Posts Tagged presence

Recent Postings from presence

Dynamics of ten clusters of galaxies with substructures

We present a detailed Chandra study of a sample of ten clusters of galaxies selected based on the presence of substructures in their optical images. The X-ray surface brightness maps of most of these clusters show anisotropic morphologies, especially in the central regions. A total of 22 well resolved significantly bright X-ray peaks (corresponding with high-density regions) are seen in the central parts (within r$_{\rm c}/2$) of the clusters. Multiple peaks are seen in central parts of six clusters. Eleven peaks are found to have optical counterparts (10 coinciding with the BCGs of the 10 clusters and one coinciding with the second brightest galaxy in A539). For most of the clusters, the optical substructures detected in the previous studies are found to be outside the field of view of Chandra. In the spectroscopically produced 2-D temperature maps, significantly lower temperatures are seen at the location of three peaks (two in A539 and one in A376). The centres of five clusters in our sample also host regions of higher temperature compared to the ambient medium, indicating the presence of galaxy scale mergers. The X-ray luminosity, gas mass and central cooling time estimates for all the clusters are presented. The radial X-ray surface-brightness profiles of all but one of the clusters are found to be best-fitted with a double-$\beta$ model, pointing towards the presence of double-phased central gas due to cool-cores. The cooling time estimates of all the clusters, however, indicate that none of them hosts a strong cool-core, although the possibility of weak cool-cores cannot be ruled out.

Stable static structures in models with galileon-like dynamics

We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space-time. We study models in which the scalar field engenders galileon-like dynamics and spontaneous symmetry breaking, inducing the presence of domain walls. The galileon-like behavior keeps to equation of motion second-order differential equation, so we focus on the presence of first-order equation that solves the equation of motion and very much help us to investigate stability on general grounds. We then illustrate the investigation with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure.

Stable static structures in models with galileon-like dynamics [Replacement]

We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space-time. We study models in which the scalar field engenders galileon-like dynamics and spontaneous symmetry breaking, inducing the presence of domain walls. The galileon-like behavior keeps to equation of motion second-order differential equation, so we focus on the presence of first-order equation that solves the equation of motion and very much help us to investigate stability on general grounds. We then illustrate the investigation with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure.

Remarks on the spin-one Duffin-Kemmer-Petiau equation in the presence of nonminimal vector interactions in (3+1) dimensions

In a recent paper published in this journal, Hassanabadi and collaborators [Advances in High Energy Physics, vol. 2012, Article ID 489641, 10 pages, 2012] analyzed the Duffin-Kemmer-Petiau equation in the presence of nonminimal vectorial interactions (Coulomb and harmonic oscillator potentials) in (3+1) dimensions for spin-one particles. In that paper, the authors used improperly the nonminimal vector interaction endangering in their main conclusions. We present a few properties of the nonminimal vector interactions and also present the correct equations to this problem. We show that the solution can be easily found by solving a Schr\"{o}dinger-like equation. As an application of this procedure, we consider spin-one particles in presence of a nonminimal vector linear potential. Additionally, we present the correct set of first-order coupled differential radial equation for the DKP equation in the presence of minimal vector and scalar interactions.

Short time scale spectral variability in the A0 supergiant HD92207 and the importance of line profile variations for the interpretation of FORS2 spectropolarimetric observations

Our recent search for the presence of a magnetic field in the bright early A-type supergiant HD92207 using FORS2 in spectropolarimetric mode indicated the presence of a longitudinal magnetic field of the order of a few hundred Gauss. Assuming the ideal case of a non-variable star, this discovery has recently been questioned in one work trying to demonstrate the importance of non-photon noise in FORS2 observations. The assumption of non-variability of HD92207 can, however, not be held since substantial profile variations of diverse lines on a time scale of minutes or maybe even a fraction of a minute are detected in FORS2 spectra. The presence of short-term spectral variability in blue supergiants, which are considered as type II supernova progenitors, has not been a subject of systematic studies before and is critical for the current theoretical understanding of their physics. Given the detected short term variability, the question of the presence of a magnetic field cannot be answered without proper modeling of the impact of such a variability on the measurements of the magnetic field. Since the short-term periodicity does not fit into the currently known domain of non-radially pulsating supergiants, its confirmation is of great importance for models of stellar evolution.

Radiation from a moving planar dipole layer: patch potentials vs dynamical Casimir effect [Cross-Listing]

We study the classical electromagnetic radiation due to the presence of a dipole layer on a plane that performs a bounded motion along its normal direction, to the first non-trivial order in the amplitude of that motion. We show that the total emitted power may be written in terms of the dipole layer autocorrelation function. We then apply the general expression for the emitted power to cases where the dipole layer models the presence of patch potentials, comparing the magnitude of the emitted radiation with that coming from the quantum vacuum in the presence of a moving perfect conductor (dynamical Casimir effect).

Constraining neutron star matter with QCD

In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount — or even presence — of quark matter inside the stars.

Constraining neutron star matter with QCD [Cross-Listing]

In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount — or even presence — of quark matter inside the stars.

Dynamics of tilted Bianchi models of types III, IV, V in presence of diffusion

We investigate the three types of class B Bianchi cosmologies filled with a tilted perfect fluid undergoing velocity diffusion in a scalar field background. We consider the two most importantcases: dust and radiation. A complete numerical integration of the Einstein field equations coupled with the diffusion equations is done to demonstrate how the presence of diffusion can affect the dynamics of cosmological evolution, where the most attention is paid to changes to the late-time behaviour. We show that aside from quantitative effects, diffusion can result in significant qualitative differences. For example, the cosmologies may recollapse if diffusion is sufficiently strong, or evolve towards the de Sitter state otherwise. In constrast to the diffusionless case, radiation isotropizes in presence of diffusion, and the tilt decreases exponentially at later times: $V\sim e^{-0.25\tau}$; also, we determine the decay rates of energy density, which become slower when the diffusion term is non-zero.

Women in Italian astronomy

This document gives some quantitative facts about the role of women in Italian astronomy. More than 26% of Italian IAU members are women: this is the largest fraction among the world leading countries in astronomy. Most of this high fraction is due to their presence in INAF, where women make up 32% of the research staff (289 out of 908) and 40% of the technical/administrative staff (173 out of 433); the percentage is slightly lower among permanent research staff (180 out of 599, about 30%). The presence of women is lower in the Universities (27 out of 161, about 17%, among staff). In spite of these (mildly) positive facts, we notice that similarly to other countries (e.g. USA and Germany) career prospects for Italian astronomers are clearly worse for women than for men. Within INAF, the fraction of women is about 35-40% among non-permanent position, 36% for Investigators, 17% for Associato/Primo Ricercatore, and only 13% among Ordinario/Dirigente di Ricerca. The situation is even worse at University (only 6% of Professore Ordinario are women). We found that similar trends are also present if researchers are ordered according to citation rather than position: for instance, women make up only 15% among the 100 most cited astronomers working in Italy, a percentage which is however twice that over all Europe. A similar fraction is found among first authors of most influential papers, which cannot be explained as a residual of a lower female presence in the past. We conclude that implicit sex discrimination factors probably dominate over explicit ones and are still strongly at work. Finally, we discuss the possible connection between the typical career pattern and these factors.

How dusty is alpha Centauri? Excess or non-excess over the infrared photospheres of main-sequence stars

[Abridged] Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby binary aCentauri have higher than solar metallicities, which is thought to promote giant planet formation. We aim to determine the level of emission from debris in the aCen system. Having already detected the temperature minimum, Tmin, of aCenA, we here attempt to do so also for the companion aCenB. Using the aCen stars as templates, we study possible effects Tmin may have on the detectability of unresolved dust discs around other stars. We use Herschel and APEX photometry to determine the stellar spectral energy distributions. In addition, we use APEX for spectral line mapping to study the complex background around aCen seen in the photometric images. Models of stellar atmospheres and discs are used to estimate the amount of debris around these stars. For solar-type stars, a fractional dust luminosity fd 2e-7 could account for SEDs that do not exhibit the Tmin-effect. Slight excesses at the 2.5 sigma level are observed at 24 mu for both stars, which, if interpreted to be due to dust, would correspond to fd (1-3)e-5. Dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the aCen stars, viz. <~4e-6 MMoon of 4 to 1000 mu size grains, distributed according to n a^-3.5. Similarly, for filled-in Tmin emission, corresponding EKBs could account for ~1e-3 MMoon of dust. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The F-IR SED of aCenB is marginally consistent with the presence of a minimum temperature region in the upper atmosphere. We also show that an aCenA-like temperature minimum may result in an erroneous apprehension about the presence of dust around other stars.

How dusty is alpha Centauri? Excess or non-excess over the infrared photospheres of main-sequence stars [Replacement]

[Abridged] Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby binary aCentauri have higher than solar metallicities, which is thought to promote giant planet formation. We aim to determine the level of emission from debris in the aCen system. Having already detected the temperature minimum, Tmin, of aCenA, we here attempt to do so also for the companion aCenB. Using the aCen stars as templates, we study possible effects Tmin may have on the detectability of unresolved dust discs around other stars. We use Herschel and APEX photometry to determine the stellar spectral energy distributions. In addition, we use APEX for spectral line mapping to study the complex background around aCen seen in the photometric images. Models of stellar atmospheres and discs are used to estimate the amount of debris around these stars. For solar-type stars, a fractional dust luminosity fd 2e-7 could account for SEDs that do not exhibit the Tmin-effect. Slight excesses at the 2.5 sigma level are observed at 24 mu for both stars, which, if interpreted to be due to dust, would correspond to fd (1-3)e-5. Dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the aCen stars, viz. <~4e-6 MMoon of 4 to 1000 mu size grains, distributed according to n a^-3.5. Similarly, for filled-in Tmin emission, corresponding EKBs could account for ~1e-3 MMoon of dust. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The F-IR SED of aCenB is marginally consistent with the presence of a minimum temperature region in the upper atmosphere. We also show that an aCenA-like temperature minimum may result in an erroneous apprehension about the presence of dust around other stars.

Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared

Models of the escape and retention of volatiles by minor icy objects exclude any presence of volatile ices on the surface of TNOs smaller than ~1000km in diameter at the typical temperature in this region of the solar system, whereas the same models show that water ice is stable on the surface of objects over a wide range of diameters. Collisions and cometary activity have been used to explain the process of surface refreshing of TNOs and Centaurs. These processes can produce surface heterogeneity that can be studied by collecting information at different rotational phases. The aims of this work are to study the surface composition of (20000)Varuna, a TNO with a diameter ~650km and to search for indications of rotational variability. We observed Varuna during two consecutive nights in January 2011 with NICS@TNG obtaining a set of spectra covering the whole rotation period of Varuna. After studying the spectra corresponding to different rotational phases, we did not find any indication of surface variability. In all the spectra, we detect an absorption at 2{\mu}m, suggesting the presence of water ice on the surface. We do not detect any other volatiles on the surface, although the S/N is not high enough to discard their presence. Based on scattering models, we present two possible compositions compatible with our set of data and discuss their implications in the frame of the collisional history of the Kuiper Belt. We find that the most probable composition for the surface of Varuna is a mixture of amorphous silicates, complex organics, and water ice. This composition is compatible with all the materials being primordial. However, our data can also be fitted by models containing up to a 10% of methane ice. For an object with the characteristics of Varuna, this volatile could not be primordial, so an event, such as an energetic impact, would be needed to explain its presence on the surface.

BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs [Replacement]

(Abridged) In the presence of a light WIMP (< 30 MeV), there are degeneracies among the nature of the WIMP, its couplings to standard model particles, its mass m_chi, and the number of equivalent neutrinos beyond the standard model, Delta N_nu. These degeneracies cannot be broken by the CMB constraint on the effective number of neutrinos, N_eff. However, big bang nucleosynthesis (BBN) is affected by a light WIMP and equivalent neutrinos, so the combination of BBN and CMB can break some of the degeneracies. Here, BBN predictions for abundances in the presence of a light WIMP and equivalent neutrinos are explored, and estimates of their observationally determined relic abundances are used to limit m_chi, Delta N_nu, and the present Universe baryon density (Omega_B h^2). These constraints are explored for Majorana and Dirac fermion WIMPs, as well as for real and complex scalar WIMPs that couple to electrons, positrons, and photons. In a separate paper this analysis is repeated for WIMPs that couple only to the standard model neutrinos, and constraints for the two cases are contrasted. Without a light WIMP but allowing for equivalent neutrinos, the combined BBN and CMB constraints favor N_eff = 3.46 +/- 0.17, Omega_B h^2 = 0.0224 +/- 0.0003, and Delta N_nu = 0.40 +/- 0.17. In this case, standard BBN (Delta N_nu = 0) is disfavored at ~98% confidence, and the presence of one sterile neutrino (Delta N_nu = 1) is disfavored at > 99% confidence. Allowing a light WIMP and Delta N_nu equivalent neutrinos together, the combined BBN and CMB data provide lower limits to the WIMP masses (> 0.5 – 5 MeV) that depend on the nature of the WIMP, favor m_chi ~8 MeV slightly over no WIMP, and loosen constraints on equivalent neutrinos, Delta N_nu = 0.65+0.46-0.35. While Delta N_nu = 0 is still disfavored at ~95% confidence with a light WIMP, Delta N_nu = 1 is now allowed.

BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs

(Abridged) In the presence of a light WIMP (< 30 MeV), there are degeneracies among the nature of the WIMP, its couplings to standard model particles, its mass m_chi, and the number of equivalent neutrinos beyond the standard model, Delta N_nu. These degeneracies cannot be broken by the CMB constraint on the effective number of neutrinos, N_eff. However, big bang nucleosynthesis (BBN) is affected by a light WIMP and equivalent neutrinos, so the combination of BBN and CMB can break some of the degeneracies. Here, BBN predictions for abundances in the presence of a light WIMP and equivalent neutrinos are explored, and estimates of their observationally determined relic abundances are used to limit m_chi, Delta N_nu, and the present Universe baryon density (Omega_B h^2). These constraints are explored for Majorana and Dirac fermion WIMPs as well as for real and complex scalar WIMPs that couple to electrons, positrons, and photons. In a separate paper this analysis is repeated for WIMPs that couple only to the standard model neutrinos, and constraints for the two cases are contrasted. Without a light WIMP but allowing for equivalent neutrinos, the combined BBN and CMB constraints favor N_eff = 3.45 +/- 0.17, Omega_B h^2 = 0.0224 +/- 0.0003, and Delta N_nu = 0.40 +/- 0.17. In this case, standard BBN (Delta N_nu = 0) is disfavored at ~98% confidence, and the presence of one sterile neutrino (Delta N_nu = 1) is disfavored at > 99% confidence. Allowing a light WIMP and Delta N_nu equivalent neutrinos together, the combined BBN and CMB data provide lower limits to the WIMP masses (> 0.5 – 5 MeV) that depend on the nature of the WIMP, favor m_chi ~8 MeV slightly over no WIMP, and loosen constraints on equivalent neutrinos, Delta N_nu = 0.65+0.46-0.35. While Delta N_nu = 0 is still disfavored at ~95% confidence with a light WIMP, Delta N_nu = 1 is now allowed.

BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs [Replacement]

(Abridged) In the presence of a light WIMP (< 30 MeV), there are degeneracies among the nature of the WIMP, its couplings to standard model particles, its mass m_chi, and the number of equivalent neutrinos beyond the standard model, Delta N_nu. These degeneracies cannot be broken by the CMB constraint on the effective number of neutrinos, N_eff. However, big bang nucleosynthesis (BBN) is affected by a light WIMP and equivalent neutrinos, so the combination of BBN and CMB can break some of the degeneracies. Here, BBN predictions for abundances in the presence of a light WIMP and equivalent neutrinos are explored, and estimates of their observationally determined relic abundances are used to limit m_chi, Delta N_nu, and the present Universe baryon density (Omega_B h^2). These constraints are explored for Majorana and Dirac fermion WIMPs, as well as for real and complex scalar WIMPs that couple to electrons, positrons, and photons. In a separate paper this analysis is repeated for WIMPs that couple only to the standard model neutrinos, and constraints for the two cases are contrasted. Without a light WIMP but allowing for equivalent neutrinos, the combined BBN and CMB constraints favor N_eff = 3.46 +/- 0.17, Omega_B h^2 = 0.0224 +/- 0.0003, and Delta N_nu = 0.40 +/- 0.17. In this case, standard BBN (Delta N_nu = 0) is disfavored at ~98% confidence, and the presence of one sterile neutrino (Delta N_nu = 1) is disfavored at > 99% confidence. Allowing a light WIMP and Delta N_nu equivalent neutrinos together, the combined BBN and CMB data provide lower limits to the WIMP masses (> 0.5 – 5 MeV) that depend on the nature of the WIMP, favor m_chi ~8 MeV slightly over no WIMP, and loosen constraints on equivalent neutrinos, Delta N_nu = 0.65+0.46-0.35. While Delta N_nu = 0 is still disfavored at ~95% confidence with a light WIMP, Delta N_nu = 1 is now allowed.

BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs [Replacement]

(Abridged) In the presence of a light WIMP (< 30 MeV), there are degeneracies among the nature of the WIMP, its couplings to standard model particles, its mass m_chi, and the number of equivalent neutrinos beyond the standard model, Delta N_nu. These degeneracies cannot be broken by the CMB constraint on the effective number of neutrinos, N_eff. However, big bang nucleosynthesis (BBN) is affected by a light WIMP and equivalent neutrinos, so the combination of BBN and CMB can break some of the degeneracies. Here, BBN predictions for abundances in the presence of a light WIMP and equivalent neutrinos are explored, and estimates of their observationally determined relic abundances are used to limit m_chi, Delta N_nu, and the present Universe baryon density (Omega_B h^2). These constraints are explored for Majorana and Dirac fermion WIMPs as well as for real and complex scalar WIMPs that couple to electrons, positrons, and photons. In a separate paper this analysis is repeated for WIMPs that couple only to the standard model neutrinos, and constraints for the two cases are contrasted. Without a light WIMP but allowing for equivalent neutrinos, the combined BBN and CMB constraints favor N_eff = 3.46 +/- 0.17, Omega_B h^2 = 0.0224 +/- 0.0003, and Delta N_nu = 0.40 +/- 0.17. In this case, standard BBN (Delta N_nu = 0) is disfavored at ~98% confidence, and the presence of one sterile neutrino (Delta N_nu = 1) is disfavored at > 99% confidence. Allowing a light WIMP and Delta N_nu equivalent neutrinos together, the combined BBN and CMB data provide lower limits to the WIMP masses (> 0.5 – 5 MeV) that depend on the nature of the WIMP, favor m_chi ~8 MeV slightly over no WIMP, and loosen constraints on equivalent neutrinos, Delta N_nu = 0.65+0.46-0.35. While Delta N_nu = 0 is still disfavored at ~95% confidence with a light WIMP, Delta N_nu = 1 is now allowed.

Asymptotically locally AdS and flat black holes in Horndeski theory [Replacement]

In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exits a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions grater than four and show that the presence of a cosmological term in the action allows to consider the case in which the standard kinetic term for the scalar it’s not present. In such scenario, the solution reduces to an asymptotically flat black hole.

Asymptotically locally AdS and flat black holes in Horndeski theory [Replacement]

In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exits a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions grater than four and show that the presence of a cosmological term in the action allows to consider the case in which the standard kinetic term for the scalar it’s not present. In such scenario, the solution reduces to an asymptotically flat black hole.

Asymptotically locally AdS and flat black holes in Horndeski theory

In this paper we construct asymptotically locally AdS and flat black holes in the presence of scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside of the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exits a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. We extend the solution to arbitrary dimensions grater than four and show that the presence of a cosmological term in the action allows to consider the case in which the standard kinetic term for the scalar its not present. In such scenario, the solution reduces to an asymptotically locally flat black hole

Rest-frame ultra-violet spectra of massive galaxies at z=3: evidence for high-velocity outflows [Replacement]

Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. In this paper we aim to: (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts z > 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows, and measure their velocities. To achieve this, we analysed deep, high-resolution (R~2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts z > 2.5. We also serendipitously found two mask fillers at redshift z > 2.5, which originally were assigned photometric redshifts 2.0 < z < 2.5. In the four highest-quality spectra we derived outflow velocities by fitting the absorption line profiles with models including multiple dynamical components. We found strongly asymmetric, high-ionisation lines, from which we derived outflow velocities ranging between 480 and 1518 km/s. We revised the spectral energy distribution fitting U-band through 8 micron photometry, including the analysis of a power-law component subtraction to identify the possible presence of active galactic nuclei (AGN). The revised stellar masses of all but one of our targets are >1e10 Msun, with four having stellar masses > 5e10 Msun. Three galaxies have a significant power-law component in their spectral energy distributions, which indicates that they host AGN. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman break galaxies at z ~ 3. The incidence of high-velocity outflows (~40% within our sample) is also much higher than among massive galaxies at z < 1, which is consistent with the powerful star formation and nuclear activity that most massive galaxies display at z > 2.

Rest-frame ultra-violet spectra of massive galaxies at z=3: evidence of high-velocity outflows [Replacement]

Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. In this paper we aim to: (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts z > 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows, and measure their velocities. To achieve this, we analysed deep, high-resolution (R~2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts z > 2.5. We also serendipitously found two mask fillers at redshift z > 2.5, which originally were assigned photometric redshifts 2.0 < z < 2.5. In the four highest-quality spectra we derived outflow velocities by fitting the absorption line profiles with models including multiple dynamical components. We found strongly asymmetric, high-ionisation lines, from which we derived outflow velocities ranging from 480 to 1518 km/s. The two galaxies with highest velocity show signs of AGN. We revised the spectral energy distribution fitting U-band through 8 micron photometry, including the analysis of a power-law component subtraction to identify the possible presence of active galactic nuclei (AGN). The revised stellar masses of all but one of our targets are >1e10 Msun, with four having stellar masses > 5e10 Msun. Three galaxies have a significant power-law component in their spectral energy distributions, which indicates that they host AGN. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman break galaxies at z ~ 3. The incidence of high-velocity outflows (~40% within our sample) is also much higher than among massive galaxies at z < 1, which is consistent with the powerful star formation and nuclear activity that most massive galaxies display at z > 2.

Rest-frame ultra-violet spectra of massive galaxies at z=3: evidence for high-velocity outflows

Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. In this paper we aim to: (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts larger than 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows, and measure their velocities. To achieve this, we analysed deep, high-resolution (R=2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts larger than 2.5. We also serendipitously found two mask fillers at redshift larger than 2.5, which originally were assigned photometric redshifts between 2.0 and 2.5. In the four highest-quality spectra we derived outflow velocities by fitting the absorption line profiles with models including multiple dynamical components. We found strongly asymmetric, high-ionisation lines, from which we derived outflow velocities ranging between 480 and 1528 km/s. We revised the spectral energy distribution fitting U-band through 8 micron photometry, including the analysis of a power-law component subtraction to identify the possible presence of active galactic nuclei (AGN). The revised stellar masses of all but one of our targets are larger than 1e10 solar masses, with four having stellar masses 5e10 solar masses. Three galaxies have a significant power-law component in their spectral energy distributions, which indicates that they host AGN. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman break galaxies at redshifts around 3. The incidence of high-velocity outflows (approximately 40 per cent within our sample) is also much higher than among massive galaxies at redshifts below 1. (Abridged)

Rest-frame ultra-violet spectra of massive galaxies at z=3: evidence for high-velocity outflows [Replacement]

Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. In this paper we aim to: (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts z > 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows, and measure their velocities. To achieve this, we analysed deep, high-resolution (R~2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts z > 2.5. We also serendipitously found two mask fillers at redshift z > 2.5, which originally were assigned photometric redshifts 2.0 < z < 2.5. In the four highest-quality spectra we derived outflow velocities by fitting the absorption line profiles with models including multiple dynamical components. We found strongly asymmetric, high-ionisation lines, from which we derived outflow velocities ranging from 480 to 1518 km/s. The two galaxies with highest velocity show signs of AGN. We revised the spectral energy distribution fitting U-band through 8 micron photometry, including the analysis of a power-law component subtraction to identify the possible presence of active galactic nuclei (AGN). The revised stellar masses of all but one of our targets are >1e10 Msun, with four having stellar masses > 5e10 Msun. Three galaxies have a significant power-law component in their spectral energy distributions, which indicates that they host AGN. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman break galaxies at z ~ 3. The incidence of high-velocity outflows (~40% within our sample) is also much higher than among massive galaxies at z < 1, which is consistent with the powerful star formation and nuclear activity that most massive galaxies display at z > 2.

Cosmological solutions in F(T) gravity with the presence of spinor fields

The presence of spinor fields is considered in the framework of some extensions of teleparallel gravity, where the Weitzenb\"ock connection is assumed. Some well known models as the Chaplygin gas and its generalizations are reconstructed in terms of a spinor field in the framework of teleparallel gravity. In addition, the {\Lambda}CDM model is also realized with the presence of a spinor field where a simple self-intercating term is considered and the corresponding action is reconstructed. Other cosmological solutions and the reconstruction of the gravitational action in terms of the scalar torsion is studied.

Cosmological solutions in F(T) gravity with the presence of spinor fields [Cross-Listing]

The presence of spinor fields is considered in the framework of some extensions of teleparallel gravity, where the Weitzenb\"ock connection is assumed. Some well known models as the Chaplygin gas and its generalizations are reconstructed in terms of a spinor field in the framework of teleparallel gravity. In addition, the {\Lambda}CDM model is also realized with the presence of a spinor field where a simple self-intercating term is considered and the corresponding action is reconstructed. Other cosmological solutions and the reconstruction of the gravitational action in terms of the scalar torsion is studied.

Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance

Loop quantum gravity corrections, in the presence of inhomogeneities, can lead to a deformed constraint algebra. Such a deformation implies that the effective theory is no longer generally covariant. As a consequence, the geometrical concepts used in the classical theory lose their meaning. In the present paper we propose a method, based on canonical transformation on the phase space of the effective theory, to systematically recover the classical constraint algebra in the presence of the inverse triad corrections as well as in the presence of holonomy corrections. We show, by way of explicit example, that this also leads to the recovery of general covariance of the theory in the presence of inverse triad connections, implying that one can once again use the geometrical concepts to analyze the solutions in the presence of these quantum gravity corrections.

Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance [Replacement]

Loop quantum gravity corrections, in the presence of inhomogeneities, can lead to a deformed constraint algebra. Such a deformation implies that the effective theory is no longer generally covariant. As a consequence, the geometrical concepts used in the classical theory lose their meaning. In the present paper we propose a method, based on canonical transformation on the phase space of the effective theory, to systematically recover the classical constraint algebra in the presence of the inverse triad corrections as well as in the presence of the holonomy corrections. We show, by way of explicit example, that this also leads to the recovery of general covariance of the theory in the presence of inverse triad corrections, implying that one can once again use the geometrical concepts to analyze the solutions in the presence of these quantum gravity corrections.

Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance [Replacement]

Loop quantum gravity corrections, in the presence of inhomogeneities, can lead to a deformed constraint algebra. Such a deformation implies that the effective theory is no longer generally covariant. As a consequence, the geometrical concepts used in the classical theory lose their meaning. In the present paper we propose a method, based on canonical transformation on the phase space of the spherically symmetric effective theory, to systematically recover the classical constraint algebra in the presence of the inverse triad corrections as well as in the presence of the holonomy corrections. We show, by way of explicit example, that this also leads to the recovery of general covariance of the theory in the presence of inverse triad corrections, implying that one can once again use the geometrical concepts to analyze the solutions in the presence of these quantum gravity corrections.

Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance [Replacement]

Loop quantum gravity corrections, in the presence of inhomogeneities, can lead to a deformed constraint algebra. Such a deformation implies that the effective theory is no longer generally covariant. As a consequence, the geometrical concepts used in the classical theory lose their meaning. In the present paper we propose a method, based on canonical transformation on the phase space of the spherically symmetric effective theory, to systematically recover the classical constraint algebra in the presence of the inverse triad corrections as well as in the presence of the holonomy corrections. We show, by way of explicit example, that this also leads to the recovery of general covariance of the theory in the presence of inverse triad corrections, implying that one can once again use the geometrical concepts to analyze the solutions in the presence of these quantum gravity corrections.

Generation and evolution of stable stellar magnetic fields in young A-type stars

While the presence of magnetic fields on low-mass stars is attributed to a dynamo process essentially driven by convective motions, the existence of magnetic fields on intermediate-mass stars has very likely other reasons. Presuming that the fields we see are nearly constant in time, the paper focuses on the generation of stable magnetic configurations at the early stages of stellar evolution. The convective processing of an initial magnetic field during the pre-main-sequence phase is studied in a very simple model star. Azimuthal magnetic fields are found to be typical remnants in the upcoming radiative envelope after the convection has receded.

Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

We study gravitational collapse of a homogeneous scalar field, minimally coupled to gravity, in the presence of a particular type of dynamical deformation between the canonical momenta of the scale factor and of the scalar field. In the absence of such a deformation, a class of solutions can be found in the literature \cite{JG04}, whereby a curvature singularity occurs at the collapse end state, which can be either hidden behind a horizon or be visible to external observers. However, when the phase space is deformed, as implemented herein this paper, we find that the singularity may be either removed or instead, attained faster. More precisely, for negative values of the deformation parameter, we identify the emergence of a negative pressure term, which slows down the collapse so that the singularity is replaced with a bounce. In this respect, the formation of dynamical horizon can be avoided depending on the suitable choice of the boundary surface of the star. Whereas for positive values, the pressure that originates from the deformation effects assists the collapse towards the singularity formation. In this case, since the speed of collapse is unbounded, there can not be found any minimum value for the boundary surface and furthermore the horizon forms earlier than the case in which the phase space deformations are absent. These results are obtained by means of a thoroughly numerical discussion.

Hiding in the Shadows: Searching for Planets in Pre--transitional and Transitional Disks

Transitional and pre–transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous work. Dynamical influences from a planet on a circular orbit are shown to enhance dust production in the disk interior and exterior to the planet orbit while removing planetesimals from the the orbit itself creating a clearly defined gap. In the case of an eccentric planet the gap opened by the planet is not as clear as the circular case but there is a detectable asymmetry in the dust disk.

Hiding in the Shadows: Searching for Planets in Pre--transitional and Transitional Disks [Replacement]

Transitional and pre–transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous work. Dynamical influences from a planet on a circular orbit are shown to enhance dust production in the disk interior and exterior to the planet orbit while removing planetesimals from the the orbit itself creating a clearly defined gap. In the case of an eccentric planet the gap opened by the planet is not as clear as the circular case but there is a detectable asymmetry in the dust disk.

The mechanism why colliders could create quasi-stable black holes

It has been postulated that black holes could be created in particle collisions within the range of the available energies for nowadays colliders (LHC). In this paper we analyze the evaporation of a type of black holes that are candidates for this specific behaviour, namely, small black holes on a brane in a world with large extra-dimensions. We examine their evolution under the assumption that energy conservation is satisfied during the process and compare it with the standard evaporation approach. We claim that, rather than undergoing a quick total evaporation, black holes become quasi-stable. We comment on the (absence of) implications for safety of this result. We also discuss how the presence of black holes together with the correctness of the energy conservation approach might be experimentally verified.

Magnetic field generation in galactic molecular clouds

We investigate the magnetic field which is generated by turbulent motions of a weakly ionized gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-Kraichnan model we assume a medium to be homogeneous and a neutral gas velocity field to be isotropic and delta-correlated in time. We take into consideration the presence of a mean magnetic field, which defines a preferred direction in space and eliminates isotropy of magnetic field correlators. Evolution equations for the anisotropic correlation function are derived. Isotropic cases with zero mean magnetic field as well as with small mean magnetic field are investigated. It is shown that stationary bounded solutions exist only in the presence of the mean magnetic field for the Kolmogorov neutral gas turbulence. The dependence of the magnetic field fluctuations amplitude on the mean field is calculated. The stationary anisotropic solution for the magnetic turbulence is also obtained for large values of the mean magnetic field.

Emergence of spacetime dynamics in entropy corrected and braneworld models

A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation $% \triangle V=\triangle t(N_{\mathrm{sur}}-N_{\mathrm{bulk}})$. In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, $N_{\mathrm{sur}}$, using the general entropy corrected formula $S=\frac{A}{4 L_{p}^2}+s(A)$. Then, as two example, by applying the Padmanabhan’s idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP branworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan’s proposal.

Role of thermal conduction in an advective accretion with bipolar outflows

Steady-state advective accretion flows in the presence of thermal conduction are studied. All three components of velocity in a spherical coordinates are considered and the flow displays both inflowing and outflowing regions according to our similarity solutions. Thermal conductivity provides latitudinal energy transport and so, the flow rotates more slowly and becomes hotter with increasing thermal conductivity coefficient. We also show that opening angle of the outflow region decreases as thermal conduction becomes stronger.

Axion as a Cold Dark Matter Candidate: Proof to Second order [Cross-Listing]

We prove that the axion as a coherently oscillating scalar field acts as a cold dark matter (CDM) to the second-order perturbations in all cosmological scales including the super-horizon scale. The proof is made in the axion-comoving gauge. For a canonical mass, the axion pressure term causes deviation from the CDM only on scales smaller than the Solar System size. Beyond such a small scale the equations of the axion fluid are the same as the ones of the CDM based on the CDM-comoving gauge which are exactly identical to the Newtonian equations to the second order. We also show that the axion fluid does not generate the rotational (vector-type) perturbation even to the second order. Thus, in the case of axion fluid, we have the relativistic/Newtonian correspondence to the second order, even considering the rotational perturbation. Our analysis is made in the presence of the cosmological constant, and can be easily extended to the realistic situation including other components of fluids and fields.

Axion as a Cold Dark Matter Candidate: Proof to Second order

We prove that the axion as a coherently oscillating scalar field acts as a cold dark matter (CDM) to the second-order perturbations in all cosmological scales including the super-horizon scale. The proof is made in the axion-comoving gauge. For a canonical mass, the axion pressure term causes deviation from the CDM only on scales smaller than the Solar System size. Beyond such a small scale the equations of the axion fluid are the same as the ones of the CDM based on the CDM-comoving gauge which are exactly identical to the Newtonian equations to the second order. We also show that the axion fluid does not generate the rotational (vector-type) perturbation even to the second order. Thus, in the case of axion fluid, we have the relativistic/Newtonian correspondence to the second order, even considering the rotational perturbation. Our analysis is made in the presence of the cosmological constant, and can be easily extended to the realistic situation including other components of fluids and fields.

HARPS spectropolarimetry of O and B-type stars

Our knowledge of the presence and the strength of magnetic fields in massive O and B-type stars remains very poor. Recent observations indicate that the presence of magnetic fields is responsible for a wide range of phenomena observed in massive stars at different wavelengths, such as chemical peculiarity, excess of emission in UV-wind lines and periodic UV wind-line variability, unusual X-ray emission, and cyclic variability in Halpha and He II 4686. However, it is difficult to establish relationships to multiwavelength diagnostics, as the strength of the detected magnetic fields and their geometry differ from one star to the other. In this work, we present new magnetic field measurements in a number of O and B-type stars of different classification observed with HARPS in spectropolarimetric mode.

Comparison of physical properties of quiet and active regions through the analysis of MHD simulations of the solar photosphere

Recent observations have shown that the photometric and dynamic properties of granulation and of small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical Hydro and Magneto Hydrodynamic simulations characterized by different amount of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.

Light-weight Flexible Magnetic Shields For Large-Aperture Photomultiplier Tubes [Cross-Listing]

Thin flexible sheets of high-permeability FINEMET foils encased in thin plastic layers have been used to shield various types of 20-cm-diameter photomultiplier tubes from ambient magnetic fields. In the presence of the Earth’s magnetic field this type of shielding is shown to increase the collection efficiency of photoelectrons and can improve the uniformity of response of these photomultiplier tubes.

Relativistic jets in narrow-line Seyfert 1 galaxies. New discoveries and open questions

Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic gamma-ray sky, but the discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.

MHD waves in two-dimensional prominences embedded in coronal arcades

Solar prominence models used so far in the analysis of MHD waves in such structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional neglecting propagation in the ignorable direction. We demonstrate how by using different numerical tools we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 min range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 min. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.

Boundary conditions for NLTE polarized radiative transfer with incident radiation

Polarized NLTE radiative transfer in the presence of scattering in spectral lines and/or in continua may be cast in a so-called reduced form for six reduced components of the radiation field. In this formalism the six components of the reduced source function are angle-independent quantities. It thus reduces drastically the storage requirement of numerical codes. This approach encounters a fundamental problem when the medium is illuminated by a polarized incident radiation, because there is a priori no way of relating the known (and measurable) Stokes parameters of the incident radiation to boundary conditions for the reduced equations. The origin of this problem is that there is no unique way of deriving the radiation reduced components from its Stokes parameters (only the inverse operation is clearly defined). The method proposed here aims at enabling to work with arbitrary incident radiation field (polarized or unpolarized). In previous works an ad-hoc treatment of the boundary conditions, applying to cases where the incident radiation is unpolarized, has been used. In this note we show that it is possible to account for the incident radiation in a rigorous way, without any assumption on its properties, by expressing the radiation field as the sum of a directly transmitted radiation and of a so-called diffuse radiation. The diffuse radiation field obeys a transfer equation with no incident radiation that may be solved in the reduced form. The first scattering of the incident radiation introduces primary creation terms in the six components of the reduced source function. Once the reduced polarized transfer problem is solved for the diffuse radiation field, its Stokes parameters can be computed. We perform numerical computations of such cases, showing that the emergent line-polarization may be significantly affected by the polarization of the incident radiation.

Red bulgeless galaxies in SDSS DR7. Are there any AGN hosts?

With the main goal of finding bulgeless galaxies harbouring super massive black holes and showing, at most, just residual star formation activity, we have selected a sample of massive bulgeless red sequence galaxies from the SDSS-DR7, based on the NYU-VAGC catalogue. Multivavelength data were retrieved using EURO-VO tools, and the objects are characterised in terms of degree of star formation and the presence of an AGN. We have found seven objects that are quenched massive galaxies, that have no prominent bulge and that show signs of extra activity in their nuclei, five of them being central in their halo. These objects are rather robust candidates for rare systems that, though devoid of a significant bulge, harbor a supermassive black hole with an activity level likely capable of having halted the star formation through feedback.

Long-term polarization observations of Mira variable stars suggest asymmetric structures

Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2 – 7 %, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.

Particle Production during Inflation in Light of PLANCK

We consider trapped inflation in a higher dimensional field space: particle production at a dense distribution of extra species points leads to a terminal velocity at which inflation can be driven in steep potentials. We compute an additional, nearly scale invariant contribution to the power-spectrum, caused by back-scattering of the continuously produced particles. Since this contribution has a blue tilt, it has to be sub-dominant, leading to an upper bound on the coupling constant between the inflatons and the extra species particles. We comment on the allowed parameter space, which remains relatively broad. We further show that the currently observed red spectrum is consistent with inflation driven at the terminal velocity, while the need for functional fine tuning (the eta-problem) is reduced. A tensor to scalar ratio of r = 4 (1-n_s) is a firm prediction, which is in tension with current Planck results. An absence of gravitational waves at this level would rule out trapped inflation of this type, and limits the presence of extra species points during inflation.

Particle Production during Inflation in Light of PLANCK [Cross-Listing]

We consider trapped inflation in a higher dimensional field space: particle production at a dense distribution of extra species points leads to a terminal velocity at which inflation can be driven in steep potentials. We compute an additional, nearly scale invariant contribution to the power-spectrum, caused by back-scattering of the continuously produced particles. Since this contribution has a blue tilt, it has to be sub-dominant, leading to an upper bound on the coupling constant between the inflatons and the extra species particles. We comment on the allowed parameter space, which remains relatively broad. We further show that the currently observed red spectrum is consistent with inflation driven at the terminal velocity, while the need for functional fine tuning (the eta-problem) is reduced. A tensor to scalar ratio of r = 4 (1-n_s) is a firm prediction, which is in tension with current Planck results. An absence of gravitational waves at this level would rule out trapped inflation of this type, and limits the presence of extra species points during inflation.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^