### Running the running

(5 votes from 4 institutions)

We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\alpha_\mathrm{s} = \mathrm{d}n_{\mathrm{s}} / \mathrm{d}\log k$ and the running of the running $\beta_{\mathrm{s}} = \mathrm{d}\alpha_{\mathrm{s}} / \mathrm{d}\log k$ of the spectral index $n_{\mathrm{s}}$ of primordial scalar fluctuations. We find $\alpha_\mathrm{s}=0.011\pm0.010$ and $\beta_\mathrm{s}=0.027\pm0.013$ at $68\%\,\mathrm{CL}$, suggesting the presence of a running of the running at the level of two standard deviations. We find no significant correlation between $\beta_{\mathrm{s}}$ and foregrounds parameters, with the exception of the point sources amplitude at $143\,\mathrm{GHz}$, $A^{PS}_{143}$, which shifts by half sigma when the running of the running is considered. We further study the cosmological implications of this anomaly by including in the analysis the lensing amplitude $A_L$, the curvature parameter $\Omega_k$, and the sum of neutrino masses $\sum m_{\nu}$. We find that when the running of the running is considered, Planck data are more compatible with the standard expectations of $A_L = 1$ and $\Omega_k = 0$ but still hint at possible deviations. The indication for $\beta_\mathrm{s} > 0$ survives at two standard deviations when external datasets such as BAO and CFHTLenS are included in the analysis, and persists at $\sim 1.7$ standard deviations when CMB lensing is considered. We discuss the possibility of constraining $\beta_\mathrm{s}$ with current and future measurements of CMB spectral distortions, showing that an experiment like PIXIE could provide strong constraints on $\alpha_\mathrm{s}$ and $\beta_\mathrm{s}$.