Posts Tagged rotation curves

Recent Postings from rotation curves

Baryonic Distributions in Galaxy Dark Matter Haloes I: New Observations of Neutral and Ionized Gas Kinematics

We present a combination of new and archival neutral hydrogen (HI) observations and new ionized gas spectroscopic observations for sixteen galaxies in the statistically representative EDGES kinematic sample. HI rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The HI rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in twelve galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6$\mu$m images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

Dynamics of galaxies and clusters in \textit{refracted gravity}

We investigate the proof of concept and the implications of \textit{refracted gravity}, a novel modified gravity aimed to solve the discrepancy between the luminous and the dynamical mass of cosmic structures without resorting to dark matter. Inspired by the behavior of electric fields in matter, refracted gravity introduces a gravitational permittivity that depends on the local mass density and modifies the standard Poisson equation. The resulting gravitational field can become more intense than the Newtonian field and can mimic the presence of dark matter. We show that the refracted gravitational field correctly describes (1) the rotation curves and the Tully-Fisher relation of disk galaxies; and (2) the observed temperature profile of the X-ray gas of galaxy clusters. According to these promising results, we conclude that refracted gravity deserves further investigation.

Lectures on Dark Matter Physics [Cross-Listing]

Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

Lectures on Dark Matter Physics

Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

Declining rotation curves of galaxies as a test of gravitational theory

Unlike Newtonian dynamics which is linear and obeys the strong equivalence principle, in any nonlinear gravitation such as Milgromian dynamics (MOND), the strong version of the equivalence principle is violated and the gravitational dynamics of a system is influenced by the external gravitational field in which it is embedded. This so called External Field Effect (EFE) is one of the important implications of MOND and provides a special context to test Milgromian dynamics. Here, we study the rotation curves (RCs) of 18 spiral galaxies and find that their shapes constrain the EFE. We show that the EFE can successfully remedy the overestimation of rotation velocities in 80\% of the sample galaxies in Milgromian dynamics fits by decreasing the velocity in the outer part of the RCs. We compare the implied external field with the gravitational field for non-negligible nearby sources of each individual galaxy and find that in many cases it is compatible with the EFE within the uncertainties. We therefore argue that in the framework of Milgromian dynamics, one can constrain the gravitational field induced from the environment of galaxies using their RCs. We finally show that taking into account the EFE yields more realistic values for the stellar mass-to-light ratio in terms of stellar population synthesis than the ones implied without the EFE.

Rotation curve fitting and its fatal attraction to cores in realistically simulated galaxy observations

We study the role of systematic effects in observational studies of the core/cusp problem under the minimum disc approximation using a suite of high-resolution (25-pc softening length) hydrodynamical simulations of dwarf galaxies. We mimic kinematical observations in a realistic manner at different distances and inclinations, and fit the resulting rotation curves with two analytical models commonly used to differentiate cores from cusps in the dark matter distribution. We find that the cored pseudo-isothermal sphere (P-ISO) model is often strongly favoured by the reduced $\chi^2_\nu$ of the fits in spite of the fact that our simulations contain cuspy Navarro-Frenk-White profiles (NFW) by construction. We show that even idealized measurements of the gas circular motions can lead to the incorrect answer if pressure support corrections, with a typical size of order ~5 km s$^{-1}$ in the central kiloparsec, are neglected; the results are more misleading for closer galaxies because the inner region, where the effect of pressure support is most significant, is better sampled. They also tend to be worse for highly inclined galaxies as a result of projection effects. Rotation curve fits at 10 Mpc favour the P-ISO model in more than 70% of the cases. At 80 Mpc, between 40% and 78% of the galaxies indicate the fictitious presence of a dark matter core. The coefficients of our best-fit models agree well with those reported in observational studies; therefore, we conclude that NFW haloes can not be ruled out reliably from this type of rotation curve analysis.

Flat rotation curves and a non-evolving Tully-Fisher relation from KMOS galaxies at z~1

The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper, we select a sample of 18 galaxies at z~1, observed in the H-alpha emission-line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3D-Barolo, that models the galaxy emission directly in the 3D observational space, without the need to extract kinematic maps. This technique's major advantage is that it is not affected by beam smearing and thus it enables accurate determination of rotation velocity and internal velocity dispersion, even at low spatial resolution. We find that: 1) the rotation curves of these z~1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and 2) the H-alpha velocity dispersions are low, ranging from 15 to 40 km/s, which leads to V/sigma = 3-10. These characteristics are remarkably similar to those of disc galaxies in the local Universe. Finally, we also report no evolution of the Tully-Fisher relation, as our sample lies precisely on the same relation of local spiral galaxies. These findings are more robust than those obtained with previous methods because of our 3D approach. Two-dimensional techniques with partial or absent corrections for beam smearing can systematically lead to the overestimation of velocity dispersions and underestimation of rotation velocities, which result in the inaccurate placement of galaxies in the Tully-Fisher diagram. Our results show that disc galaxies are kinematically mature and rotation-dominated already at z~1.

Flat rotation curves and a non-evolving Tully-Fisher relation from KMOS galaxies at z~1 [Replacement]

The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper, we select a sample of 18 galaxies at z~1, observed in the H-alpha emission-line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3D-Barolo, that models the galaxy emission directly in the 3D observational space, without the need to extract kinematic maps. This technique's major advantage is that it is not affected by beam smearing and thus it enables accurate determination of rotation velocity and internal velocity dispersion, even at low spatial resolution. We find that: 1) the rotation curves of these z~1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and 2) the H-alpha velocity dispersions are low, ranging from 15 to 40 km/s, which leads to V/sigma = 3-10. These characteristics are remarkably similar to those of disc galaxies in the local Universe. Finally, we also report no evolution of the Tully-Fisher relation, as our sample lies precisely on the same relation of local spiral galaxies. These findings are more robust than those obtained with previous methods because of our 3D approach. Two-dimensional techniques with partial or absent corrections for beam smearing can systematically lead to the overestimation of velocity dispersions and underestimation of rotation velocities, which result in the inaccurate placement of galaxies in the Tully-Fisher diagram. Our results show that disc galaxies are kinematically mature and rotation-dominated already at z~1.

On possible tachyonic state of neutrino dark matter [Cross-Listing]

We revive the historically first dark matter model based on neutrinos, but with an additional assumption that neutrinos might exist in tachyonic almost sterile states. To this end, we propose a group-theoretical algorithm for the description of tachyons. The key point is that we employ a distinct tachyon Lorentz group with new (superluminal) parametrization which does not lead to violation of causality and unitarity. Our dark matter model represents effectively scalar tachyonic neutrino-antineutrino conglomerate. Distributed all over the universe, such fluid behaves as stable isothermal/stiff medium which produces somewhat denser regions (`halos') around galaxies and clusters. To avoid the central singularity inherent to the isothermal profile, we apply a special smoothing algorithm which yields density distributions and rotation curves consistent with observational data.

On possible tachyonic state of neutrino dark matter [Cross-Listing]

We revive the historically first dark matter model based on neutrinos, but with an additional assumption that neutrinos might exist in tachyonic almost sterile states. To this end, we propose a group-theoretical algorithm for the description of tachyons. The key point is that we employ a distinct tachyon Lorentz group with new (superluminal) parametrization which does not lead to violation of causality and unitarity. Our dark matter model represents effectively scalar tachyonic neutrino-antineutrino conglomerate. Distributed all over the universe, such fluid behaves as stable isothermal/stiff medium which produces somewhat denser regions (`halos') around galaxies and clusters. To avoid the central singularity inherent to the isothermal profile, we apply a special smoothing algorithm which yields density distributions and rotation curves consistent with observational data.

Halpha Kinematics of S4G Spiral Galaxies - III. Inner rotation curves

We present a detailed study of the shape of the innermost part of the rotation curves of a sample of 29 nearby spiral galaxies, based on high angular and spectral resolution kinematic Halpha Fabry-Perot observations. In particular, we quantify the steepness of the rotation curve by measuring its slope dRvc(0). We explore the relationship between the inner slope and several galaxy parameters, such as stellar mass, maximum rotational velocity, central surface brightness ({\mu}0), bar strength and bulge-to-total ratio. Even with our limited dynamical range, we find a trend for low-mass galaxies to exhibit shallower rotation curve inner slopes than high-mass galaxies, whereas steep inner slopes are found exclusively in high-mass galaxies. This trend may arise from the relationship between the total stellar mass and the mass of the bulge, which are correlated among them. We find a correlation between the inner slope of the rotation curve and the morphological T-type, complementary to the scaling relation between dRvc(0) and {\mu}0 previously reported in the literature. Although we find that the inner slope increases with the Fourier amplitude A2 and decreases with the bar torque Qb, this may arise from the presence of the bulge implicit in both A2 and Qb. As previously noted in the literature, the more compact the mass in the central parts of a galaxy (more concretely, the presence of a bulge), the steeper the inner slopes. We conclude that the baryonic matter dominates the dynamics in the central parts of our sample galaxies.

Dark matter as a condensate: Deduction of microscopic properties

In the present work we model dark matter as a Bose-Einstein condensate and the main goal is the deduction of the microscopic properties, namely, mass, number of particles, and scattering length, related to the particles comprised in the corresponding condensate. This task is done introducing in the corresponding model the effects of the thermal cloud of the system. Three physical conditions are imposed, i.e., mechanical equilibrium of the condensate, explanation of the rotation curves of stars belonging to dwarf galaxies, and, finally, the deflection of light due to the presence of dark matter. These three aforementioned expressions allow us to cast the features of the particles in terms of detectable astrophysical variables. Finally, the model is contrasted against observational data and in this manner we obtain values for the involved microscopic parameters of the condensate. The deduced results are compared with previous results in which dark matter has not been considered a condensate. The main conclusion is that they do not coincide.

Dark matter as a condensate: Deduction of microscopic properties [Replacement]

In the present work we model dark matter as a Bose-Einstein condensate and the main goal is the deduction of the microscopic properties, namely, mass, number of particles, and scattering length, related to the particles comprised in the corresponding condensate. This task is done introducing in the corresponding model the effects of the thermal cloud of the system. Three physical conditions are imposed, i.e., mechanical equilibrium of the condensate, explanation of the rotation curves of stars belonging to dwarf galaxies, and, finally, the deflection of light due to the presence of dark matter. These three aforementioned expressions allow us to cast the features of the particles in terms of detectable astrophysical variables. Finally, the model is contrasted against observational data and in this manner we obtain values for the involved microscopic parameters of the condensate. The statistical errors are seven and eighteen percent for the scattering length and mass of the dark matter particle, respectively.

Modified Dark Matter

Modified dark matter (MDM, formerly known as MoNDian dark matter) is a phenomenological model of dark matter, inspired by quantum gravity. We review the construction of MDM by generalizing entropic gravity to de-Sitter space as is appropriate for an accelerating universe (in accordance with the Lambda-CDM model). Unlike cold dark matter models, the MDM mass profile depends on the baryonic mass. We successfully fit the rotation curves to a sample of 30 local spiral galaxies with a single free parameter (viz., the mass-to-light ratio for each galaxy). We show that dynamical and observed masses agree in a sample of 93 galactic clusters. We also comment on strong gravitational lensing in the context of MDM.

Modified Dark Matter [Cross-Listing]

Modified dark matter (MDM, formerly known as MoNDian dark matter) is a phenomenological model of dark matter, inspired by quantum gravity. We review the construction of MDM by generalizing entropic gravity to de-Sitter space as is appropriate for an accelerating universe (in accordance with the Lambda-CDM model). Unlike cold dark matter models, the MDM mass profile depends on the baryonic mass. We successfully fit the rotation curves to a sample of 30 local spiral galaxies with a single free parameter (viz., the mass-to-light ratio for each galaxy). We show that dynamical and observed masses agree in a sample of 93 galactic clusters. We also comment on strong gravitational lensing in the context of MDM.

Modified Dark Matter [Cross-Listing]

Modified dark matter (MDM, formerly known as MoNDian dark matter) is a phenomenological model of dark matter, inspired by quantum gravity. We review the construction of MDM by generalizing entropic gravity to de-Sitter space as is appropriate for an accelerating universe (in accordance with the Lambda-CDM model). Unlike cold dark matter models, the MDM mass profile depends on the baryonic mass. We successfully fit the rotation curves to a sample of 30 local spiral galaxies with a single free parameter (viz., the mass-to-light ratio for each galaxy). We show that dynamical and observed masses agree in a sample of 93 galactic clusters. We also comment on strong gravitational lensing in the context of MDM.

Conformal Gravity Rotation Curves with a Conformal Higgs Halo [Replacement]

We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_ab, as previously assumed, but rather those of the Higgs-frame MK metric Omega^2 g_ab, with the conformal factor Omega(r)=S(r)/S_0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

Conformal Gravity Rotation Curves with a Conformal Higgs Halo [Replacement]

We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_ab, as previously assumed, but rather those of the Higgs-frame MK metric Omega^2 g_ab, with the conformal factor Omega(r)=S(r)/S_0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

Conformal Gravity Rotation Curves with a Conformal Higgs Halo

We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_{\mu\nu}, as previously assumed, but rather those of the Higgs-frame MK metric \tilde{g}_{\mu\nu}=\Omega^2 g_{\mu\nu}, with the conformal factor \Omega(r)=S(r)/S_0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo $(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

Conformal Gravity Rotation Curves with a Conformal Higgs Halo [Cross-Listing]

We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_{\mu\nu}, as previously assumed, but rather those of the Higgs-frame MK metric \tilde{g}_{\mu\nu}=\Omega^2 g_{\mu\nu}, with the conformal factor \Omega(r)=S(r)/S_0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo $(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

Tachyonic models of dark matter

We consider a spherically symmetric stationary problem in General Relativity, including a black hole, inflow of normal and tachyonic matter and outflow of tachyonic matter. Computations in a weak field limit show that the resulting concentration of matter around the black hole leads to gravitational effects equivalent to those associated with dark matter halo. In particular, the model reproduces asymptotically constant galactic rotation curves, if the tachyonic flows of the central supermassive black hole in the galaxy are considered as a main contribution.

Tachyonic models of dark matter [Cross-Listing]

We consider a spherically symmetric stationary problem in General Relativity, including a black hole, inflow of normal and tachyonic matter and outflow of tachyonic matter. Computations in a weak field limit show that the resulting concentration of matter around the black hole leads to gravitational effects equivalent to those associated with dark matter halo. In particular, the model reproduces asymptotically constant galactic rotation curves, if the tachyonic flows of the central supermassive black hole in the galaxy are considered as a main contribution.

Asymmetric mass models of disk galaxies - I. Messier 99

Mass models of galactic disks traditionnally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, like e.g. lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk mid-plane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M99, the new strategy shows that circular velocities are highly non-uniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M99, in the usual case where luminous and dark matter share the same centre. The impact of the velocity non-uniformity is to make the inner profile less steep, though the density remains cuspy. On another hand, a model where the halo is core-dominated and shifted by 2.2-2.5 kpc from the luminous mass centre is more appropriate to account for most of the kinematical lopsidedness evidenced in the velocity field of M99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions, maybe a lopsided distribution of dark matter.

Asymmetric mass models of disk galaxies - I. Messier 99 [Replacement]

Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

Scale dynamical origin of modification or addition of potential in mechanics. A possible framework for the MOND theory and the dark matter [Cross-Listing]

Using our mathematical framework developed in \cite{cresson-pierret_scale} called \emph{scale dynamics}, we propose in this paper a new way of interpreting the problem of adding or modifying potentials in mechanics and specifically in galactic dynamics. An application is done for the two-body problem with a Keplerian potential showing that the velocity of the orbiting body is constant. This would explain the observed phenomenon in the flat rotation curves of galaxies without adding \emph{dark matter} or modifying Newton's law of dynamics.

Dark Matter in a single-metric universe [Replacement]

A few years ago Baker proposed a metric, implementing the Bona-Stela construction, which interpolates smoothly between the Schwarzschild metric at small scales and the Friedmann-Robertson-Walker (FRW) metric at large scales. As it stands, by enforcing a homogeneous isotropic stress energy tensor the predictions are incompatible with solar system data. We show that permitting small radial inhomogeneity and anisotropy avoids the problem while introducing an effective dark matter (eDM) term that can go some way to explain flattened galactic rotation curves, the growth rate of the baryonic matter density perturbation and the enhancement of the higher CMB acoustic peak anisotropies.

The Impact of Molecular Gas on Mass Models of Nearby Galaxies

We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from the HERACLES survey. We combine our data with literature THINGS, SINGS and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (${\rm H{\scriptstyle I}}$ from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and ${\rm H{\scriptstyle I}}$ kinematics with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors $\mathrm{\alpha_{CO}}$ to convert CO luminosity to molecular gas mass surface density - the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES and KINGFISH data. We study the relative effect that the addition of the molecular gas has upon the halo rotation curves for Navarro-Frenk-White (NFW) and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample - for those galaxies where there is a substantial molecular gas content, using different values of $\mathrm{\alpha_{CO}}$ can result in significant differences to the relative contribution of the molecular gas and, hence, the shape of the dark matter halo rotation curves in the central regions of galaxies.

Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: III. The Total Neutral Gas Disk

We present newly obtained three-dimensional gaseous maps of the Milky Way Galaxy; HI, H$_2$ and total-gas (HI plus H$_2$) maps, which were derived from the HI and $^{12}$CO($J=1$--0) survey data and rotation curves based on the kinematic distance. The HI and H$_2$ face-on maps show that the HI disk is extended to the radius of 15--20 kpc and its outskirt is asymmetric to the Galactic center, while most of the H$_2$ gas is distributed inside the solar circle. The total gas mass within radius 30 kpc amounts to $8.0\times 10^9$ M$_\odot$, 89\% and 11\% of which are HI and H$_2$, {respectively}. The vertical slices show that the outer HI disk is strongly warped and the inner HI and H$_2$ disks are corrugated. The total gas map is advantageous to trace spiral structure from the inner to outer disk. Spiral structures such as the Norma-Cygnus, the Perseus, the Sagittarius-Carina, the Scutum-Crux, and the Orion arms are more clearly traced in the total gas map than ever. All the spiral arms are well explained with logarithmic spiral arms with pitch angle of $11\degree$ -- $15\degree$. The molecular fraction to the total gas is high near the Galactic center and decreases with the Galactocentric distance. The molecular fraction also locally enhanced at the spiral arms compared with the inter-arm regions.

Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$\pm0.39M_\odot/L_\odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$\alpha$ emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the H$\alpha$ light that remains must be sufficiently bright to be detected; this is only the case for three (14%) galaxies in our sample. We conclude that the falling rotation curves expected of tidal dwarf galaxies are intrinsically difficult to detect.

Rotation Curve Decomposition for Size-Mass Relations of Bulge, Disk, and Dark Halo in Spiral Galaxies

Rotation curves of more than one hundred spiral galaxies were compiled from the literature, and deconvolved into bulge, disk, and dark halo using $\chi^2$ fitting in order to determine their scale radii and masses. Correlation analyses were obtained of the fitting parameters for galaxies that satisfied selection and accuracy criteria. Size-mass relations indicate that the sizes and masses are positively correlated among different components in such a way that the larger or more massive is the dark halo, the larger or more massive are the disk and bulge. Empirical size-mass relations were obtained for bulge, disk and dark halo by the least-squares fitting. The disk-to-halo mass ratio was found to be systematically greater by a factor of three than that predicted by cosmological simulations combined with photometry. A preliminary mass function for dark halo was obtained, which is represented by the Schechter function followed by a power law.

The Case Against Dark Matter and Modified Gravity: Flat Rotation Curves Are a Rigorous Requirement in Rotating Self-Gravitating Newtonian Gaseous Disks

By solving analytically the various types of Lane-Emden equations with rotation, we have discovered two new coupled fundamental properties of rotating, self-gravitating, gaseous disks in equilibrium: Isothermal disks must, on average, exhibit strict power-law density profiles in radius $x$ on their equatorial planes of the form $A x^{k-1}$, where $A$ and $k-1$ are the integration constants; and ``flat'' rotation curves precisely such as those observed in spiral galaxy disks. Polytropic disks must, on average, exhibit strict density profiles of the form $\left[\ln(A x^k)\right]^n$, where $n$ is the polytropic index; and ``flat'' rotation curves described by square roots of upper incomplete gamma functions. By ``on average,'' we mean that, irrespective of the chosen boundary conditions, the actual profiles must oscillate around and remain close to the strict mean profiles of the analytic singular equilibrium solutions. We call such singular solutions the ``intrinsic'' solutions of the differential equations because they are demanded by the second-order equations themselves with no regard to the Cauchy problem. The results are directly applicable to gaseous galaxy disks that have long been known to be isothermal and to protoplanetary disks during the extended isothermal and adiabatic phases of their evolution. In galactic gas dynamics, they have the potential to resolve the dark matter--modified gravity controversy in a sweeping manner, as they render both of these hypotheses unnecessary. In protoplanetary disk research, they provide observers with powerful new probing tool, as they predict a clear and simple connection between the radial density profiles and the rotation curves of self-gravitating disks in their very early (pre-Class 0 and perhaps the youngest Class Young Stellar Objects) phases of evolution.

The Case Against Dark Matter and Modified Gravity: Flat Rotation Curves Are a Rigorous Requirement in Rotating Self-Gravitating Newtonian Gaseous Disks [Replacement]

By solving analytically the various types of Lane-Emden equations with rotation, we have discovered two new coupled fundamental properties of rotating, self-gravitating, gaseous disks in equilibrium: Isothermal disks must, on average, exhibit strict power-law density profiles in radius $x$ on their equatorial planes of the form $A x^{k-1}$, where $A$ and $k-1$ are the integration constants, and "flat" rotation curves precisely such as those observed in spiral galaxy disks. Polytropic disks must, on average, exhibit strict density profiles of the form $\left[\ln(A x^k)\right]^n$, where $n$ is the polytropic index, and "flat" rotation curves described by square roots of upper incomplete gamma functions. By "on average," we mean that, irrespective of the chosen boundary conditions, the actual profiles must oscillate around and remain close to the strict mean profiles of the analytic singular equilibrium solutions. We call such singular solutions the "intrinsic" solutions of the differential equations because they are demanded by the second-order equations themselves with no regard to the Cauchy problem. The results are directly applicable to gaseous galaxy disks that have long been known to be isothermal and to protoplanetary disks during the extended isothermal and adiabatic phases of their evolution. In galactic gas dynamics, they have the potential to resolve the dark matter--modified gravity controversy in a sweeping manner, as they render both of these hypotheses unnecessary. In protoplanetary disk research, they provide observers with powerful new probing tool, as they predict a clear and simple connection between the radial density profiles and the rotation curves of self-gravitating disks in their very early (pre-Class 0 and perhaps the youngest Class Young Stellar Objects) phases of evolution.

Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes [Replacement]

In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering in addition a potential for the mimetic field. An appropriate choice of such potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which traversable wormholes. Finally, we analytically reconstruct potentials which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild spacetime. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes [Replacement]

In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering in addition a potential for the mimetic field. An appropriate choice of such potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which traversable wormholes. Finally, we analytically reconstruct potentials which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild spacetime. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes [Replacement]

In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering in addition a potential for the mimetic field. An appropriate choice of such potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which traversable wormholes. Finally, we analytically reconstruct potentials which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild spacetime. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes [Replacement]

In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering in addition a potential for the mimetic field. An appropriate choice of such potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which traversable wormholes. Finally, we analytically reconstruct potentials which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild spacetime. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

Combined Solar System and rotation curve constraints on MOND

The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this External Field Effect can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this External Field Effect also appears in the Solar System and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar System constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that LISA Pathfinder will not be able to improve the current constraints on these still viable transition functions.

Galactic mapping with general relativity and the observed rotation curves

Typically, stars in galaxies have higher velocities than predicted by Newtonian gravity in conjunction with observable galactic matter. To account for the phenomenon, some researchers modified Newtonian gravitation; others introduced dark matter in the context of Newtonian gravity. We employed general relativity successfully to describe the galactic velocity profiles of four galaxies: NGC 2403, NGC 2903, NGC 5055 and the Milky Way. Here we map the density contours of the galaxies, achieving good concordance with observational data. In our Solar neighbourhood, we found a mass density and density fall-off fitting observational data satisfactorily. From our GR results, using the threshold density related to the observed optical zone of a galaxy, we had found that the Milky Way was indicated to be considerably larger than had been believed to be the case. To our knowledge, this was the only such existing theoretical prediction ever presented. Very recent observational results by Xu et al. have confirmed our prediction. As in our previous studies, galactic masses are consistently seen to be higher than the baryonic mass determined from observations but still notably lower than those deduced from the approaches relying upon dark matter in a Newtonian context. In this work, we calculate the non-luminous fraction of matter for our sample of galaxies that is derived from applying general relativity to the dynamics of the galaxies. The evidence points to general relativity playing a key role in the explanation of the stars' high velocities in galaxies. Mapping galactic density contours directly from the dynamics opens a new window for predicting galactic structure.

Nonlocal Gravity in the Solar System [Replacement]

The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

Nonlocal Gravity in the Solar System [Replacement]

The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

Nonlocal Gravity in the Solar System [Cross-Listing]

The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

Nonlocal Gravity in the Solar System

The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

Disk galaxy scaling relations at intermediate redshifts - I. The Tully-Fisher and velocity-size relations

Galaxy scaling relations such as the Tully-Fisher relation (between maximum rotation velocity Vmax and luminosity) and the velocity-size relation (between Vmax and disk scale length) are powerful tools to quantify the evolution of disk galaxies with cosmic time. We took spatially resolved slit spectra of 261 field disk galaxies at redshifts up to z~1 using the FORS instruments of the ESO Very Large Telescope. The targets were selected from the FORS Deep Field and William Herschel Deep Field. Our spectroscopy was complemented with HST/ACS imaging in the F814W filter. We analyzed the ionized gas kinematics by extracting rotation curves from the 2-D spectra. Taking into account all geometrical, observational and instrumental effects, these rotation curves were used to derive the intrinsic Vmax. Neglecting galaxies with disturbed kinematics or insufficient spatial rotation curve extent, Vmax could be determined for 137 galaxies covering redshifts 0.05<z<0.97. This is one of the largest kinematic samples of distant disk galaxies to date. We compared this data set to the local B-band Tully-Fisher relation and the local velocity-size relation. The scatter in both scaling relations is a factor of ~2 larger at z~0.5 than at z~0. The deviations of individual distant galaxies from the local Tully-Fisher relation are systematic in the sense that the galaxies are increasingly overluminous towards higher redshifts, corresponding to an over-luminosity Delta_MB=-(1.1+-0.5) mag at z=1. This luminosity evolution at given Vmax is probably driven by younger stellar populations of distant galaxies with respect to their local counterparts. The analysis of the velocity-size relation reveals that disk galaxies of a given Vmax have grown in size by a factor of ~1.5 over the past ~8 Gyr, likely via accretion of cold gas and/or small satellites.

Angular momentum of disc galaxies with a lognormal density distribution

Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\vert{}$E$\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\pm{}$0.018 and 1.643$\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\lambda{}$=0.423$\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\lambda{}}^*=1.47\pm{}0.20\times{}{10}^5\ M_{sun\ }{kpc}^{-1}{km}^{-2}\ s^2$. This relationship was close to the theoretical slope of 1, and had less scatter than the corresponding Tully Fisher relation, $M\propto{}{\left(V_{rot}\right)}^{\alpha{}}$, suggesting that the virial mass estimator may provide an alternative method to determine disc masses.

The Luminous Convolution Model for spiral galaxy rotation curves

The Luminous Convolution Model (LCM) is an empirical formula, based on a heuristic convolution of Relativistic transformations, which makes it possible to predict the observed rotation curves of a broad class of spiral galaxies from luminous matter alone. Since the LCM is independent of distance estimates or dark matter halo densities, it is the first model of its kind which constrains luminous matter modeling directly from the observed spectral shifts of characteristic photon emission/absorption lines. In this paper we present the LCM solution to a diverse sample of twenty-five (25) galaxies of varying morphologies and sizes. For the chosen sample, it is shown that the LCM is more accurate than either Modified Newtonian Dynamics or dark matter models and returns physically reasonable mass to light ratios and exponential scale lengths. Unlike either Modified Newtonian Dynamics or dark matter models, the LCM predicts something which is directly falsifiable through improvements in our observational capacity, the luminous mass profile. The question, while interesting, of if the LCM constrains the relation of the baryonic to dark matter is beyond the scope of the current work. The focus of this paper is to show that it is possible to describe a broad and diverse spectrum of galaxies efficiently with the LCM formula. Moreover, since the LCM free parameter predicts the ratio of the Milky Way galaxy baryonic mass density to that of the galaxy emitting the photon, if the Milky Way mass models can be trusted at face values, we then show that the LCM becomes a zero parameter model. This paper substantially expands the results in arXiv:1309.7370 and arXiv:1407:7583.

A universal velocity dispersion profile for pressure supported systems: evidence for MONDian gravity across 12 orders of magnitude in mass

For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behaviour is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analysing dynamics of globular clusters, elliptical galaxies and galaxy clusters, we are able to significantly extend the astronomical scales over which MONDian gravity has been tested, from those of spiral galaxies, to the much larger range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met, across twelve orders of magnitude in mass. This observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.

Dissipative dark matter and the rotation curves of dwarf galaxies

There is ample evidence from rotation curves that dark matter halo's around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halo's around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halo's can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo should have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and $H\alpha$ fluxes. The resulting dark matter halo profile is then tested against the rotation curve data of all 26 dwarf galaxies in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

Dissipative dark matter and the rotation curves of dwarf galaxies [Replacement]

There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and $H\alpha$ fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

Dissipative dark matter and the rotation curves of dwarf galaxies [Replacement]

There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and $H\alpha$ fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

Dissipative dark matter and the rotation curves of dwarf galaxies [Replacement]

There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and $H\alpha$ fluxes. The resulting dark matter halo profile is then tested against the rotation curve data of all 26 dwarf galaxies in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^