Posts Tagged proton

Recent Postings from proton

Polarizability sum rule across real and virtual Compton scattering processes [Cross-Listing]

We derive a sum rule relating various electromagnetic properties of a spin-1/2 particle and consider its empirical implications for the proton. Given the measured values of the proton anomalous magnetic moment, electric and magnetic charge radii, the slope of the first moment of the spin structure function $g_1$, and the recently determined proton spin polarizability $\gamma_{E1M2}$, the sum rule yields a constraint on the low-momentum behavior of a generalized polarizability appearing in virtual Compton scattering. With the help of the presently ongoing measurements of different electromagnetic observables at the MAMI, Jefferson Lab, and HI$\gamma$S facilities, the sum rule will provide a model-independent test of the low-energy spin structure of the nucleon.

Polarizability sum rule across real and virtual Compton scattering processes [Cross-Listing]

We derive a sum rule relating various electromagnetic properties of a spin-1/2 particle and consider its empirical implications for the proton. Given the measured values of the proton anomalous magnetic moment, electric and magnetic charge radii, the slope of the first moment of the spin structure function $g_1$, and the recently determined proton spin polarizability $\gamma_{E1M2}$, the sum rule yields a constraint on the low-momentum behavior of a generalized polarizability appearing in virtual Compton scattering. With the help of the presently ongoing measurements of different electromagnetic observables at the MAMI, Jefferson Lab, and HI$\gamma$S facilities, the sum rule will provide a model-independent test of the low-energy spin structure of the nucleon.

Quark spin-orbit correlations

The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.

Nuclear Waffles [Cross-Listing]

The dense neutron-rich matter found in supernovae and neutron stars is expected to form complex nonuniform phases referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts. We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations with $51200$ and $409600$ nucleons of nuclear pasta. From the output of the MD simulations we characterize the topology and compute two observables, the radial distribution function $g(r)$ and the structure factor $S(q)$, for systems with proton fractions $Y_p=0.10, 0.20, 0.30$ and $0.40$ at about one third of nuclear saturation density and temperatures near $1.0$ MeV. We observe that the two lowest proton fraction systems simulated, $Y_p=0.10$ and $0.20$, equilibrate quickly and form liquid-like structures. Meanwhile, the two higher proton fraction systems, $Y_p=0.30$ and $0.40$, take a longer time to equilibrate and organize themselves in solid-like periodic structures. Furthermore, the $Y_p=0.40$ system is made up of slabs, lasagna phase, interconnected by defects while the $Y_p=0.30$ systems consist of a stack of perforated plates, the nuclear waffle phase. The periodic configurations observed in our MD simulations for proton fractions $Y_p\ge0.30$ have important consequences for the structure factors $S(q)$ of protons and neutrons, which relate to many transport properties of supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature, size of the simulation and the screening length showed that finite-size effects appear to be under control and, also, that the plates in the waffle phase merge at temperatures slightly above $1.0$ MeV and the holes in the plates form an hexagonal lattice at temperatures slightly lower than $1.0$ MeV.

TMD parton densities in associated real and virtual photon and jet production at LHC [Replacement]

We study the associated production of real (isolated) or virtual photons (with their subsequent leptonic decay) and hadronic jets in proton-proton collisions at the LHC using the $k_T$-factorization approach of QCD. The consideration is based on the off-shell quark-gluon QCD Compton scattering subprocesses. In the case of virtual photon production, the contributions from Z boson exchange as well as gamma*-Z interference with the full spin correlations are included. The transverse momentum dependent (TMD) quark and gluon densities in a proton are determined from the Kimber-Martin-Ryskin prescription or Catani-Ciafoloni-Fiorani-Marchesini (CCFM) equation. In the latter, we restricted to the case where the gluon-to-quark splitting occurs at the last evolution step and calculate the sea quark density as a convolution of the CCFM-evolved gluon distribution and the TMD gluon-to-quark splitting function. Our numerical predictions are compared with the recent experimental data taken by the ATLAS Collaboration. We discuss the theoretical uncertainties of our calculations and argue that further studies are capable of constraining the TMD parton densities in a proton.

Statistical description of the proton spin with a large gluon helicity distribution

The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering (DIS) experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.

Particle rapidity distribution in proton-nucleus collisions using the proton-contributor reference frame

I define the proton-contributor reference frame in proton nucleus (p–A) collisions as the center of mass of the system formed by the proton and the participant nucleons of the nucleus. Assuming that the rapidity distribution of produced particles is symmetric in the proton-contributor reference frame, several measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm TeV}$ can be described qualitatively. These include rapidity distributions of charged particles, $J/\psi$ and Z bosons.

Baseline for the cumulants of net-proton distributions at STAR [Cross-Listing]

We present a systematic comparison between the recently measured cumulants of the net-proton distributions by STAR for 0-5$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$=7.7-200 GeV and two kinds of possible baseline measures, the Poisson and Binomial baselines. These baseline measures are assuming that the proton and anti-proton distributions independently follow Poisson statistics or Binomial statistics. The higher order cumulant net-proton data are observed to deviate from all the baseline measures studied at 19.6 and 27 GeV. We also compare the net-proton with net-baryon fluctuations in UrQMD and AMPT model, and convert the net-proton fluctuations to net-baryon fluctuations in AMPT model by using a set of formula.

The shape of the proton at high energies

We present first calculations of the fluctuating gluon distribution in a proton as a function of impact parameter and rapidity employing the functional Langevin form of the JIMWLK renormalization group equation. We demonstrate that when including effects of confinement by screening the long range Coulomb field of the color charges, the evolution is unitary. The large-x structure of the proton, characterized by the position of three valence quarks, retains an effect on the proton shape down to very small values of x. We determine the dipole scattering amplitude as a function of impact parameter and dipole size and extract the rapidity evolution of the saturation scale and the proton radius.

Model independent extraction of the proton magnetic radius from electron scattering

We combine constraints from analyticity with experimental electron-proton scattering data to determine the proton magnetic radius without model-dependent assumptions on the shape of the form factor. We also study the impact of including electron-neutron scattering data, and $\pi\pi\to N\bar{N}$ data. Using representative datasets we find for a cut of $Q^2\leq0.5$ GeV$^2$, $r_M^p=0.91^{+0.03}_{-0.06}\pm0.02$ fm using just proton scattering data; $r_M^p=0.87^{+0.04}_{-0.05}\pm0.01$ fm adding neutron data; and $r_M^p=0.87^{+0.02}_{-0.02}$ fm adding $\pi\pi$ data. We also extract the neutron magnetic radius from these data sets obtaining $r_M^n=0.89^{+0.03}_{-0.03}$ fm from the combined proton, neutron, and $\pi\pi$ data.

Photoproduction of the omega meson off the proton near threshold [Cross-Listing]

An experimental study of omega photoproduction off the proton has been conducted by using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. The gp–>omega p differential cross sections are measured from threshold to the incident-photon energy Eg=1.4 GeV with ~15 MeV binning and full production-angle coverage. The quality of the present data near threshold gives access to a variety of interesting physics, including an estimation of the omegaN scattering length alpha_{omega p}.

Hadronic supercriticality as a trigger for GRB emission

We explore a one-zone hadronic model that may be able to reproduce $\gamma$-ray burst (GRB) prompt emission with a minimum of free parameters. Assuming only that GRBs are efficient high-energy proton accelerators and without the presence of an ab initio photon field, we investigate the conditions under which the system becomes supercritical, i.e. there is a fast, non-linear transfer of energy from protons to secondary particles initiated by the spontaneous quenching of proton-produced $\gamma$-rays. We first show analytically that the transition to supercriticality occurs whenever the proton injection compactness exceeds a critical value, which favours high proton injection luminosities and a wide range of bulk Lorentz factors. The properties of supercriticality are then studied with a time-dependent numerical code that solves concurrently the coupled equations of proton, photon, electron, neutron and neutrino distributions. For conditions that drive the system deep into the supercriticality we find that the photon spectra obtain a Band-like shape due to Comptonization by cooled pairs and that the energy transfer efficiency from protons to $\gamma$-rays and neutrinos is high reaching $\sim 0.3$. Although some questions concerning its full adaptability to the GRB prompt emission remain open, supercriticality is found to be a promising process in that regard.

Reduction of the proton radius discrepancy by 3 sigma

We show that in previous analyses of electron-proton scattering, the uncertainties in the proton charge radius extraction are underestimated. Using a fit function based on a conformal mapping, we can describe the scattering data with high precision and extract a radius value in agreement with the one obtained from muonic hydrogen.

Reduction of the proton radius discrepancy by 3 sigma [Replacement]

We show that in previous analyses of electron-proton scattering, the uncertainties in the statistical procedure to extract the proton charge radius are underestimated. Using a fit function based on a conformal mapping, we can describe the scattering data with high precision and extract a radius value in agreement with the one obtained from muonic hydrogen.

The photon PDF of the proton

We show how the photon input parton distribution function (PDF) may be calculated with good accuracy, and used in an extended DGLAP global parton analysis in which the photon is treated as an additional point-like parton. The uncertainty of the input photon PDF is relatively small, since the major part of the distribution (which is produced by the coherent emission of the photon from a proton that remains intact) is well known. We present the expected photon PDFs, and compare the predictions with ZEUS data for isolated photon electroproduction at negative rapidities.

Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance

Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfven waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

Probing the transverse dynamics and polarization of gluons inside the proton at the LHC

Transverse momentum dependent gluon distributions encode fundamental information on the structure of the proton. Here we show how they can be accessed in heavy quarkonium production in proton-proton collisions at the LHC. In particular, their first determination could come from the study of an isolated J/psi or Upsilon particle, produced back to back with a photon.

The role of hadronic cascades in GRB models of efficient neutrino production

We investigate the effects of hadronic cascades on the gamma-ray burst (GRB) prompt emission spectra in scenarios of efficient neutrino production. By assuming a fiducial GRB spectrum and a power-law proton distribution extending to ultra-high energies, we calculate the proton cooling rate and the neutrino emission produced through photopion processes. For this, we employ a numerical code that follows the formation of the hadronic cascade by taking into account non-linear feedback effects, such as the evolution of the target photon field itself due to the contribution of secondary particles. We show that in cases of efficient proton cooling and subsequently efficient high-energy neutrino production, the emission from the hadronic cascade distorts and may even dominate the GRB spectrum. Taking this into account, we constrain the allowable values of the ratio $\eta_p=L_p/L_{\gamma}$, where $L_{p}$ and $L_{\gamma}$ are the isotropic equivalent proton and prompt gamma-ray luminosities. For the highest value of $\eta_{p}$ that does not lead to the dominance of the cascading emission, we then calculate the maximum neutrino luminosity from a single burst and show that it ranges between $(0.01- 0.6)L_{p}$ and $(0.5-1.4)L_{\gamma}$ for various parameter sets. We discuss possible implications of other parameters, such as the magnetic field strength and the shape of the initial gamma-ray spectrum, on our results. Finally, we compare the upper limit on $\eta_p$ derived here with various studies in the field, and we point out the necessity of a self-consistent treatment of the hadronic emission in order to avoid erroneously high neutrino fluxes from GRB models.

Photoproduction of $J/\psi$ and $\psi(2S)$ in proton-proton ultraperipheral collisions at the LHC

Using the framework of leading order perturbative QCD along with the CTEQ6L1 gluon distribution of the proton and high-energy HERA data on the $\gamma p \to J/\psi p$ and $\gamma p \to \psi(2S) p$ cross sections along with the corresponding H1 fit, we obtain a good description of the rapidity dependence of the cross sections of photoproduction of $J/\psi$ or $\psi(2S)$ mesons in proton–proton ultraperipheral collisions (UPCs) measured by the LHCb collaboration at the LHC. Within the same framework we also make predictions for the $pp \to pp J/\psi$ and $pp \to pp \psi(2S)$ UPC cross sections at $\sqrt{s_{NN}}=8$ and 14 TeV. We show that the possible contribution of the $p \to \Delta \gamma$ transition to the photon flux discernibly increases the $pp \to ppV$ UPC cross section and thus can affect the theoretical interpretation of results.

Investigation of diffractive photoproduction of $J/\Psi$ in hadronic collisions [Replacement]

In this work we study the diffractive photoproduction of $J/\Psi$ in proton-proton, proton – nucleus and nucleus – nucleus collisions at LHC energies using the color dipole formalism and different models for the forward dipole – target scattering amplitude. Our goal is to estimate the theoretical uncertainty present in the current predictions in the literature. Our results are compared with the experimental data and predictions for higher energies are presented.

Diffractive photoproduction of $J/\Psi$ in hadronic collisions: A closer look

In this work we study the diffractive photoproduction of $J/\Psi$ in proton-proton, proton – nucleus and nucleus – nucleus collisions at LHC energies using the color dipole formalism and different models for the forward dipole – target scattering amplitude. Our goal is to estimate the theoretical uncertainty present in the current predictions in the literature. Our results are compared with the experimental data and predictions for higher energies are presented.

Model-independent determination of the magnetic radius of the proton from spectroscopy of ordinary and muonic hydrogen

To date the magnetic radius of the proton has been determined only by means of electron-proton scattering, which is not free of controversies. Any existing atomic determinations are irrelevant because they are strongly model-dependent. We consider a so-called Zemach contribution to the hyperfine interval in ordinary and muonic hydrogen and derive a self-consistent model-independent value of the magnetic radius of the proton. More accurately, we constrain not a value of the magnetic radius by itself, but its certain combination with the electric-charge radius of the proton, namely, R_E^2+R_M^2. The result from the ordinary hydrogen is found to be R_E^2+R_M^2=1.35(12) fm^2, while the derived muonic value is 1.49(18) fm^2. That allows us to constrain the value of the magnetic radius of proton R_M=0.78(8) fm at the 10% level.

A self-consistent value of the electric radius of the proton from the Lamb shift in muonic hydrogen

Recently a high-precision measurement of the Lamb shift in muonic hydrogen has been performed. An accurate value of the proton charge radius can be extracted from this datum with a high accuracy. To do that a sufficient accuracy should be achieved also on the theoretical side, including an appropriate treatment of higher-order proton-structure effects. Here we consider a higher-order contribution of the finite size of the proton to the Lamb shift in muonic hydrogen. Only model-dependent results for this correction have been known up to date. Meantime, the involved models are not consistent either with the existing experimental data on the electron-proton scattering or with the value for the electric charge radius of the proton extracted from the Lamb shift in muonic hydrogen. We consider the higher-order contribution of the proton finite size in a model-independent way and eventually derive a self-consistent value of the electric radius of the proton. The re-evaluated value of the proton charge radius is found to be R_E=0.84022(56) fm.

Baseline measures for net-proton distributions in high energy heavy-ion collisions

We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5\% central Au+Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to assuming that the proton and anti-proton distributions, follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data corresponding to the center of mass energies ($\sqrt{s_{NN}}$) of 19.6 and 27 GeV are observed to deviate from all the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies points to the need for a proper comparison of the experimental measurements to QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

Baseline measures for net-proton distributions in high energy heavy-ion collisions

We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5\% central Au+Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to assuming that the proton and anti-proton distributions, follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data corresponding to the center of mass energies ($\sqrt{s_{NN}}$) of 19.6 and 27 GeV are observed to deviate from all the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies points to the need for a proper comparison of the experimental measurements to QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

Baseline measures for net-proton distributions in high energy heavy-ion collisions [Replacement]

We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5\% central Au+Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to assuming that the proton and anti-proton distributions, follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data corresponding to the center of mass energies ($\sqrt{s_{NN}}$) of 19.6 and 27 GeV are observed to deviate from all the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies points to the need for a proper comparison of the experimental measurements to QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

Two-photon exchange corrections in elastic muon-proton scattering

We extend the general formalism of two-photon exchange to elastic lepton-nucleon scattering, by accounting for all lepton mass terms. We then perform a numerical estimate of the muon-proton scattering at low momentum transfer, in view of the future MUSE experiment. For this purpose, we estimate the two-photon exchange corrections to muon-proton scattering observables by considering the contribution of the proton intermediate state, which is expected to dominate at very low momentum transfers. We find that the two-photon exchange effect to the unpolarized muon- proton scattering cross section in the MUSE kinematical region is of the order of 0.5 %.

Two-photon exchange corrections in elastic muon-proton scattering [Replacement]

We extend the general formalism of two-photon exchange to elastic lepton-nucleon scattering by accounting for all lepton mass terms. We then perform a numerical estimate of the muon-proton scattering at low momentum transfer in view of the future MUSE experiment. For this purpose, we estimate the two-photon exchange corrections to muon-proton scattering observables by considering the contribution of the proton intermediate state, which is expected to dominate at very low momentum transfers. We find that the two-photon exchange effect to the unpolarized muon- proton scattering cross section in the MUSE kinematical region is of the order of 0.5%.

Proton polarizabilities from polarized Compton scattering: low-energy expansion [Cross-Listing]

We reexamine the low-energy expansion of polarized Compton scattering off the proton and show that the leading non-Born contribution to the beam asymmetry of low-energy Compton scattering is given by the magnetic polarizability alone, the electric polarizability cancels out. Based on this fact we propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry. We also present the low-energy expansion of doubly-polarized observables, from which the spin polarizabilities can be extracted.

Evidence for polarization of gluons in the proton

We discuss the impact of recent high-statistics RHIC data on the determination of the gluon polarization in the proton in the context of a global QCD analysis of polarized parton distributions. We find clear evidence for a non-vanishing polarization of gluons in the region of momentum fraction and at the scales mostly probed by the data. Although information from low momentum fractions is presently lacking, this finding is suggestive of a significant contribution of gluon spin to the proton spin, thereby limiting the amount of orbital angular momentum required to balance the proton spin budget.

Pion transverse charge density and the edge of hadrons [Replacement]

We use the world data on the pion form factor for space-like kinematics and a technique previously used to extract the proton transverse densities to extract the transverse pion charge density and its uncertainty due the incomplete knowledge of the pion form factor at large values of Q2 and the experimental uncertainties. The pion charge density at small values of impact parameter b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton transverse charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton transverse charge densities seem to be the same for values of b=0.3-0.6 fm. Future data from Thomas Jefferson National Accelerator Facility (JLab) 12 GeV and the Electron-Ion Collider (EIC) will increase the dynamic extent of the form factor data to higher values of Q2 and thus reduce the uncertainties in the extracted pion transverse charge density.

A determination of the parton distributions for flavor asymmetric light sea in the proton

Using the DGLAP equation with corrections of parton recombination, it is the first time that the distributions of the flavor asymmetric sea in the proton are extracted from the available experimental data in a model-independent way. We find that the distribution shape of the asymmetric sea quark is similar to that of the corresponding valence quark. Based on the separation of the flavor symmetric and asymmetric sea, the possible relations between the strange quark distribution and symmetric light quark distribution in the proton are discussed. The results are used to explain the recent HERMES results for the strange quark distribution. The comparisons of our results with the predictions of the CTEQ-, MRS-, GRV- databases and some models for flavor asymmetric sea are also presented.

Upper critical field and absence of superconductivity in magnetars

We study the upper critical field for quenching of the proton superconductivity in neutron stars, $H_{c2}$, within a Ginzburg-Landau theory which includes the entrainment between the proton and neutron condensates. We construct models of compact stars for a (realistic) nucleonic equations of state and deduce the volume occupied by the superconducting regions from microscopic calculations of proton pairing gaps in dense matter. We argue that magnetars with surface fields $B \ge 10^{15}$ G are either partially or completely non-superconducting, the precise outcome being dependent on the relation between the surface dipolar field and the field intensity at the crust-core boundary. We discuss the implications of the absence of superconductivity in magnetars on their cooling evolution and superfluid dynamics.

Higgsstrahlung at forward rapidities [Replacement]

We discuss the inclusive and single diffractive heavy flavor (top and bottom) production in association with the Higgs boson at forward rapidities in proton-proton collisions at the LHC. The calculations are performed in the framework of the phenomenological dipole approach, which automatically accounts for the absorptive corrections induced by soft interactions, i.e. for the gap survival effects at the amplitude level. Major differential observables including the realistic ATLAS detector constraints are considered. The forward inclusive and diffractive Higgsstrahlung processes are generated essentially by excitation of the valence or sea quarks in the proton. The single diffractive Higgsstrahlung off top quarks is found to dominate compared to the loop-induced mechanism at sufficiently large Higgs boson transverse momenta. The Higgsstrahlung processes offer a direct and precise measurement of Higgs-top and, possibly, Higgs-bottom Yukawa couplings at the LHC, as well as the studies of the intrinsic heavy flavor components of the proton.

Higgsstrahlung at forward rapidities

We discuss the inclusive and single diffractive heavy flavor (top and bottom) production in association with the Higgs boson at forward rapidities in proton-proton collisions at the LHC. The calculations are performed in the framework of the phenomenological dipole approach, which automatically accounts for the absorptive corrections induced by soft interactions, i.e. for the gap survival effects at the amplitude level. Major differential observables including the realistic ATLAS detector constraints are considered. The forward inclusive and diffractive Higgsstrahlung processes are generated essentially by excitation of the valence or sea quarks in the proton. The single diffractive Higgsstrahlung off top quarks is found to dominate compared to the loop-induced mechanism at sufficiently large Higgs boson transverse momenta. The Higgsstrahlung processes offer a direct and precise measurement of Higgs-top and, possibly, Higgs-bottom Yukawa couplings at the LHC, as well as the studies of the intrinsic heavy flavor components of the proton.

Phenomenology of kt-factorization for inclusive Higgs boson production at LHC

We investigate the inclusive Higgs boson production in proton-proton collisions at high energies in the framework of kt-factorization QCD approach. The attention is focused on the dominant off-shell gluon-gluon fusion subprocess, where the transverse momentum of incoming gluons are taken into account. The transverse momentum dependent (or unintegrated) gluon densities of the proton are determined using the CCFM evolution equation as well as the Kimber-Martin-Ryskin prescription. We study the theoretical uncertainties of our calculations and perform the comparison with the results of traditional pQCD evaluations. Our predictions agree well with the first experimental data taken by the ATLAS collaboration at the LHC. We argue that further studies of the Higgs boson production are capable of constraining the unintegrated gluon densities of the proton.

Drell-Yan lepton pair production at LHC and TMD quark densities of the proton

We use the TMD quark densities of the proton to investigate unpolarized Drell-Yan lepton pair production in proton-proton collisions at the LHC energies. We investigate the case where the gluon-to-quark splitting occurs at the last evolution step and calculate the TMD sea quark density as a convolution of the CCFM-evolved gluon distribution and the TMD gluon-to-quark splitting function which contains all single logarithmic small-x corrections to the sea quark evolution for any order of perturbation theory. Based on the O(alpha) production amplitude of quark-antiquark annihilation calculated according to the reggeized quark approach, we analyze the distributions on the dilepton invariant mass, transverse momentum and rapidity as well as the specific angular correlations between the produced leptons as measured by the CMS, ATLAS and LHCb collaborations. We argue that these measurements impose stringent constraints on the TMD quark distributions of the proton.

Drell-Yan lepton pair production at LHC and TMD quark densities of the proton [Replacement]

We use the TMD quark densities of the proton to investigate unpolarized Drell-Yan lepton pair production in proton-proton collisions at the LHC energies. We investigate the case where the gluon-to-quark splitting occurs at the last evolution step and calculate the TMD sea quark density as a convolution of the CCFM-evolved gluon distribution and the TMD gluon-to-quark splitting function which contains all single logarithmic small-x corrections to the sea quark evolution for any order of perturbation theory. Based on the O(alpha) production amplitude of quark-antiquark annihilation calculated according to the reggeized quark approach, we analyze the distributions on the dilepton invariant mass, transverse momentum and rapidity as well as the specific angular correlations between the produced leptons as measured by the CMS, ATLAS and LHCb collaborations. We argue that these measurements impose stringent constraints on the TMD quark distributions of the proton.

Shadowing in multiparton proton - deuteron collisions

We study the screening effect for the multiparton interactions (MPI) for proton–deuteron collisions in the kinematics where one parton belonging to the deuteron has small $x_1$ so the leading twist shadowing is present while the second parton ($x_2$) is involved in the interaction where shadowing effects are small. We find that the ratio of the shadowing and the impulse approximation terms is approximately factor of two larger for MPI than for the single parton distributions. Overall shadowing leads to a strong reduction of the double parton antishadowing effect due to the independent interactions of the partons of the protons with two nucleons of the deuteron. For example, for the resolution scale $Q_1^2 \sim 4 \mbox{GeV}^2$ of the interaction with parton $x_1$ we find that shadowing reduces the DPA effect by $\sim$ 30 %.

Shadowing in multiparton proton - deuteron collisions [Replacement]

We study the screening effect for the multiparton interactions (MPI) for proton–deuteron collisions in the kinematics where one parton belonging to the deuteron has small $x_1$ so the leading twist shadowing is present while the second parton ($x_2$) is involved in the interaction %%ms in the kinematics where shadowing effects are small. We find that the ratio of the shadowing and the impulse approximation terms is approximately factor of two larger for MPI than for the single parton distributions. We also calculate the double parton antishadowing (DPA) contribution to the cross section due to the independent interactions of the partons ofthe projectile proton with two nucleons of the deuteron and find that shadowing leads to a strong reduction ofthe DPA effect.For example, for the resolution scale $Q_1^2 \sim 4$~$\mbox{GeV}^2$ of the interaction with parton $x_1$ we find that shadowing reduces the DPA effect by $\sim$ 30%. It is argued that in the discussed kinematics the contribution of interference diagrams, which correspond to the interchange ofpartonsbetween the proton and neutron, constitutes only a small correction to the shadowing contributions.

Saturation effects in forward-forward dijet production in p+Pb collisions

We study saturation effects in the production of forward dijets in proton-lead collisions at the Large Hadron Collider, using the framework of High Energy Factorization. Such configurations, with both jets produced in the forward direction, probe the gluon density of the lead nucleus at small longitudinal momentum fraction, and also limit the phase space for emissions of additional jets. We find significant suppression of the forward dijet azimuthal correlations in proton-lead versus proton-proton collisions, which we attribute to stronger saturation of the gluon density in the nucleus than in the proton. In order to minimize model dependence of our predictions, we use two different extensions of the Balitsky-Kovchegov equation for evolution of the gluon density with sub-leading corrections.

Saturation effects in forward-forward dijet production in p+Pb collisions [Replacement]

We study saturation effects in the production of forward dijets in proton-lead collisions at the Large Hadron Collider, using the framework of High Energy Factorization. Such configurations, with both jets produced in the forward direction, probe the gluon density of the lead nucleus at small longitudinal momentum fraction, and also limit the phase space for emissions of additional jets. We find significant suppression of the forward dijet azimuthal correlations in proton-lead versus proton-proton collisions, which we attribute to stronger saturation of the gluon density in the nucleus than in the proton. In order to minimize model dependence of our predictions, we use two different extensions of the Balitsky-Kovchegov equation for evolution of the gluon density with sub-leading corrections.

Coulomb corrections to electron scattering on the extended source and the proton charge radius

It is shown that the account for the proton charge form factor in the Coulomb corrections to the electron-proton scattering cross section noticeably diminishes the difference between the value of the proton charge radius $r_{\mathrm{E}}$, extracted from the $ep$ scattering data, and that following from the muonic hydrogen data. For the electron energy much higher than the electron mass but much smaller than $r_{\mathrm{E}}^{-1}\approx 230$~MeV, the relative correction has the universal form $\delta r_{\mathrm{E}}/r_{\mathrm{E}}=-\pi\alpha/2$, where $\alpha$ is the fine structure constant.

On the relation between the spin and the magnetic moment of the proton

In the context of the quark model of hadrons the spin and the magnetic moment of proton can not be taken proportional. This is in contradiction with the widely used relation between these two properties of the proton. This apparent difficulty is addressed by the most elementary notions of the relevant physics. In particular it is emphasized that the widely used relation is only valid in the lowest orders of perturbation, in which transitions between different baryons do not occur. For other processes where such transitions do occur, such as inelastic scattering off the protons, the quark model relation for the magnetic moment is used to give an estimation for the amplitude of transition between states with different total spins.

Nuclear parton density modifications from low-mass lepton pair production at the LHC

In this article, we investigate the potential of low-mass lepton pair production in proton-ion collisions at the LHC to constrain nuclear modifications of parton densities. Similarly to prompt photon production, the transverse momentum spectrum is shown to be dominated by the QCD Compton process, but has virtually no fragmentation or isolation uncertainties. Depending on the orientation of the proton and ion beams and on the use of central or forward detector components, all interesting regions of nuclear effects (shadowing, antishadowing, isospin and EMC effects) can be probed. Ratios of cross sections allow to eliminate theoretical scale and bare-proton parton density errors as well as many experimental systematic uncertainties.

Marrying ab initio calculations and Halo EFT: the case of ${}^7{\rm Be} + p \rightarrow {}^8{\rm B} + \gamma$ [Cross-Listing]

We report a leading-order (LO) calculation of $^7\mathrm{Be}(p,\gamma)^8\mathrm{B}$ in a low-energy effective field theory. $^8\mathrm{B}$ is treated as a shallow proton$+^7\mathrm{Be}$ core and proton$+^7\mathrm{Be}^{*}$ (core excitation) $p$-wave bound state. The couplings are fixed using measured binding energies and proton-$^7\mathrm{Be}$ $s$-wave scattering lengths, together with $^8\mathrm{B}$ asymptotic normalization coefficients from ab initio calculations. We obtain a zero-energy $S$-factor of $18.2 \pm 1.2~({\rm ANC~only})$ eV b. Given that this is a LO result it is consistent with the recommended value $S(0)=20.8\pm1.6$ eV b. Our computed $S(E)$ compares favorably with experimental data on $^7\mathrm{Be}(p,\gamma)^8\mathrm{B}$ for $E <0.4$ MeV. We emphasize the important role of proton-$^7\mathrm{Be}$ scattering parameters in determining the energy dependence of $S(E)$, and demonstrate that their present uncertainties significantly limit attempts to extrapolate these data to stellar energies.

Hadronic Gamma-Ray and Neutrino Emission from Cygnus X-3

Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to $\gamma$-ray energies. In this paper, we consider hadronic model of emission of $\gamma$-rays above 100 MeV and their implications. We focus here on the joint $\gamma$-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the $\gamma$-ray flux observed by AGILE and Fermi-LAT, is $L_p \sim 10^{38}\:\rm{erg\:s^{-1}}$, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cygnus X-3 was repeatedly observed to produce transient $\gamma$-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of $\gamma$-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modelling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index $\alpha=2.4$. The predicted neutrino flux is almost two orders of magnitude less than the 2-month IceCube sensitivity at $\sim$1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged "soft X-ray state" would be a factor of about 3 lower than the 1-year IceCube sensitivity at $\sim$10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related with $\gamma$-ray activity and a hard distribution of injected protons, Cygnus X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.

The Environment around the Young Massive Star Cluster RSGC 1 and HESS J1837-069

We report on Mopra observations toward the young massive star cluster RSGC 1, adjoined by, and possibly associated with the gamma-ray source HESS J1837-069. We measure the CO (J=1-0) distribution around the cluster and gamma-ray source, and find that the cluster is slightly higher than the velocity ranges associated with the Crux-Scutum arm. We reveal the cluster is associated with much less molecular gas compared with other young massive clusters in the Galaxy, Westerlund 1 (Wd 1) and 2 (Wd 2), which also radiate gamma-rays. We find no other structures that would otherwise indicate the action of supernova remnants, and due to the lack of material which may form gamma-rays by hadronic interaction, we conclude that the gamma-rays detected from HESS J1837-069 are not created through proton-proton interactions, and may more plausibly originate from the pulsar that was recently found near RSGC 1.

Supernova neutrinos and nucleosynthesis

Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Z<~50 while the other produces the heavy r-process elements. We have analyzed recent observations of metal-poor stars selecting only stars that are enriched in light r-process elements and poor in heavy r-process elements. We find a strong correlation between the observed abundances of the N=50 elements (Sr, Y and Zr) and Fe. It suggest that neutrino-driven winds from core-collapse supernova are the main site for the production of these elements. We explore this possibility by performing nucleosynthesis calculations based on long term Boltzmann neutrino transport simulations. They are based on an Equation of State that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron-rich with Ye ~ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z=42) and no heavy r-process elements are produced in our calculations.

Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations [Replacement]

Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\’en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\em Wind} spacecraft’s Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\perp\alpha}/T_{\perp p}$ ($T_{\parallel\alpha}/T_{\parallel p}$) when alpha-proton differential flow velocity is small, where $T_{\perp\alpha}$ and $T_{\perp p}$ ($T_{\parallel\alpha}$ and $T_{\parallel p}$) are the perpendicular (parallel) temperatures of alpha particles and protons. We conjecture that this observed feature might arise from preferential alpha-particle heating which can drive the alpha particles beyond the instability thresholds.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^