Posts Tagged polarization measurements

Recent Postings from polarization measurements

HST observations of the limb polarization of Titan

Titan is an excellent test case for detailed studies of the scattering polarization from thick hazy atmospheres. We present the first limb polarization measurements of Titan, which are compared as a test to our limb polarization models. Previously unpublished imaging polarimetry from the HST archive is presented which resolves the disk of Titan. We determine flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigate the degradation and cancelation effects in the polarization signal due to the limited spatial resolution of our observations. Taking this into account we derive corrected values for the limb polarization in Titan. The results are compared with limb polarization models, using atmosphere and haze scattering parameters from the literature. In the wavelength bands between 250 nm and 2000 nm a strong limb polarization of about 2-7 % is detected with a position angle perpendicular to the limb. The fractional polarization is highest around 1 micron. As a first approximation, the polarization seems to be equally strong along the entire limb. The detected polarization is compatible with expectations from previous polarimetric observations taken with Voyager 2, Pioneer 11, and the Huygens probe. Our results indicate that ground-based monitoring measurements of the limb-polarization of Titan could be useful for investigating local haze properties and the impact of short-term and seasonal variations of the hazy atmosphere of Titan. Planets with hazy atmospheres similar to Titan are particularly good candidates for detection with the polarimetric mode of the upcoming planet finder instrument at the VLT. Therefore, a good knowledge of the polarization properties of Titan is also important for the search and investigation of extra-solar planets.

Quarkonia production and polarization at the hadron colliders [Cross-Listing]

This talk presents a review of recent results for quarkonium production at the LHC from ATLAS, CMS, LHCb, and ALICE. Production cross sections for $J/\psi$, $\psi(2S)$, and $\Upsilon(mS)$, and production ratios for $\chi_{c,bJ}$ are found to be in good agreement with predictions from non-relativistic QCD. In contrast, spin-alignment (polarization) measurements seem to disagree with all theoretical predictions. Some other production channels useful for investigating quarkonium hadroproduction mechanisms are also considered.

GRB 140206A: the most distant polarized Gamma-Ray Burst

The nature of the prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is still far from being completely elucidated. The measure of linear polarization is a powerful tool that can be used to put further constraints on the content and magnetization of the GRB relativistic outflows, as well as on the radiation processes at work. To date only a handful of polarization measurements are available for the prompt emission of GRBs. Here we present the analysis of the prompt emission of GRB 140206A, obtained with INTEGRAL/IBIS, Swift/BAT, and Fermi/GBM. Using INTEGRAL/IBIS as a Compton polarimeter we were able to constrain the linear polarization level of the second peak of this GRB as being larger than 28% at 90% c.l. We also present the GRB afterglow optical spectroscopy obtained at the Telescopio Nazionale Galileo (TNG), which allowed us the measure the distance of this GRB, z=2.739. This distance value together with the polarization measure obtained with IBIS, allowed us to derive the deepest and most reliable limit to date (xi <1×10-16) on the possibility of Lorentz Invariance Violation, measured through the vacuum birefringence effect on a cosmological source.

Evidence of a Mira-like tail and bow shock about the semi-regular variable V CVn from four decades of polarization measurements

Polarization is a powerful tool for understanding stellar atmospheres and circumstellar environments. Mira and semi-regular variable stars have been observed for decades and some are known to be polarimetrically variable, however, the semi-regular variable V Canes Venatici displays an unusually large, unexplained amount of polarization. We present ten years of optical polarization observations obtained with the HPOL instrument, supplemented by published observations spanning a total interval of about forty years for V CVn. We find that V CVn shows large polarization variations ranging from 1 – 6%. We also find that for the past forty years the position angle measured for V CVn has been virtually constant suggesting a long-term, stable, asymmetric structure about the star. We suggest that this asymmetry is caused by the presence of a stellar wind bow shock and tail, consistent with the star’s large space velocity.

Polarization measurements analysis II. Best estimators of polarization fraction and angle

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known bias in the presence of measurement noise, as has been described in part I of this series. In this paper, part II of the series, we explore the extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the sensitivity of these estimators to the asymmetry of the covariance matrix which may vary over large datasets. We present for the first time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval method. From this pool of estimators, we build recipes adapted to different use-cases: build a mask, compute large maps, and deal with low S/N data. More generally, we show that the traditional estimators suffer from discontinuous distributions at low S/N, while the asymptotic and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, and is compared with a Gaussian. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution is shown to be strongly asymmetric with a sharp cut at low S/N.Finally, we present an optimization of the estimator derived from the Bayesian analysis using adapted priors.

Polarization measurements analysis I. Impact of the full covariance matrix on polarization fraction and angle measurements

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, the metrology of polarization needs to improve. In particular, it is crucial to take into account full knowledge of the noise properties when estimating polarization fraction and angle, which suffer from well-known biases. While strong simplifying assumptions have usually been made in polarization analysis, we present a method for including the full covariance matrix of the Stokes parameters in estimates for the distributions of the polarization fraction and angle. We thereby quantify the impact of the noise properties on the biases in the observational quantities. We derive analytical expressions for the pdf of these quantities, taking into account the full complexity of the covariance matrix, including the Stokes I intensity components. We perform simulations to explore the impact of the noise properties on the statistical variance and bias of the polarization fraction and angle. We show that for low variations of the effective ellipticity between the Q and U components around the symmetrical case the covariance matrix may be simplified as is usually done, with negligible impact on the bias. For S/N on intensity lower than 10 the uncertainty on the total intensity is shown to drastically increase the uncertainty of the polarization fraction but not the relative bias, while a 10\% correlation between the intensity and the polarized components does not significantly affect the bias of the polarization fraction. We compare estimates of the uncertainties affecting polarization measurements, addressing limitations of estimates of the S/N, and we show how to build conservative confidence intervals for polarization fraction and angle simultaneously. This study is the first of a set of papers dedicated to the analysis of polarization measurements.

Compatibility of Planck and BICEP2 in the Light of Inflation

We investigate the implications for inflation of the detection of B-modes polarization in the Cosmic Microwave Background (CMB) by BICEP2. We show that the hypothesis of primordial origin of the measurement is only favored by the first four bandpowers, while the others would prefer unreasonably large values of the tensor-to-scalar ratio. Using only those four bandpowers, we carry out a complete analysis in the cosmological and inflationary slow-roll parameter space using the BICEP2 polarization measurements alone and extract the Bayesian evidences and complexities for all the Encyclopaedia Inflationaris models. This allows us to determine the most probable and simplest BICEP2 inflationary scenarios. Although this list contains the simplest monomial potentials, it also includes many other scenarios, suggesting that focusing model building efforts on large field models only is unjustified at this stage. We demonstrate that the sets of inflationary models preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension between the two data sets. We address this tension with a Bayesian measure of compatibility between BICEP2 and Planck. We find that for models favored by Planck the two data sets tend to be incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred models. As a result, it would be premature to draw any conclusion on the best Planck models, such as Starobinsky and/or Kahler moduli inflation. For the subset of scenarios not exhibiting data sets incompatibility, we update the evidences and complexities using both data sets together.

Compatibility of Planck and BICEP2 in the Light of Inflation [Cross-Listing]

We investigate the implications for inflation of the detection of B-modes polarization in the Cosmic Microwave Background (CMB) by BICEP2. We show that the hypothesis of primordial origin of the measurement is only favored by the first four bandpowers, while the others would prefer unreasonably large values of the tensor-to-scalar ratio. Using only those four bandpowers, we carry out a complete analysis in the cosmological and inflationary slow-roll parameter space using the BICEP2 polarization measurements alone and extract the Bayesian evidences and complexities for all the Encyclopaedia Inflationaris models. This allows us to determine the most probable and simplest BICEP2 inflationary scenarios. Although this list contains the simplest monomial potentials, it also includes many other scenarios, suggesting that focusing model building efforts on large field models only is unjustified at this stage. We demonstrate that the sets of inflationary models preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension between the two data sets. We address this tension with a Bayesian measure of compatibility between BICEP2 and Planck. We find that for models favored by Planck the two data sets tend to be incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred models. As a result, it would be premature to draw any conclusion on the best Planck models, such as Starobinsky and/or Kahler moduli inflation. For the subset of scenarios not exhibiting data sets incompatibility, we update the evidences and complexities using both data sets together.

Compatibility of Planck and BICEP2 in the Light of Inflation [Cross-Listing]

We investigate the implications for inflation of the detection of B-modes polarization in the Cosmic Microwave Background (CMB) by BICEP2. We show that the hypothesis of primordial origin of the measurement is only favored by the first four bandpowers, while the others would prefer unreasonably large values of the tensor-to-scalar ratio. Using only those four bandpowers, we carry out a complete analysis in the cosmological and inflationary slow-roll parameter space using the BICEP2 polarization measurements alone and extract the Bayesian evidences and complexities for all the Encyclopaedia Inflationaris models. This allows us to determine the most probable and simplest BICEP2 inflationary scenarios. Although this list contains the simplest monomial potentials, it also includes many other scenarios, suggesting that focusing model building efforts on large field models only is unjustified at this stage. We demonstrate that the sets of inflationary models preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension between the two data sets. We address this tension with a Bayesian measure of compatibility between BICEP2 and Planck. We find that for models favored by Planck the two data sets tend to be incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred models. As a result, it would be premature to draw any conclusion on the best Planck models, such as Starobinsky and/or Kahler moduli inflation. For the subset of scenarios not exhibiting data sets incompatibility, we update the evidences and complexities using both data sets together.

Testing CPT Symmetry with Current and Future CMB Measurements

In this paper we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector $\mathcal{L}_{\rm cs}\sim p_\mu A_\nu \tilde{F}^{\mu\nu}$ which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining current CMB polarization measurements, the nine-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the isotropic rotation angle $\bar{\alpha} = -2.12 \pm 1.14$ ($1\sigma$), indicating an about $2\sigma$ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [$\Delta{\alpha}({\bf \hat{n}})$] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data can not constrain the related parameters very well. We obtain the 95\% C.L. upper limit of the variance of the anisotropies of the rotation angle $C^\alpha(0) < 0.035$ from all the CMB datasets. More interestingly, including the anisotropies of rotation angle could lower the best fit value of $r$ and relax the tension on the constraints of $r$ between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on $\bar{\alpha}$ and $\Delta{\alpha}({\bf \hat{n}})$. Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

Testing CPT Symmetry with Current and Future CMB Measurements [Cross-Listing]

In this paper we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector $\mathcal{L}_{\rm cs}\sim p_\mu A_\nu \tilde{F}^{\mu\nu}$ which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining current CMB polarization measurements, the nine-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the isotropic rotation angle $\bar{\alpha} = -2.12 \pm 1.14$ ($1\sigma$), indicating an about $2\sigma$ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [$\Delta{\alpha}({\bf \hat{n}})$] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data can not constrain the related parameters very well. We obtain the 95\% C.L. upper limit of the variance of the anisotropies of the rotation angle $C^\alpha(0) < 0.035$ from all the CMB datasets. More interestingly, including the anisotropies of rotation angle could lower the best fit value of $r$ and relax the tension on the constraints of $r$ between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on $\bar{\alpha}$ and $\Delta{\alpha}({\bf \hat{n}})$. Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

Testing CPT Symmetry with Current and Future CMB Measurements [Cross-Listing]

In this paper we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector $\mathcal{L}_{\rm cs}\sim p_\mu A_\nu \tilde{F}^{\mu\nu}$ which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining current CMB polarization measurements, the nine-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the isotropic rotation angle $\bar{\alpha} = -2.12 \pm 1.14$ ($1\sigma$), indicating an about $2\sigma$ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [$\Delta{\alpha}({\bf \hat{n}})$] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data can not constrain the related parameters very well. We obtain the 95\% C.L. upper limit of the variance of the anisotropies of the rotation angle $C^\alpha(0) < 0.035$ from all the CMB datasets. More interestingly, including the anisotropies of rotation angle could lower the best fit value of $r$ and relax the tension on the constraints of $r$ between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on $\bar{\alpha}$ and $\Delta{\alpha}({\bf \hat{n}})$. Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

Tracing the ISM magnetic field morphology: The potential of multi-wavelength polarization measurements

$\textit{Aims.}$ We present a case study to demonstrate the potential of multi-wavelength polarization measurements. The aim is to investigate the effects that dichroic polarization and thermal re-emission have on tracing the magnetic field in the interstellar medium (ISM). Furthermore, we analyze the crucial influence of imperfectly aligned compact dust grains on the resulting synthetic continuum polarization maps.$\\ \textit{Methods.}$ We developed an extended version of the well-known 3D Monte-Carlo radiation transport code MC3D for multi-wavelength polarization simulations running on an adaptive grid.We investigated the interplay between radiation, magnetic fields and dust grains. Our results were produced by post-processing both ideal density distributions and sophisticated magnetohydrodynamic (MHD) collapse simulations with radiative transfer simulations. We derived spatially resolved maps of intensity, optical depth, and linear and circular polarization at various inclination angles and scales in a wavelength range from 7 $\mu m$ to 1 $mm$.$\\ \textit{Results.}$ We predict unique patterns in linear and circular polarization maps for different types of density distributions and magnetic field morphologies for test setups and sophisticated MHD collapse simulations. We show that alignment processes of interstellar dust grains can significantly influence the resulting synthetic polarization maps. Multi-wavelength polarization measurements allow one to predict the morphology of the magnetic field inside the ISM. The interpretation of polarization measurements of complex structures still remains ambiguous because of the large variety of the predominant parameters in the ISM.

A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements

The anisotropic nature of active galactic nuclei (AGN) is thought to be responsible for the observational differences between type-1 (pole-on) and type-2 (edge-on) nearby Seyfert-like galaxies. In this picture, the detection of emission and/or absorption features is directly correlated to the inclination of the system. The AGN structure can be further probed by using the geometry-sensitive technique of polarimetry, yet the pairing between observed polarization and Seyfert type remains poorly examined. Based on archival data, I report here the first compilation of 53 estimated AGN inclinations matched with ultraviolet/optical continuum polarization measurements. Corrections, based on the polarization of broad emission lines, are applied to the sample of Seyfert-2 AGN to remove dilution by starburst light and derive information about the scattered continuum alone. The resulting compendium agrees with past empirical results, i.e. type-1 AGN show low polarization degrees (P < 1%) predominantly associated with a polarization position angle parallel to the projected radio axis of the system, while type-2 objects show stronger polarization percentages (P > 7%) with perpendicular polarization angles. The transition between type-1 and type-2 inclination occurs between 45 and 60 degrees without noticeable impact on P. The compendium is further used as a test to investigate the relevance of four AGN models. While an AGN model with fragmented regions matches observations better than uniform models, a structure with a failed dusty wind along the equator and disc-born, ionized, polar outflows is by far closer to observations. However, although the models correctly reproduce the observed dichotomy between parallel and perpendicular polarization, as well as correct polarization percentages at type-2 inclinations, further work is needed to account for some highly polarized type-1 AGN

The CMB flexes its BICEPs while walking the Planck

Recent microwave polarization measurements from the BICEP2 experiment may reveal a long-sought signature of inflation. However, these new results appear inconsistent with the best-fit model from the Planck satellite. We suggest a particularly simple idea for reconciling these data-sets, and for explaining a wide range of phenomena on the cosmic microwave sky.

Quarkonium production in the LHC era: a polarized perspective

Polarization measurements are usually considered as the most difficult challenge for the QCD description of quarkonium production. In fact, global data fits for the determination of the non-perturbative parameters of bound-state formation traditionally exclude polarization observables and use them as a posteriori verifications of the predictions, with perplexing results. With a change of perspective, we move polarization data to the centre of the study, advocating that they actually provide the strongest fundamental indications about the production mechanisms, even before we explicitly consider perturbative calculations. Considering psi(2S) and Y(3S) measurements from LHC experiments and state-of-the-art NLO short-distance calculations in the framework of non-relativistic QCD factorization (NRQCD), we perform a search for a kinematic domain where the polarizations can be correctly reproduced together with the cross sections, by systematically scanning the phase space and accurately treating the experimental uncertainties. This strategy provides a straightforward solution to the "quarkonium polarization puzzle" and reassuring signs that the theoretical framework is reliable. At the same time, the results expose unexpected hierarchies in the non-perturbative NRQCD parameters, that open new paths towards the understanding of bound-state formation in QCD.

Probing the radio emission from air showers with polarization measurements

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge-excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

Probing the radio emission from air showers with polarization measurements [Replacement]

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge-excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

Parkes full polarization spectra of OH masers - II. Galactic longitudes 240 to 350

Full polarization measurements of 1665 and 1667-MHz OH masers at 261 sites of massive star formation have been made with the Parkes radio telescope. Here we present the resulting spectra for 157 southern sources, complementing our previously published 104 northerly sources. For most sites, these are the first measurements of linear polarization, with good spectral resolution and complete velocity coverage. Our spectra exhibit the well-known predominance of highly circularly polarized features, interpreted as $\sigma$ components of Zeeman patterns. Focusing on the generally weaker and rarer linear polarization, we found three examples of likely full Zeeman triplets (a linearly polarized $\pi$ component, straddled in velocity by $\sigma$ components), adding to the solitary example previously reported. We also identify 40 examples of likely isolated $\pi$ components, contradicting past beliefs that $\pi$ components might be extremely rare. These were recognised at 20 sites where a feature with high linear polarization on one transition is accompanied on the other transition by a matching feature, at the same velocity and also with significant linear polarization. Large velocity ranges are rare, but we find eight exceeding 25 km/s, some of them indicating high velocity blue-shifted outflows. Variability was investigated on timescales of one year and over several decades. More than 20 sites (of 200) show high variability (intensity changes by factors of four or more) in some prominent features. Highly stable sites are extremely rare.

Parkes full polarization spectra of OH masers - I. Galactic longitudes 350 through the Galactic Centre to 41

Full polarization measurements of 1665 and 1667-MHz OH masers at sites of massive star formation have been made with the Parkes 64-m radio telescope. Here we present the resulting spectra for 104 northerly sources. For more than 20 masers we made new measurements with the ATCA (which also revealed several hitherto unreported masers), in most cases yielding arcsecond precision to match the majority of sites. Position improvements assist in distinguishing OH masers with accompanying methanol masers from those without (thought to be at a later stage of evolution). There was no existing linear polarization information at many sites, and spectral resolution was sometimes poor, or velocity coverage incomplete. These inadequacies are addressed by the present Parkes spectra. The whole OH maser sample exhibit the well-known predominance of highly circularly polarized features. We find that linear polarization is also common, but usually much weaker, and we highlight the rare cases of very pronounced linear polarization that can extend to 100 per cent. Unusually large velocity ranges of at least 25 km/s are present at seven sites. Our spectra measurements for most sources are at two epochs spaced by nearly one year, and reveal high stability at most sites, and marked variability (more than factors of two in the strongest feature) at only five sites. The spectra also provide a valuable reference for longer term variability, with high stability evident over the past decades at 10 sites and marked variability for four of the sample. Future systematic monitoring of these variables may uncover further examples of periodicity, a phenomenon so far recognised in only one source.

Exoplanetary searches with gravitational microlensing: polarization issues

There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star or near the so-called snow line with a temperature in the range $0-100^0$ C on a solid surface of an exoplanet. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.

Exoplanetary searches with gravitational microlensing: polarization issues [Cross-Listing]

There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star or near the so-called snow line with a temperature in the range $0-100^0$ C on a solid surface of an exoplanet. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.

The multi-wavelength polarization of Cygnus X-1

Polarization measurements of the microquasar Cygnus X-1 exist at gamma-ray, X-ray, UV, optical and radio frequencies. The gamma-ray emission has been shown to be highly linearly polarized. Here, we present new infrared polarimetric data of Cygnus X-1 taken with the 10.4-m Gran Telescopio Canarias and the 4.2-m William Herschel Telescope. We show that the broadband, radio to gamma-ray flux spectrum and polarization spectrum in the hard state are largely consistent with a simple phenomenological model of a strongly polarized synchrotron jet, an unpolarized Comptonized corona and a moderately polarized interstellar dust component. In this model, the origin of the gamma-ray, X-ray and some of the infrared polarization is the optically thin synchrotron power law from the inner regions of the jet. The model requires the magnetic field in this region to be highly ordered and perpendicular to the axis of the resolved radio jet. This differs to studies of some other X-ray binaries, in which the magnetic field is turbulent, variable and aligned with the jet axis. The model is able to explain the approximate polarization strength and position angle at all wavelengths including the detected X-ray (3 – 5 keV) polarization, except the observed position angle of the gamma-ray polarization, which differs to the model by ~ 60 degrees. Past numerical modelling has shown that a curved synchrotron spectrum can produce a shift in position angle by ~ 60 degrees, which may account for this.

Probing magnetars magnetosphere through X-ray polarization measurements

The study of magnetars is of particular relevance since these objects are the only laboratories where the physics in ultra-strong magnetic fields can be directly tested. Until now, spectroscopic and timing measurements at X-ray energies in soft gamma-repeaters (SGRs) and anomalous X-ray pulsar (AXPs) have been the main source of information about the physical properties of a magnetar and of its magnetosphere. Spectral fitting in the ~ 0.5-10 keV range allowed to validate the "twisted magnetosphere" model, probing the structure of the external field and estimating the density and velocity of the magnetospheric currents. Spectroscopy alone, however, may fail in disambiguating the two key parameters governing magnetospheric scattering (the charge velocity and the twist angle) and is quite insensitive to the source geometry. X-ray polarimetry, on the other hand, can provide a quantum leap in the field by adding two extra observables, the linear polarization degree and the polarization angle. Using the bright AXP 1RXS J170849.0-400910 as a template, we show that phase-resolved polarimetric measurements can unambiguously determine the model parameters, even with a small X-ray polarimetry mission carrying modern photoelectric detectors and existing X-ray optics. We also show that polarimetric measurements can pinpoint vacuum polarization effects and thus provide an indirect evidence for ultra-strong magnetic fields.

Long-term polarization observations of Mira variable stars suggest asymmetric structures

Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2 – 7 %, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.

Polarized synchrotron radiation from the Andromeda Galaxy M31 and background sources at 350 MHz [Replacement]

Polarization measurements at low radio frequencies allow detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. The galaxy M31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT) resulting in ~4′ resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels which allowed the application of RM synthesis. We derived a data cube in Faraday depth and compared two symmetric ranges of negative and positive Faraday depths. This new method avoids the range of high instrumental polarization and allows the detection of very low degrees of polarization. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.21 +/- 0.05 %, consistent with extrapolation of internal depolarization from data at higher radio frequency. A catalogue of 33 polarized sources and their Faraday rotation in the M31 field is presented. Their average depolarization is DP(90,20) = 0.14 +/- 0.02, 7 times stronger depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, e.g. in their radio lobes, or in intervening galaxies on the line of sight. On the other hand, the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the ~9 square degree M31 field. As expected, polarized emission from M31 and extragalactic background sources is much weaker at low frequencies compared to the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

Polarized synchrotron radiation from the Andromeda Galaxy M31 and background sources at 350 MHz

Low-frequency radio continuum observations are ideally suited to search for radio halos of inclined galaxies. Polarization measurements at low frequencies allow detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. M31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT) resulting in about 4′ resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels which allowed the application of RM Synthesis on the polarization data. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.23 +/- 0.04 %, consistent with extrapolation of internal depolarization from data at higher radio frequency. A catalogue of 33 polarized sources and their Faraday rotation in the M31 field is presented. Their average depolarization is DP(90,20) = 0.14 +/- 0.02, 7 times stronger depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, e.g. in their radio lobes, or in intervening galaxies on the line of sight. On the other hand the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the ~9 square degree M31 field. As expected, polarized emission from nearby galaxies and extragalactic background sources is much weaker at low frequencies compared to the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

Polarized synchrotron radiation from the Andromeda Galaxy M31 and background sources at 350 MHz [Replacement]

Low-frequency radio continuum observations are ideally suited to search for radio halos of inclined galaxies. Polarization measurements at low frequencies allow detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. M31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT) resulting in about 4′ resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels which allowed the application of RM Synthesis on the polarization data. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.23 +/- 0.04 %, consistent with extrapolation of internal depolarization from data at higher radio frequency. A catalogue of 33 polarized sources and their Faraday rotation in the M31 field is presented. Their average depolarization is DP(90,20) = 0.14 +/- 0.02, 7 times stronger depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, e.g. in their radio lobes, or in intervening galaxies on the line of sight. On the other hand the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the ~9 square degree M31 field. As expected, polarized emission from nearby galaxies and extragalactic background sources is much weaker at low frequencies compared to the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

Polarized synchrotron radiation from the Andromeda Galaxy M31 and background sources at 350 MHz [Replacement]

Polarization measurements at low radio frequencies allow detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. M31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT) resulting in ~4′ resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels which allowed the application of RM synthesis. We derived a data cube in Faraday depth and compared two symmetric ranges of negative and positive Faraday depths. This new method avoids the range of high instrumental polarization and allows the detection of very low degrees of polarization. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.23 +/- 0.04 %, consistent with extrapolation of internal depolarization from data at higher radio frequency. A catalogue of 33 polarized sources and their Faraday rotation in the M31 field is presented. Their average depolarization is DP(90,20) = 0.14 +/- 0.02, 7 times stronger depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, e.g. in their radio lobes, or in intervening galaxies on the line of sight. On the other hand, the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the ~9 square degree M31 field. As expected, polarized emission from nearby galaxies and extragalactic background sources is much weaker at low frequencies compared to the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

Optical linear polarization measurements of WR massive binary and single stars

We present optical (UBVRI) linear polarimetric observations of 8 Wolf-Rayet (WR) massive binaries and single stars. We have corrected the observed values for the interstellar extinction and polarization by the interstellar medium to obtain the intrinsic polarization and position angle. We find three highly polarization stars between 5% and 10% (WR1, WR5 and WR146), three between 3% and 4% (WR2, WR3 and WR4), and two between 1% and 2% (WR137 and WR140). Moreover, 5 stars show increasing degree of polarization to shorter wavelengths (e.g WR 146) indicative with asymmetric circumstellar envelope and 3 have nearly constant polarization within the errors (e.g WR 140).

Polarization of GRB Prompt Emission

We review the recent observational results of the gamma-ray linear polarization of Gamma-Ray Bursts (GRBs), and discuss some theoretical implications for the prompt emission mechanism and the magnetic composition of GRB jets. We also report a strict observational verification of CPT invariance in the photon sector as a result of the GRB polarization measurements.

Candidate Type II Quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III

At low redshifts, dust-obscured quasars often have strong yet narrow permitted lines in the rest-frame optical and ultraviolet, excited by the central active nucleus, earning the designation Type II quasars. We present a sample of 145 candidate Type II quasars at redshifts between 2 and 4.3, encompassing the epoch at which quasar activity peaked in the universe. These objects, selected from the quasar sample of the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III, are characterized by weak continuum in the rest-frame ultraviolet (typical continuum magnitude of i \approx 22) and strong lines of CIV and Ly \alpha, with Full Width at Half Maximum less than 2000 kms-1. The continuum magnitudes correspond to an absolute magnitude of -23 or brighter at redshift 3, too bright to be due exclusively to the host galaxies of these objects. Roughly one third of the objects are detected in the shorter-wavelength bands of the WISE survey; the spectral energy distributions (SEDs) of these objects appear to be intermediate between classic Type I and Type II quasars seen at lower redshift. Five objects are detected at rest frame 6\mu m by Spitzer, implying bolometric luminosities of several times 10^46 erg s-1. We have obtained polarization measurements for two objects; they are roughly 3% polarized. We suggest that these objects are luminous quasars, with modest dust extinction (A_V ~ 0.5 mag), whose ultraviolet continuum also includes a substantial scattering contribution. Alternatively, the line of sight to the central engines of these objects may be partially obscured by optically thick material.

Candidate Type II Quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III [Replacement]

At low redshifts, dust-obscured quasars often have strong yet narrow permitted lines in the rest-frame optical and ultraviolet, excited by the central active nucleus, earning the designation Type II quasars. We present a sample of 145 candidate Type II quasars at redshifts between 2 and 4.3, encompassing the epoch at which quasar activity peaked in the universe. These objects, selected from the quasar sample of the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III, are characterized by weak continuum in the rest-frame ultraviolet (typical continuum magnitude of i \approx 22) and strong lines of CIV and Ly \alpha, with Full Width at Half Maximum less than 2000 kms-1. The continuum magnitudes correspond to an absolute magnitude of -23 or brighter at redshift 3, too bright to be due exclusively to the host galaxies of these objects. Roughly one third of the objects are detected in the shorter-wavelength bands of the WISE survey; the spectral energy distributions (SEDs) of these objects appear to be intermediate between classic Type I and Type II quasars seen at lower redshift. Five objects are detected at rest frame 6\mu m by Spitzer, implying bolometric luminosities of several times 10^46 erg s-1. We have obtained polarization measurements for two objects; they are roughly 3% polarized. We suggest that these objects are luminous quasars, with modest dust extinction (A_V ~ 0.5 mag), whose ultraviolet continuum also includes a substantial scattering contribution. Alternatively, the line of sight to the central engines of these objects may be partially obscured by optically thick material.

Cosmic-ray leptons, magnetic fields and interstellar synchrotron emission

Interstellar synchrotron emission depends on Galactic magnetic fields and on cosmic-ray leptons. Observations of radio emission are an important tool for studying cosmic-ray propagation models and interstellar electron spectrum and distribution in the Galaxy. We present the latest developments in our modeling of Galactic synchrotron emission with the GALPROP code, including polarization, absorption, and free-free emission. Using surveys over a wide range of radio frequencies and polarization measurements, we derive constraints on the low-energy interstellar cosmic-ray electron spectrum, magnetic fields and cosmic-ray propagation models. This work is of interest for studies of interstellar gamma-ray emission with Fermi-LAT, and synchrotron for the Planck mission.

Cosmic-ray leptons, magnetic fields and interstellar synchrotron emission [Replacement]

Interstellar synchrotron emission depends on Galactic magnetic fields and on cosmic-ray leptons. Observations of radio emission are an important tool for studying cosmic-ray propagation models and interstellar electron spectrum and distribution in the Galaxy. We present the latest developments in our modeling of Galactic synchrotron emission with the GALPROP code, including polarization, absorption, and free-free emission. Using surveys over a wide range of radio frequencies and polarization measurements, we derive constraints on the low-energy interstellar cosmic-ray electron spectrum, magnetic fields and cosmic-ray propagation models. This work is of interest for studies of interstellar gamma-ray emission with Fermi-LAT, and synchrotron for the Planck mission.

Constraints on neutrino masses from Planck and Galaxy Clustering data

We present here bounds on neutrino masses from the combination of recent Planck Cosmic Microwave Background measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda$CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find sum m_nu< 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (with lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. Therefore, robust neutrino mass constraints can be obtained without the addition of the prior on the Hubble constant from HST. In extended cosmological scenarios with a dark energy fluid or with non flat geometries, galaxy clustering measurements are essential to pin down the neutrino mass bounds, providing in the majority of cases better results than those obtained from the associated measurement of the Baryon Acoustic Oscillation scale only. In the presence of a freely varying (constant) dark energy equation of state, we find sum m_nu<0.49 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (with lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. This same data combination in non flat geometries provides the neutrino mass bound sum m_nu<0.35 eV at 95% confidence level.

On the Statistical Analysis of X-ray Polarization Measurements

In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles. We explore the statistics of such polarization measurements using Monte Carlo simulations and chi-squared fitting methods. We compare our results to those derived using the traditional probability density used to characterize polarization measurements and quantify how they deviate as the intrinsic modulation amplitude grows. We derive relations for the number of counts required to reach a given detection level (parameterized by beta, the "number of sigma’s" of the measurement) appropriate for measuring the modulation amplitude by itself (single interesting parameter case) or jointly with the position angle (two interesting parameters case). We show that for the former case when the intrinsic amplitude is equal to the well known minimum detectable polarization (MDP) it is, on average, detected at the 3-sigma level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed than that required to achieve the MDP level. This additional factor is amplitude-dependent, but is approximately 2.2 for intrinsic amplitudes less than about 20%. It decreases slowly with amplitude and is 1.8 when the amplitude is 50%. We find that the position angle uncertainty at 1-sigma confidence is well described by the relation 28.5 (deg) / beta.

The Submillimeter Polarization Spectrum of M17

We present 450 {\mu}m polarimetric observations of the M17 molecular cloud obtained with the SHARP polarimeter at the Caltech Submillimeter Observatory. Across the observed region, the magnetic field orientation is consistent with previous submillimeter and far-infrared polarization measurements. Our observations are centered on a region of the molecular cloud that has been compressed by stellar winds from a cluster of OB stars. We have compared these new data with previous 350 {\mu}m polarimetry and find an anti-correlation between the 450 to 350 {\mu}m polarization magnitude ratio and the ratio of 21 cm to 450 {\mu}m intensity. The polarization ratio is lower near the east end of the studied region where the cloud is exposed to stellar winds and radiation. At the west end of the region, the polarization ratio is higher. We interpret the varying polarization spectrum as evidence supporting the radiative alignment torque (RAT) model for grain alignment, implying higher alignment efficiency in the region that is exposed to a higher anisotropic radiation field.

Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters

High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712. The goal of our work is to examine circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and resolving power exceeding 100000. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, <Bz>, with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. We determined an improved rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured <Bz> from the cores of Halpha and Hbeta lines. The analysis of <Bz> measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our <Bz> and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model. We discovered rotational modulation of the Halpha core and related it a non-uniform surface distribution of rare-earth elements.

CMB Faraday rotation as seen through the Milky Way

Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). While the existence of a PMF is still hypothetical, there will certainly be a contribution to CMB FR from the magnetic field of the Milky Way. We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that the galactic RM will not be seen in polarization measurements by Planck, but that it will need to be accounted for by CMB experiments capable of detecting the weak lensing contribution to the B-mode. We then discuss prospects for constraining the PMF in the presence of FR due to the galaxy under various assumptions that include partial de-lensing and partial subtraction of the galactic FR. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level, while a dedicated space-based experiment can detect even smaller fields.

CMB Faraday rotation as seen through the Milky Way [Replacement]

Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). While the existence of a PMF is still hypothetical, there will certainly be a contribution to CMB FR from the magnetic field of the Milky Way. We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that the galactic RM will not be seen in polarization measurements by Planck, but that it will need to be accounted for by CMB experiments capable of detecting the weak lensing contribution to the B-mode. We then discuss prospects for constraining the PMF in the presence of FR due to the galaxy under various assumptions that include partial de-lensing and partial subtraction of the galactic FR. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level, while a dedicated space-based experiment can detect even smaller fields.

Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities

The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.

Comparison of force-free coronal magnetic field modeling using vector fields from Hinode and Solar Dynamics Observatory

Photospheric magnetic vector maps from two different instruments are used to model the nonlinear force-free coronal magnetic field above an active region. We use vector maps inferred from polarization measurements of the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI) and the Solar Optical Telescope Spectropolarimeter (SP) aboard Hinode. Besides basing our model calculations on HMI data, we use both, SP data of original resolution and scaled down to the resolution of HMI. This allows us to compare the model results based on data from different instruments and to investigate how a binning of high-resolution data effects the model outcome. The resulting 3D magnetic fields are compared in terms of magnetic energy content and magnetic topology. We find stronger magnetic fields in the SP data, translating into a higher total magnetic energy of the SP models. The net Lorentz forces of the HMI and SP lower boundaries verify their force-free compatibility. We find substantial differences in the absolute estimates of the magnetic field energy but similar relative estimates, e.g., the fraction of excess energy and of the flux shared by distinct areas. The location and extension of neighboring connectivity domains differs and the SP model fields tend to be higher and more vertical. Hence, conclusions about the magnetic connectivity based on force-free field models are to be drawn with caution. We find that the deviations of the model solution when based on the lower-resolution SP data are small compared to the differences of the solutions based on data from different instruments.

Interferometric Upper Limits on Millimeter Polarization of the Disks around DG Tau, GM Aur, and MWC 480

Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominantly toroidal, and that disks should exhibit millimeter polarization fractions of 2-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2" resolution with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter Astronomy (CARMA). We reobserve GM Aur and DG Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low (<0.5%) polarization fraction is probably common at large (>100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.

The AGN phenomenon: open issues

The aim of this short paper is to motivate and encourage research in the field of Active Galactic Nuclei (AGN). Here we summarize the main open questions concerning the central engine. Is the central black hole rapidly spinning and can we prove this? What is the dominant accretion mechanism in AGN? Why do some AGN form jets while others don’t and how do the jets originate? What keeps jets collimated out to distances of 100 kpc? Is the emission of blazars dominated rather by synchrotron self-Compton or by external Compton processes? Which parameters are important in the unified model? We outline the status of related research, formulate the questions and try to hint at research projects able to tackle these fundamental topics. Deep surveys, polarization measurements, improved models, faster and more accurate simulations as well as bridging the gap in the MeV range can be part of the tools to bring us closer to an understanding of AGN.

Unveiling a network of parallel filaments in the Infrared Dark Cloud G14.225-0.506

We present the results of combined NH3(1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100m telescope of the Infrared Dark Cloud G14.225-0.506. The NH3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature Trot \sim 25 K, non-thermal velocity dispersion ~1.1 km/s, and exhibit signs of star formation, while filaments appear to be more quiescent (Trot \sim 11 K, non-thermal velocity dispersion ~0.6 km/s). Filaments are parallel in projection and distributed mainly along two directions, at PA \sim 10 deg and 60 deg, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ~0.33 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the ‘sausage’-type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

Non-Zeeman Circular Polarization of Molecular Rotational Spectral Lines

We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably 12CO (J=2 – 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectra Line Polarimeter. We find levels of polarization of up to 1 to 2% in general, for 12CO (J=2 – 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field, and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

Summer Mesosphere Temperature Distribution from Wide-Angle Polarization Measurements of the Twilight Sky [Cross-Listing]

The paper contains the results of wide-angle polarization camera (WAPC) measurements of the twilight sky background conducted in summer 2011 and 2012 at 55.2 degs.N, 37.5 degs.E, southwards from Moscow. The method of single scattering separation based on polarization data is suggested. The obtained components of scattering matrixes show the domination of Rayleigh scattering in the mesosphere for all observation days. It made possible to retrieve the altitude distribution of temperature in the mesosphere. The results are compared with the temperature data by TIMED/SABER and EOS Aura/MLS instruments for nearby dates and locations.

Reionization on Large Scales III: Predictions for Low-ell Cosmic Microwave Background Polarization and High-ell Kinetic Sunyaev-Zel'dovich Observables

We present new predictions for temperature (on small angular scales) and polarization (on large angular scales) CMB anisotropies induced during the epoch of reionization (EoR). Using a novel method calibrated from Radiation-Hydrodynamic simulations we model the EoR in large volumes (L >~ 2 Gpc/h) in the context of galactic reionization. We find that the EoR contribution to the kinetic Sunyaev- Zel’dovich power spectrum (patchy kSZ) ranges between ~0.6 – 2.8 muK^2 at ell = 3000, for the parameter space we explored. These patchy kSZ power spectra are calculated from large 15 Deg x 15 Deg maps that are found to be necessary. Decreasing the size of these maps biases the overall patchy kSZ power to higher values. We find that the amplitude of the patchy kSZ power spectrum at ell = 3000 follows simple scalings of D_ell=3000^kSZ propto <z> and D_ell=3000^kSZ propto Delz^0.47 for the mean redshift (<z>) of reionization and the duration (dz). Using the constraints on <z> from WMAP 7-year results and the lower limit on dz from EDGES we find a lower limit of ~ 0.4 muK^2 on the kSZ at ell = 3000. Planck will constrain the mean redshift and the Thomson optical depth from the low-ell polarization power spectrum. Future measurements of the high-ell CMB power spectrum from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) should detect the patchy kSZ signal if the cross correlation between the cosmic infrared background and the thermal Sunyaev Zel’dovich effect is constrained. We show that the combination of temperature and polarization measurements constrains both <z> and dz. The patchy kSZ maps, power spectra templates and the polarization power spectra will be publicly available.

SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB "B-mode" polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^