investigate the importance of various physical degeneracy-breaking effects. We test the CAMB power spectrum code for numerical accuracy, and demonstrate that the numerical calculations are accurate enough for degeneracies to be broken mainly by true physical effects (the integrated Sachs-Wolfe effect, CMB lensing and geometrical and other effects through recombination) rather than numerical artefacts. We quantify the impact of CMB lensing on the power spectra, which inevitably provides degeneracy-breaking information even without using information in the non-Gaussianity. Finally we check the numerical accuracy of sample-based parameter constraints using CAMB and CosmoMC. In an appendix we document recent changes to CAMB’s numerical treatment of massive neutrino perturbations, which are tested along with other recent improvements by our degeneracy exploration results.

CMB power spectrum parameter degeneracies in the era of precision cosmology [Replacement]

Cosmological parameter constraints from the CMB power spectra alone suffer several well-known degeneracies. These degeneracies can be broken by numerical artefacts and also a variety of physical effects that become quantitatively important with high-accuracy data e.g. from the Planck satellite. We study degeneracies in models with flat and non-flat spatial sections, non-trivial dark energy and massive neutrinos, and investigate the importance of various physical degeneracy-breaking effects. We test the CAMB power spectrum code for numerical accuracy, and demonstrate that the numerical calculations are accurate enough for degeneracies to be broken mainly by true physical effects (the integrated Sachs-Wolfe effect, CMB lensing and geometrical and other effects through recombination) rather than numerical artefacts. We quantify the impact of CMB lensing on the power spectra, which inevitably provides degeneracy-breaking information even without using information in the non-Gaussianity. Finally we check the numerical accuracy of sample-based parameter constraints using CAMB and CosmoMC. In an appendix we document recent changes to CAMB’s numerical treatment of massive neutrino perturbations, which are tested along with other recent improvements by our degeneracy exploration results.

One Gravitational Potential or Two? Forecasts and Tests

The metric of a perturbed Robertson-Walker spacetime is characterized by three functions: a scale-factor giving the expansion history and two potentials which generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the Integrated Sachs-Wolfe effect with galaxy peculiar velocities or clustering.

Phi Zeta Delta: Growth of Perturbations in Parameterized Gravity for an Einstein-de Sitter Universe

Parameterized frameworks for modified gravity are potentially useful tools for model-independent tests of General Relativity on cosmological scales. The toy model of an Einstein-de Sitter (EdS) universe provides a safe testbed in which to improve our understanding of their behaviour. We implement a mathematically consistent parameterization at the level of the field equations, and use this to calculate the evolution of perturbations in an EdS scenario. Our parameterization explicitly allows for new scalar degrees of freedom, and we compare this to theories in which the only degrees of freedom come from the metric and ordinary matter. The impact on the Integrated Sachs-Wolfe effect and canonically-conserved superhorizon perturbations is considered.

Phi Zeta Delta: Growth of Perturbations in Parameterized Gravity for an Einstein-de Sitter Universe [Replacement]

Parameterized frameworks for modified gravity are potentially useful tools for model-independent tests of General Relativity on cosmological scales. The toy model of an Einstein-de Sitter (EdS) universe provides a safe testbed in which to improve our understanding of their behaviour. We implement a mathematically consistent parameterization at the level of the field equations, and use this to calculate the evolution of perturbations in an EdS scenario. Our parameterization explicitly allows for new scalar degrees of freedom, and we compare this to theories in which the only degrees of freedom come from the metric and ordinary matter. The impact on the Integrated Sachs-Wolfe effect and canonically-conserved superhorizon perturbations is considered.

Cosmic Microwave Background Trispectrum and Primordial Magnetic Field Limits

Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum $T^{l_{_1}l_{_2}}_{l_{_3}l_{_4}}$, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of $T^{l_{_1}l_{_2}}_{l_{_3}l_{_4}} \approx 5 \times 10^{-30}$ and $T^{l_{_1}l_{_2}}_{l_{_3}l_{_4}} \approx 10^{-19}$, respectively. Observational limits on CMB non-Gaussianity from WMAP7 data allow us to set sub-nanoGauss upper limits of $B_0 \lesssim 0.7 $ nG on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on megaparsec scales, better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

Cosmic Microwave Background Trispectrum and Primordial Magnetic Field Limits [Replacement]

Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

Observational Constraints on Kinetic Gravity Braiding from the Integrated Sachs-Wolfe Effect [Replacement]

The cross-correlation between the integrated Sachs-Wolfe (ISW) effect and the large scale structure (LSS) is a powerful tool to constrain dark energy and alternative theories of gravity. In this paper, we obtain observational constraints on kinetic gravity braiding from the ISW-LSS cross-correlation. We find that the late-time ISW effect in the kinetic gravity braiding model anti-correlates with large scale structures in a wide range of parameters, which clearly demonstrates how one can distinguish modified gravity theories from the LCDM model using the ISW effect. In addition to the analysis based on a concrete model, we investigate a future prospect of the ISW-LSS cross-correlation by using a phenomenological parameterization of modified gravity models.

Observational Constraints on Kinetic Gravity Braiding from the Integrated Sachs-Wolfe Effect

The cross-correlation between the integrated Sachs-Wolfe (ISW) effect and the large scale structure (LSS) is a powerful tool to constrain dark energy and alternative theories of gravity. In this paper, we obtain observational constraints on kinetic gravity braiding from the ISW-LSS cross-correlation. We find that the late-time ISW effect in the kinetic gravity braiding model anti-correlates with large scale structures in a wide range of parameters, which clearly demonstrates how one can distinguish modified gravity theories from the LCDM model using the ISW effect. In addition to the analysis based on a concrete model, we investigate a future prospect of the ISW-LSS cross-correlation by using a phenomenological parameterization of modified gravity models.

Non-adiabatic perturbations in Ricci dark energy model

We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter \alpha\ of Ricci dark energy equals to 1/2. In the case where \alpha\ = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

Non-adiabatic perturbations in Ricci dark energy model [Replacement]

We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter \alpha\ of Ricci dark energy equals to 1/2. In the case where \alpha\ = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for \Lambda CDM [Replacement]

A crucial diagnostic of the \Lambda CDM cosmological model is the integrated Sachs-Wolfe (ISW) effect of large-scale structure on the cosmic microwave background (CMB). The ISW imprint of superstructures of size \sim100\;h^{-1} Mpc at redshift $z\sim0.5$ has been detected with $>4\sigma$ significance, however it has been noted that the signal is much larger than expected. We revisit the calculation using linear theory predictions in \Lambda CDM cosmology for the number density of superstructures and their radial density profile, and take possible selection effects into account. While our expected signal is larger than previous estimates, it is still inconsistent by $>3\sigma$ with the observation. If the observed signal is indeed due to the ISW effect then huge, extremely underdense voids are far more common in the observed universe than predicted by \Lambda CDM.

The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for \Lambda CDM [Replacement]

A crucial diagnostic of the \Lambda CDM cosmological model is the integrated Sachs-Wolfe (ISW) effect of large-scale structure on the cosmic microwave background (CMB). The ISW imprint of superstructures of size \sim100\;h^{-1} Mpc at redshift $z\sim0.5$ has been detected with $>4\sigma$ significance, however it has been noted that the signal is much larger than expected. We revisit the calculation using linear theory predictions in \Lambda CDM cosmology for the number density of superstructures and their radial density profile, and take possible selection effects into account. While our expected signal is larger than previous estimates, it is still inconsistent by $>3\sigma$ with the observation. If the observed signal is indeed due to the ISW effect then huge, extremely underdense voids are far more common in the observed universe than predicted by \Lambda CDM.

The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for $\Lambda$CDM

A crucial diagnostic of the $\Lambda$CDM cosmological model is the integrated Sachs-Wolfe (ISW) effect of large-scale structure on the cosmic microwave background (CMB). The ISW imprint of superstructures of size $\sim100\;h^{-1}$Mpc at redshift $z\sim0.5$ has been detected with $>4\sigma$ significance, however it has been noted that the signal is much larger than expected. We revisit the calculation using linear theory predictions in $\Lambda$CDM cosmology for the number density of superstructures and their radial density profile, and take possible selection effects into account. While our expected signal is larger than previous estimates, it is still inconsistent by $>3\sigma$ with the observation. If the observed signal is indeed due to the ISW effect then huge, extremely underdense voids are far more common in the observed universe than predicted by $\Lambda$CDM.

Inflation with stable anisotropic hair: is it cosmologically viable? [Replacement]

Recently an inflationary model with a vector field coupled to the inflaton was proposed and the phenomenology studied for the Bianchi type I spacetime. It was found that the model demonstrates a counter-example to the cosmic no-hair theorem since there exists a stable anisotropically inflationary fix-point. One of the great triumphs of inflation, however, is that it explains the observed flatness and isotropy of the universe today without requiring special initial conditions. Any acceptable model for inflation should thus explain these observations in a satisfactory way. To check whether the model meets this requirement, we introduce curvature to the background geometry and consider axisymmetric spacetimes of Bianchi type II,III and the Kantowski-Sachs metric. We show that the anisotropic Bianchi type I fix-point is an attractor for the entire family of such spacetimes. The model is predictive in the sense that the universe gets close to this fix-point after a few e-folds for a wide range of initial conditions. If inflation lasts for N e-folds, the curvature at the end of inflation is typically of order exp(-2N). The anisotropy in the expansion rate at the end of inflation, on the other hand, while being small on the one-percent level, is highly significant. We show that after the end of inflation there will be a period of isotropization lasting for about 2N/3 e-folds. After that the shear scales as the curvature and becomes dominant around N e-folds after the end of inflation. For plausible bounds on the reheat temperature the minimum number of e-folds during inflation, required for consistency with the isotropy of the supernova Ia data, lays in the interval (21,48). Thus the results obtained for our restricted class of spacetimes indicates that inflation with anisotropic hair is cosmologically viable.

Inflation with stable anisotropic hair: is it cosmologically viable? [Cross-Listing]

Recently an inflationary model with a vector field coupled to the inflaton was proposed and the phenomenology studied for the Bianchi type I spacetime. It was found that the model demonstrates a counter-example to the cosmic no-hair theorem since there exists a stable anisotropically inflationary fix-point. One of the great triumphs of inflation, however, is that it explains the observed flatness and isotropy of the universe today without requiring special initial conditions. Any acceptable model for inflation should thus explain these observations in a satisfactory way. To check whether the model meets this requirement, we introduce curvature to the background geometry and consider axisymmetric spacetimes of Bianchi type II,III and the Kantowski-Sachs metric. We show that the anisotropic Bianchi type I fix-point is an attractor for the entire family of such spacetimes. The model is predictive in the sense that the universe gets close to this fix-point after a few e-folds for a wide range of initial conditions. If inflation lasts for N e-folds, the curvature at the end of inflation is typically of order exp(-2N). The anisotropy in the expansion rate at the end of inflation, on the other hand, while being small on the one-percent level, is highly significant. We show that after the end of inflation there will be a period of isotropization lasting for about 2N/3 e-folds. After that the shear scales as the curvature and becomes dominant around N e-folds after the end of inflation. For plausible bounds on the reheat temperature the minimum number of e-folds during inflation, required for consistency with the isotropy of the supernova Ia data, lays in the interval (21,48). Thus the results obtained for our restricted class of spacetimes indicates that inflation with anisotropic hair is cosmologically viable.

Inflation with stable anisotropic hair: is it cosmologically viable? [Replacement]

Recently an inflationary model with a vector field coupled to the inflaton was proposed and the phenomenology studied for the Bianchi type I spacetime. It was found that the model demonstrates a counter-example to the cosmic no-hair theorem since there exists a stable anisotropically inflationary fix-point. One of the great triumphs of inflation, however, is that it explains the observed flatness and isotropy of the universe today without requiring special initial conditions. Any acceptable model for inflation should thus explain these observations in a satisfactory way. To check whether the model meets this requirement, we introduce curvature to the background geometry and consider axisymmetric spacetimes of Bianchi type II,III and the Kantowski-Sachs metric. We show that the anisotropic Bianchi type I fix-point is an attractor for the entire family of such spacetimes. The model is predictive in the sense that the universe gets close to this fix-point after a few e-folds for a wide range of initial conditions. If inflation lasts for N e-folds, the curvature at the end of inflation is typically of order exp(-2N). The anisotropy in the expansion rate at the end of inflation, on the other hand, while being small on the one-percent level, is highly significant. We show that after the end of inflation there will be a period of isotropization lasting for about 2N/3 e-folds. After that the shear scales as the curvature and becomes dominant around N e-folds after the end of inflation. For plausible bounds on the reheat temperature the minimum number of e-folds during inflation, required for consistency with the isotropy of the supernova Ia data, lays in the interval (21,48). Thus the results obtained for our restricted class of spacetimes indicates that inflation with anisotropic hair is cosmologically viable.

The Complementarity of Redshift-space Distortions and the Integrated Sachs-Wolfe Effect: A 3D Spherical Analysis [Replacement]

Assuming General Relativity is correct on large-scales, Redshift-Space Distortions (RSDs) and the Integrated Sachs-Wolfe effect (ISW) are both sensitive to the time derivative of the linear growth function. We investigate the extent to which these probes provide complementary or redundant information when they are combined to constrain the evolution of the linear velocity power spectrum, often quantified by the function $f(z)\sigma_8(z)$, where $f$ is the logarithmic derivative of $\sigma_8$ with respect to $(1+z)$. Using a spherical Fourier-Bessel (SFB) expansion for galaxy number counts and a spherical harmonic expansion for the CMB anisotropy, we compute the covariance matrices of the signals for a large galaxy redshift survey combined with a CMB survey like Planck. The SFB basis allows accurate ISW estimates by avoiding the plane-parallel approximation, and it retains RSD information that is otherwise lost when projecting angular clustering onto redshift shells. It also allows straightforward calculations of covariance with the CMB. We find that the correlation between the ISW and RSD signals are low since the probes are sensitive to different modes. For our default surveys, on large scales ($k<0.05 \Mpc/h$), the ISW can improve constraints on $f\sigma_8$ by more than 10% compared to using RSDs alone. In the future, when precision RSD measurements are available on smaller scales, the cosmological constraints from ISW measurements will not be competitive; however, they will remain a useful consistency test for possible systematic contamination and alternative models of gravity.

The Complementarity of Redshift-space Distortions and the Integrated Sachs-Wolfe Effect

Assuming General Relativity is correct on large-scales, Redshift-Space Distortions (RSDs) and the Integrated Sachs-Wolfe effect (ISW) are both sensitive to the time derivative of the linear growth function. We investigate the extent to which these probes provide complementary or redundant information when they are combined to constrain the evolution of the linear velocity power spectrum, often quantified by the function f(z)\sigma_8(z), where f is the logarithmic derivative of \sigma_8 with respect to (1+z). Using a 3D spherical harmonic expansion, we compute the covariance matrices of the signals for a large galaxy redshift survey combined with a CMB survey like Planck. The spherical harmonic basis allows accurate ISW estimates by avoiding the plane-parallel approximation, and it retains RSD information that is otherwise lost when projecting angular clustering onto redshift shells. We find that the correlation between the ISW and RSD signals are low since the probes are sensitive to different modes. For our default surveys, on large scales (k<0.05 Mpc/h), the ISW can improve constraints on f\sigma_8 by more than 10% compared to using RSDs alone. In the future, when precision RSD measurements are available on smaller scales, the cosmological constraints from ISW measurements will not be competitive; however, they will remain a useful consistency test for possible systematic contamination and alternative models of gravity.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^