Posts Tagged proton

Recent Postings from proton

Extraction of the proton charge radius from experiments

Static properties of hadrons such as their radii and other moments of the electric and magnetic distributions can only be extracted using theoretical methods and not directly measured from experiments. As a result, discrepancies between the extracted values from different precision measurements can exist. The proton charge radius, $r_p$, which is either extracted from electron proton elastic scattering data or from hydrogen atom spectroscopy seems to be no exception. The value $r_p = 0.84087(39)$ fm extracted from muonic hydrogen spectroscopy is about 4% smaller than that obtained from electron proton scattering or standard hydrogen spectroscopy. The resolution of this so called proton radius puzzle has been attempted in many different ways over the past six years. The present article reviews these attempts with a focus on the methods of extracting the radius.

Recent results for the proton spin decomposition from lattice QCD [Cross-Listing]

The exact decomposition of the proton spin has been a much debated topic, on the experimental as well as the theoretical side. In this talk we would like to report on recent non-perturbative results and ongoing efforts to explore the proton spin from lattice QCD. We present results for the relevant generalized form factors from gauge field ensembles that feature a physical value of the pion mass. These generalized form factors can be used to determine the total spin and angular momentum carried by the quarks. In addition we present first results for our ongoing effort to compute the angular momentum of the gluons in the proton.

Recent results for the proton spin decomposition from lattice QCD

The exact decomposition of the proton spin has been a much debated topic, on the experimental as well as the theoretical side. In this talk we would like to report on recent non-perturbative results and ongoing efforts to explore the proton spin from lattice QCD. We present results for the relevant generalized form factors from gauge field ensembles that feature a physical value of the pion mass. These generalized form factors can be used to determine the total spin and angular momentum carried by the quarks. In addition we present first results for our ongoing effort to compute the angular momentum of the gluons in the proton.

Proton distribution radii of $^{12-19}$C illuminate features of neutron halos

Proton radii of $^{12-19}$C densities derived from first accurate charge changing cross section measurements at 900$A$ MeV with a carbon target are reported. A thick neutron surface evolves from $\sim$ 0.5 fm in $^{15}$C to $\sim$ 1 fm in $^{19}$C. The halo radius in $^{19}$C is found to be 6.4$\pm$0.7 fm as large as $^{11}$Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce well the radii.

Comparison of Yields of neutron rich nuclei in Proton and Photon induced $^{238}$U fission

A comparative study of fission of actinides specially $^{238}$U, by proton and bremsstrahlung photon is performed. Relative mass distribution of $^{238}$U fission fragments have been explored theoretically for both proton and photon induced fission. The integrated yield along with charge distribution of the products are calculated to find out the neutron richness in comparison to the nuclei produced by r-process in nucleosynthesis. Some r-process nuclei in intermediate mass range for symmetric fission mode are found to be produced almost two order of magnitude more for proton induced fission than photofission, although rest of the neutron rich nuclei in the asymmetric mode are produced in comparable proportion for both the processes.

The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV [Replacement]

The measurement of proton plus helium and all-particle energy spectra in the range $20\,$ TeV to $5 \,$PeV and $80 \,$TeV to $5 \,$PeV respectively are presented. Data taken by the ARGO-YBJ detector in the 2010 year have been analyzed. The ARGO-YBJ experiment (Tibet, P. R. China) has been taking data for more than five years by means of a full-coverage array of RPC detectors. The discrimination between showers produced by light and heavy primaries has been performed by looking at the lateral particle density close to the core region. A Bayesian unfolding technique was therefore applied to the measured quantities in order to evaluate the cosmic ray energy spectrum. The proton plus helium spectrum clearly shows a bending at about $1 \,$PeV, while the all-particle spectrum is consistent with previous observations.

The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV [Replacement]

The measurement of proton plus helium and all-particle energy spectra in the range $20\,$ TeV to $5 \,$PeV and $80 \,$TeV to $5 \,$PeV respectively are presented. Data taken by the ARGO-YBJ detector in the 2010 year have been analyzed. The ARGO-YBJ experiment (Tibet, P. R. China) has been taking data for more than five years by means of a full-coverage array of RPC detectors. The discrimination between showers produced by light and heavy primaries has been performed by looking at the lateral particle density close to the core region. A Bayesian unfolding technique was therefore applied to the measured quantities in order to evaluate the cosmic ray energy spectrum. The proton plus helium spectrum clearly shows a bending at about $1 \,$PeV, while the all-particle spectrum is consistent with previous observations.

The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV [Cross-Listing]

The measurement of proton plus helium and all-particle energy spectra in the range $20\,$ TeV to $5 \,$PeV and $80 \,$TeV to $5 \,$PeV respectively are presented. Data taken by the ARGO-YBJ detector in the 2010 year have been analyzed. The ARGO-YBJ experiment (Tibet, P. R. China) has been taking data for more than five years by means of a full-coverage array of RPC detectors. The discrimination between showers produced by light and heavy primaries has been performed by looking at the lateral particle density close to the core region. A Bayesian unfolding technique was therefore applied to the measured quantities in order to evaluate the cosmic ray energy spectrum. The proton plus helium spectrum clearly shows a bending at about $1 \,$PeV, while the all-particle spectrum is consistent with previous observations.

The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV

The measurement of proton plus helium and all-particle energy spectra in the range $20\,$ TeV to $5 \,$PeV and $80 \,$TeV to $5 \,$PeV respectively are presented. Data taken by the ARGO-YBJ detector in the 2010 year have been analyzed. The ARGO-YBJ experiment (Tibet, P. R. China) has been taking data for more than five years by means of a full-coverage array of RPC detectors. The discrimination between showers produced by light and heavy primaries has been performed by looking at the lateral particle density close to the core region. A Bayesian unfolding technique was therefore applied to the measured quantities in order to evaluate the cosmic ray energy spectrum. The proton plus helium spectrum clearly shows a bending at about $1 \,$PeV, while the all-particle spectrum is consistent with previous observations.

How bright is the proton? A precise determination of the photon PDF

It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton ($ep$) scattering data, in effect viewing the $ep\to e+X$ process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary BSM process with a flavour changing photon-lepton vertex. We write its cross section in two ways, one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of $ep$ data, we constrain the photon PDF at the level of 1-2% over a wide range of $x$ values.

How bright is the proton? A precise determination of the photon PDF [Replacement]

It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton ($ep$) scattering data, in effect viewing the $ep\to e+X$ process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary BSM process with a flavour changing photon-lepton vertex. We write its cross section in two ways, one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of $ep$ data, we constrain the photon PDF at the level of 1-2% over a wide range of $x$ values.

How bright is the proton? A precise determination of the photon PDF [Replacement]

It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton ($ep$) scattering data, in effect viewing the $ep\to e+X$ process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary BSM process with a flavour changing photon-lepton vertex. We write its cross section in two ways, one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of $ep$ data, we constrain the photon PDF at the level of 1-2% over a wide range of $x$ values.

Revealing proton shape fluctuations with incoherent diffraction at high energy [Replacement]

The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

Revealing proton shape fluctuations with incoherent diffraction at high energy

The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

Revealing proton shape fluctuations with incoherent diffraction at high energy [Cross-Listing]

The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

Revealing proton shape fluctuations with incoherent diffraction at high energy [Replacement]

The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

Tomographic image of the proton

We determine, based on the latest experimental Deep Virtual Compton Scattering experimental data, the dependence of the spatial size of the proton on the quark's longitudinal momentum. This results in a three-dimensional momentum-space image and tomography of the proton.

The spin structure of the proton at low $x$ and low $Q^2$ in two-dimensional bins from COMPASS [Cross-Listing]

The longitudinal double spin asymmetries $A_1^p$ and the spin dependent structure function of the proton $g_1^p$ were extracted from COMPASS data in the region of low Bjorken scaling variable $x$ and low photon virtuality $Q^2$. The data were taken in 2007 and 2011 from scattering of polarised muons off polarised protons, resulting in a sample that is 150 times larger than the one from the previous experiment SMC that pioneered studies in this kinematic region. For the first time, $A_1^p$ and $g_1^p$ were evaluated in this region in two-dimensional bins of kinematic variables: $(x,Q^2)$, $(\nu ,Q^2)$, $(x,\nu)$ and $(Q^2,x)$. The following kinematic region was investigated: $4\times 10^{-5}<x<4\times 10^{-2}$, $0.001$~(GeV/$c$)$^2<Q^2<1$~(GeV/$c$)$^2$ and $14$~GeV$<\nu <194$~GeV. The obtained results were confronted with theoretical models.

Avoiding common pitfalls and misconceptions in extractions of the proton radius

In a series of recent publications, different authors produce a wide range of electron radii when reanalyzing electron proton scattering data. In the light of the proton radius puzzle, this is a most unfortunate situation. However, we find flaws in most analyses that result in radii around 0.84 fm. In this paper, we explain our reasoning and try to illustrate the most common pitfalls.

Avoiding common pitfalls and misconceptions in extractions of the proton radius [Cross-Listing]

In a series of recent publications, different authors produce a wide range of electron radii when reanalyzing electron proton scattering data. In the light of the proton radius puzzle, this is a most unfortunate situation. However, we find flaws in most analyses that result in radii around 0.84 fm. In this paper, we explain our reasoning and try to illustrate the most common pitfalls.

Avoiding common pitfalls and misconceptions in extractions of the proton radius [Cross-Listing]

In a series of recent publications, different authors produce a wide range of electron radii when reanalyzing electron proton scattering data. In the light of the proton radius puzzle, this is a most unfortunate situation. However, we find flaws in most analyses that result in radii around 0.84 fm. In this paper, we explain our reasoning and try to illustrate the most common pitfalls.

Hot spots and the hollowness of proton-proton interactions at high energies

We present a dynamical explanation of the hollowness effect observed in proton-proton scattering at $\sqrt s\!=\!7$ TeV. This phenomenon, not observed at lower energies, consists in a depletion of the inelasticity density at zero impact parameter of the collision. Our analysis is based on three main ingredients: we rely gluonic hot spots inside the proton as effective degrees of freedom for the description of the scattering process. Next we assume that some non-trivial correlation between the transverse positions of the hot spots inside the proton exists. Finally we build the scattering amplitude from a multiple scattering, Glauber-like series of collisions between hot spots. In our approach, the onset of the hollowness effect is naturally explained as due to the diffusion or growth of the hot spots in the transverse plane with increasing collision energy.

A Determination of the Charm Content of the Proton

We present an unbiased determination of the charm content of the proton, in which the charm parton distribution function (PDF) is parametrized on the same footing as the light quarks and the gluon in a global PDF analysis. This determination relies on the calculation of deep-inelastic structure functions in the FONLL scheme, generalized to account for massive charm-initiated contributions. In contrast to the usual situation in which the charm PDF is assumed to be generated perturbatively by pair radiation off gluons and light quarks, vanishing at a scale set by the value of the charm mass m_c, we find that the fitted charm PDF vanishes within uncertainties at a scale Q~1.5 GeV for all x<~0.1, independent of the value of m_c used in the coefficient functions. We also find some evidence that the charm PDF at large x>~0.1 and low scales does not vanish, but rather has an "intrinsic" component, very weakly scale dependent and almost independent of the value of m_c, carrying about 1% of the total momentum of the proton. The uncertainties in all other PDFs are only slightly increased by the inclusion of fitted charm, while the dependence of these PDFs on m_c is significantly reduced. When the EMC charm structure function dataset is included, it is well described by the fit, and PDF uncertainties in the fitted charm PDF are significantly reduced, though we verify that excluding the EMC data does not qualitatively modify any of our findings. The increased stability with respect to m_c persists at high scales and is the main implication of our results for LHC phenomenology. Fitting the charm PDF modifies the predictions for processes such as high p_T and large rapidity charm pair production and Z+c production, and thus we expect that future LHC data will further constrain the charm content of the proton.

A Determination of the Charm Content of the Proton [Cross-Listing]

We present an unbiased determination of the charm content of the proton, in which the charm parton distribution function (PDF) is parametrized on the same footing as the light quarks and the gluon in a global PDF analysis. This determination relies on the calculation of deep-inelastic structure functions in the FONLL scheme, generalized to account for massive charm-initiated contributions. In contrast to the usual situation in which the charm PDF is assumed to be generated perturbatively by pair radiation off gluons and light quarks, vanishing at a scale set by the value of the charm mass m_c, we find that the fitted charm PDF vanishes within uncertainties at a scale Q~1.5 GeV for all x<~0.1, independent of the value of m_c used in the coefficient functions. We also find some evidence that the charm PDF at large x>~0.1 and low scales does not vanish, but rather has an "intrinsic" component, very weakly scale dependent and almost independent of the value of m_c, carrying about 1% of the total momentum of the proton. The uncertainties in all other PDFs are only slightly increased by the inclusion of fitted charm, while the dependence of these PDFs on m_c is significantly reduced. When the EMC charm structure function dataset is included, it is well described by the fit, and PDF uncertainties in the fitted charm PDF are significantly reduced, though we verify that excluding the EMC data does not qualitatively modify any of our findings. The increased stability with respect to m_c persists at high scales and is the main implication of our results for LHC phenomenology. Fitting the charm PDF modifies the predictions for processes such as high p_T and large rapidity charm pair production and Z+c production, and thus we expect that future LHC data will further constrain the charm content of the proton.

Electrophobic Scalar Boson and Muonic Puzzles

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Cross-Listing]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Cross-Listing]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Cross-Listing]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Replacement]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Replacement]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Electrophobic Scalar Boson and Muonic Puzzles [Replacement]

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

Ratio between two $\Lambda$ and $\bar{\Lambda}$ production mechanisms in $p$ scattering

We consider $\Lambda$ and $\bar{\Lambda}$ production in a wide range of proton scattering experiments. The produced $\Lambda$ and $\bar{\Lambda}$ may or may not contain a diquark remnant of the beam proton. The ratio of these two production mechanisms is found to be a simple universal function $r = [ \kappa/(y_p - y) ]^i$ of the rapidity difference $y_p - y$ of the beam proton and the produced $\Lambda$ or $\bar{\Lambda}$, valid over four orders of magnitude, from $r \approx 0.01$ to $r \approx 100$, with $\kappa = 2.86 \pm 0.03 \pm 0.07$, and $i = 4.39 \pm 0.06 \pm 0.15$.

Ratio between two $\Lambda$ and $\bar{\Lambda}$ production mechanisms in $p$ scattering [Cross-Listing]

We consider $\Lambda$ and $\bar{\Lambda}$ production in a wide range of proton scattering experiments. The produced $\Lambda$ and $\bar{\Lambda}$ may or may not contain a diquark remnant of the beam proton. The ratio of these two production mechanisms is found to be a simple universal function $r = [ \kappa/(y_p - y) ]^i$ of the rapidity difference $y_p - y$ of the beam proton and the produced $\Lambda$ or $\bar{\Lambda}$, valid over four orders of magnitude, from $r \approx 0.01$ to $r \approx 100$, with $\kappa = 2.86 \pm 0.03 \pm 0.07$, and $i = 4.39 \pm 0.06 \pm 0.15$.

Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions [Cross-Listing]

Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. As a result, the electromagnetic field (in vacuum) is present in the interaction region in the form of a traveling wave for much longer time than it was previously anticipated. Additionally, the quantum treatment of the sources removes the short-distance divergence of the field, making it possible to compute the maximal field strength achievable at a given collision energy.

Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions [Replacement]

Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.

Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions [Replacement]

Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.

Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions

Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. As a result, the electromagnetic field (in vacuum) is present in the interaction region in the form of a traveling wave for much longer time than it was previously anticipated. Additionally, the quantum treatment of the sources removes the short-distance divergence of the field, making it possible to compute the maximal field strength achievable at a given collision energy.

Azimuthal Asymmetry and Ratio $R= F_L / F_T$ as Probes of the Charm Content of the Proton

We study two experimental ways to measure the heavy-quark content of the proton: using the Callan-Gross ratio $R(x,Q^2)=F_L/F_T$ and/or azimuthal $\cos(2\varphi)$ asymmetry in deep inelastic lepton-nucleon scattering. Our approach is based on the perturbative stability of the QCD predictions for these two quantities. We resume the mass logarithms of the type $\alpha_{s}\ln\left( Q^{2}/m^{2}\right)$ and conclude that heavy-quark densities in the nucleon can, in principle, be determined from data on the Callan-Gross ratio and/or azimuthal asymmetry. In particular, the charm content of the proton can be measured in future studies at the proposed Large Hadron-Electron (LHeC) and Electron-Ion (EIC) Colliders.

Two-dimensional Hybrid Simulations of Kinetic Plasma Turbulence: Current and Vorticity vs Proton Temperature [Cross-Listing]

Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.

Double-polarization observable G in neutral-pion photoproduction off the proton

This paper reports on a measurement of the double-polarization observable G in $\pi^0$ photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly-polarized photons with longitudinally-polarized protons. The polarized photons are produced by bremsstrahlung off a properly oriented diamond radiator. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), J\"ulich-Bonn (J\"uBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed.

Form factor ratio from unpolarized elastic electron proton scattering [Cross-Listing]

A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio, $R^2$. The present analysis shows that $R^2$ is a useful quantity that contains reliable and coherent information. This ratio is in principle more robust against the experimental corrections. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are indeed compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information in the controversy on the deviation of the proton electromagnetic form factors from the dipole dependence.

Form factor ratio from unpolarized elastic electron proton scattering

A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio, $R^2$. The present analysis shows that $R^2$ is a useful quantity that contains reliable and coherent information. This ratio is in principle more robust against the experimental corrections. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are indeed compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information in the controversy on the deviation of the proton electromagnetic form factors from the dipole dependence.

Form factor ratio from unpolarized elastic electron proton scattering [Replacement]

A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information in the controversy on the deviation of the proton form factors from the dipole dependence.

Form factor ratio from unpolarized elastic electron proton scattering [Replacement]

A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information in the controversy on the deviation of the proton form factors from the dipole dependence.

Evolving images of the proton: Hadron physics over the past 40 years [Cross-Listing]

Once upon a time, the world was simple: the proton contained three quarks, two {\it ups} and a {\it down}. How these give the proton its mass and its spin seemed obvious. Over the past forty years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum Chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However, the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95\% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. A very personal view of these fascinating developments in cold QCD is presented.

Evolving images of the proton: Hadron physics over the past 40 years [Cross-Listing]

Once upon a time, the world was simple: the proton contained three quarks, two {\it ups} and a {\it down}. How these give the proton its mass and its spin seemed obvious. Over the past forty years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum Chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However, the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95\% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. A very personal view of these fascinating developments in cold QCD is presented.

Evolving images of the proton: Hadron physics over the past 40 years [Cross-Listing]

Once upon a time, the world was simple: the proton contained three quarks, two {\it ups} and a {\it down}. How these give the proton its mass and its spin seemed obvious. Over the past forty years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum Chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However, the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95\% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. A very personal view of these fascinating developments in cold QCD is presented.

Evolving images of the proton: Hadron physics over the past 40 years

Once upon a time, the world was simple: the proton contained three quarks, two {\it ups} and a {\it down}. How these give the proton its mass and its spin seemed obvious. Over the past forty years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum Chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However, the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95\% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. A very personal view of these fascinating developments in cold QCD is presented.

Evaluation of the forward Compton scattering off protons: II. Spin-dependent amplitude and observables [Replacement]

The forward Compton scattering off the proton is determined by substituting the empirical total photoabsorption cross sections into dispersive sum rules. In addition to the spin-independent amplitude evaluated previously [Phys. Rev. D 92, 074031 (2015)], we obtain the spin-dependent amplitude over a broad energy range. The two amplitudes contain all the information about this process, and we, hence, can reconstruct the nonvanishing observables of the proton Compton scattering in the forward kinematics. The results are compared with predictions of chiral perturbation theory where available. The low-energy expansion of the spin-dependent Compton scattering amplitude yields the Gerasimov-Drell-Hearn (GDH) sum rule and relations for the forward spin polarizabilities (FSPs) of the proton. Our evaluation provides an empirical verification of the GDH sum rule for the proton, and yields empirical values of the proton FSPs. For the GDH integral, we obtain $204.5(21.4)$ $\mu$b, in agreement with the sum rule prediction: $204.784481(4)$ $\mu$b. For the FSPs, we obtain: $\gamma_0=-92.9(10.5) \times 10^{-6}$ fm$^4$, and $\bar{\gamma_0}=48.4(8.2) \times 10^{-6}$ fm$^6$, improving on the accuracy of previous evaluations.

Evaluation of the forward Compton scattering off protons: II. Spin-dependent amplitude and observables [Replacement]

The forward Compton scattering off the proton is determined by substituting the empirical total photoabsorption cross sections into dispersive sum rules. In addition to the spin-independent amplitude evaluated previously [Phys. Rev. D 92, 074031 (2015)], we obtain the spin-dependent amplitude over a broad energy range. The two amplitudes contain all the information about this process, and we, hence, can reconstruct the nonvanishing observables of the proton Compton scattering in the forward kinematics. The results are compared with predictions of chiral perturbation theory where available. The low-energy expansion of the spin-dependent Compton scattering amplitude yields the Gerasimov-Drell-Hearn (GDH) sum rule and relations for the forward spin polarizabilities (FSPs) of the proton. Our evaluation provides an empirical verification of the GDH sum rule for the proton, and yields empirical values of the proton FSPs. For the GDH integral, we obtain $204.5(21.4)$ $\mu$b, in agreement with the sum rule prediction: $204.784481(4)$ $\mu$b. For the FSPs, we obtain: $\gamma_0=-92.9(10.5) \times 10^{-6}$ fm$^4$, and $\bar{\gamma_0}=48.4(8.2) \times 10^{-6}$ fm$^6$, improving on the accuracy of previous evaluations.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^