Posts Tagged place constraints

Recent Postings from place constraints

Influence of large local and non-local bispectra on primordial black hole abundance

Primordial black holes represent a unique probe to constrain the early universe on small scales - providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates.

Constraints on binary neutron star merger product from short GRB observations

Binary neutron star mergers are strong gravitational wave (GW) sources and the leading candidates to interpret short duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers, we use the statistical observational properties of {\em Swift} SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already put following tight constraints: 1) A neutron star EoS with a maximum mass close to a parameterization of $M_{\rm max} = 2.37\,M_\odot (1+1.58\times10^{-10} P^{-2.84})$ is favored; 2) The fractions for the several outcomes of NS-NS mergers are as follows: $\sim40\%$ prompt BHs, $\sim30\%$ supra-massive NSs that collapse to BHs in a range of delay time scales, and $\sim30\%$ stable NSs that never collapse; 3) The initial spin of the newly born supra-massive NSs should be near the breakup limit ($P_i\sim1 {\rm ms}$), which is consistent with the merger scenario; 4) The surface magnetic field of the merger products is typically $\sim 10^{15}$ G; 5) The ellipticity of the supra-massive NSs is $\epsilon \sim (0.004 - 0.007)$, so that strong GW radiation is released post the merger; 6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several $10^{49}$ erg to several $10^{52}$ erg, since a good fraction of spin energy is either released in the form of GW or falls into the black hole as the supra-massive NS collapses.

Growth of matter perturbations in clustered holographic dark energy cosmologies [Replacement]

We investigate the growth of matter fluctuations in holographic dark energy cosmologies. First we use an overall statistical analysis involving the latest observational data in order to place constraints on the cosmological parameters. Then we test the range of validity of the holographic dark energy models at the perturbation level and its variants from the concordance $\Lambda$ cosmology. Specifically, we provide a new analytical approach in order to derive, for the first time, the growth index of matter perturbations. Considering a homogeneous holographic dark energy we find that the growth index is $\gamma \approx \frac{4}{7}$ which is somewhat larger ($\sim 4.8\%$) than that of the usual $\Lambda$ cosmology, $\gamma^{(\Lambda)}\approx \frac{6}{11}$. Finally, if we allow clustering in the holographic dark energy models then the asymptotic value of the growth index is given in terms of the effective sound speed $c_{\rm eff}^2$, namely $\gamma \approx \frac{3(1-c_{\rm eff}^2)}{7}$.

Growth of matter perturbations in clustered holographic dark energy cosmologies

We investigate the growth of matter fluctuations in holographic dark energy cosmologies. First we use an overall statistical analysis involving the latest observational data in order to place constraints on the cosmological parameters. Then we test the range of validity of the holographic dark energy models at the perturbation level and its variants from the concordance $\Lambda$ cosmology. Specifically, we provide a new analytical approach in order to derive, for the first time, the growth index of matter perturbations. Considering a homogeneous holographic dark energy we find that the growth index is $\gamma \approx \frac{4}{7}$ which is somewhat larger ($\sim 4.8\%$) than that of the usual $\Lambda$ cosmology, $\gamma^{(\Lambda)}\approx \frac{6}{11}$. Finally, if we allow clustering in the holographic dark energy models then the asymptotic value of the growth index is given in terms of the effective sound speed $c_{\rm e}$, namely $\gamma \approx \frac{3(1-c_{\rm e})}{7}$.

The Corona of the Broad-Line Radio Galaxy 3C 390.3

We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off ($E_\text{cut}=117_{-14}^{+18}$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is 69$_{-24}^{+124}$ and the optical depth 4.1$_{-3.6}^{+0.5}$, this leads to an electron temperature of $30_{-8}^{+32}$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R~0.3), and of that the vast majority is from distant neutral matter. However we also discover a soft X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe XXV and Fe XXVI.

Black hole mergers and blue stragglers from hierarchical triples formed in globular clusters

Hierarchical triple-star systems are expected to form frequently via close binary-binary encounters in the dense cores of globular clusters. In a sufficiently inclined triple, gravitational interactions between the inner and outer binary can cause large-amplitude oscillations in the eccentricity of the inner orbit ("Lidov-Kozai cycles"), which can lead to a collision and merger of the two inner components. In this paper we use Monte Carlo models of dense star clusters to identify all triple systems formed dynamically and we compute their evolution using a highly accurate three-body integrator which incorporates relativistic and tidal effects. We find that a large fraction of these triples evolve through a non-secular dynamical phase which can drive the inner binary to higher eccentricities than predicted by the standard secular perturbation theory (even including octupole-order terms). We place constraints on the importance of Lidov-Kozai-induced mergers for producing: (i) gravitational wave sources detectable by Advanced LIGO (aLIGO), for triples with an inner pair of stellar black holes; and (ii) blue straggler stars, for triples with main-sequence-star components. We find a realistic aLIGO detection rate of black hole mergers due to the Lidov-Kozai mechanism of 2yr^-1, with about 20% of these having a finite eccentricity when they first chirp into the aLIGO frequency band. While rare, these events are likely to dominate among eccentric compact object inspirals that are potentially detectable by aLIGO. For blue stragglers, we find that the Lidov-Kozai mechanism can contribute up to ~10% of their total numbers in globular clusters. In clusters with low central densities, ~10^{3}-10^{4} M_Sun pc^-3, up to ~40% of binary blue stragglers could have formed in dynamically assembled triples.

Black hole mergers and blue stragglers from hierarchical triples formed in globular clusters [Replacement]

Hierarchical triple-star systems are expected to form frequently via close binary-binary encounters in the dense cores of globular clusters. In a sufficiently inclined triple, gravitational interactions between the inner and outer binary can cause large-amplitude oscillations in the eccentricity of the inner orbit ("Lidov-Kozai cycles"), which can lead to a collision and merger of the two inner components. In this paper we use Monte Carlo models of dense star clusters to identify all triple systems formed dynamically and we compute their evolution using a highly accurate three-body integrator which incorporates relativistic and tidal effects. We find that a large fraction of these triples evolve through a non-secular dynamical phase which can drive the inner binary to higher eccentricities than predicted by the standard secular perturbation theory (even including octupole-order terms). We place constraints on the importance of Lidov-Kozai-induced mergers for producing: (i) gravitational wave sources detectable by Advanced LIGO (aLIGO), for triples with an inner pair of stellar black holes; and (ii) blue straggler stars, for triples with main-sequence-star components. We find a realistic aLIGO detection rate of black hole mergers due to the Lidov-Kozai mechanism of 2yr^-1, with about 20% of these having a finite eccentricity when they first chirp into the aLIGO frequency band. While rare, these events are likely to dominate among eccentric compact object inspirals that are potentially detectable by aLIGO. For blue stragglers, we find that the Lidov-Kozai mechanism can contribute only up to ~10% of their total numbers in globular clusters.

Horava Gravity in the Effective Field Theory formalism: from cosmology to observational constraints

We consider Horava gravity within the framework of the EFT of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Horava gravity and place constraints on its parameters using several cosmological data sets. In particular we consider two cases: the first in which the three parameters of the low-energy theory are all varied and a second case that is tuned to evade PPN constraints, reducing the number of free parameters to two. We employ data sets which include the CMB TT and lensing power spectra by Planck 2013, WMAP low-l polarization spectra, the WiggleZ galaxy power spectrum, the local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the BAO measurements from BOSS, SDSS and 6dFGS. For both cases we estimate the deviation of the cosmological gravitational constant from the local Newtonian one, getting improved upper bounds with respect to the previous ones from BBN data. At the level of the background, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss all the relevant effects that the modifications of gravity induce, ranging from modifications of the late time ISW effect, the growth of matter perturbations, gravitational lensing and differences in the B-modes of the CMB. In general the quasi-static approximation is not safe to describe the evolution of perturbations in Horava gravity. Overall we find that the effects of the modifications induced by the low-energy Horava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

Horava Gravity in the Effective Field Theory formalism: from cosmology to observational constraints [Cross-Listing]

We consider Horava gravity within the framework of the EFT of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Horava gravity and place constraints on its parameters using several cosmological data sets. In particular we consider two cases: the first in which the three parameters of the low-energy theory are all varied and a second case that is tuned to evade PPN constraints, reducing the number of free parameters to two. We employ data sets which include the CMB TT and lensing power spectra by Planck 2013, WMAP low-l polarization spectra, the WiggleZ galaxy power spectrum, the local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the BAO measurements from BOSS, SDSS and 6dFGS. For both cases we estimate the deviation of the cosmological gravitational constant from the local Newtonian one, getting improved upper bounds with respect to the previous ones from BBN data. At the level of the background, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss all the relevant effects that the modifications of gravity induce, ranging from modifications of the late time ISW effect, the growth of matter perturbations, gravitational lensing and differences in the B-modes of the CMB. In general the quasi-static approximation is not safe to describe the evolution of perturbations in Horava gravity. Overall we find that the effects of the modifications induced by the low-energy Horava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

Horava Gravity in the Effective Field Theory formalism: from cosmology to observational constraints [Cross-Listing]

We consider Horava gravity within the framework of the EFT of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Horava gravity and place constraints on its parameters using several cosmological data sets. In particular we consider two cases: the first in which the three parameters of the low-energy theory are all varied and a second case that is tuned to evade PPN constraints, reducing the number of free parameters to two. We employ data sets which include the CMB TT and lensing power spectra by Planck 2013, WMAP low-l polarization spectra, the WiggleZ galaxy power spectrum, the local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the BAO measurements from BOSS, SDSS and 6dFGS. For both cases we estimate the deviation of the cosmological gravitational constant from the local Newtonian one, getting improved upper bounds with respect to the previous ones from BBN data. At the level of the background, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss all the relevant effects that the modifications of gravity induce, ranging from modifications of the late time ISW effect, the growth of matter perturbations, gravitational lensing and differences in the B-modes of the CMB. In general the quasi-static approximation is not safe to describe the evolution of perturbations in Horava gravity. Overall we find that the effects of the modifications induced by the low-energy Horava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

Testing Modified Gravity with Cosmic Shear

We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {\it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $\Lambda$CDM scenario occurs at $k\sim1 h \mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $\xi_{\pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ $\{ |f_{R_0}|=10^{-4}, n=1\}$ model with more than 99.9% confidence interval (CI) when assuming a $\Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the $\{ |f_{R_0}|=10^{-4}, n=2\}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

Testing Modified Gravity with Cosmic Shear [Cross-Listing]

We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {\it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $\Lambda$CDM scenario occurs at $k\sim1 h \mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $\xi_{\pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ $\{ |f_{R_0}|=10^{-4}, n=1\}$ model with more than 99.9% confidence interval (CI) when assuming a $\Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the $\{ |f_{R_0}|=10^{-4}, n=2\}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

Testing Modified Gravity with Cosmic Shear [Cross-Listing]

We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {\it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $\Lambda$CDM scenario occurs at $k\sim1 h \mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $\xi_{\pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ $\{ |f_{R_0}|=10^{-4}, n=1\}$ model with more than 99.9% confidence interval (CI) when assuming a $\Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the $\{ |f_{R_0}|=10^{-4}, n=2\}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

X-ray Sources in the Dwarf Spheroidal Galaxy Draco [Replacement]

We present the spectral analysis of an 87~ks \emph{XMM-Newton} observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with AGN, few of them possess characteristics of LMXBs and CVs. Our analysis puts constraints on population of X-ray sources with $L_X>3\times10^{33}$~erg~s$^{-1}$ in Draco suggesting that there are no actively accreting BH and NS binaries. However, we find 4 sources that could be LMXBs/CVs in quiescent state associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5~keV.

X-ray Transients: Hyper- or Hypo-Luminous?

The disk instability picture gives a plausible explanation for the behavior of soft X-ray transient systems if self-irradiation of the disk is included. We show that there is a simple relation between the peak luminosity (at the start of an outburst) and the decay timescale. We use this relation to place constraints on systems assumed to undergo disk instabilities. The observable X-ray populations of elliptical galaxies must largely consist of long-lived transients, as deduced on different grounds by Piro and Bildsten (2002). The strongly-varying X-ray source HLX-1 in the galaxy ESO 243-49 can be modeled as a disk instability of a highly super-Eddington stellar-mass binary similar to SS433. A fit to the disk instability picture is not possible for an intermediate-mass black hole model for HLX-1. Other, recently identified, super-Eddington ULXs might be subject to disk instability.

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck

Recently, few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. In this paper we place constraints on the sterile neutrino resonant production parameters and asymmetry lepton number by using most of the present cosmological measurements. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian 2014 from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the $\nu_e$ lepton number and non-thermal spectrum. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base \LambdaCDM model except for the active neutrino total mass upper limit that is decreased to 0.21 eV (95% CL).

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck [Cross-Listing]

Recently, few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. In this paper we place constraints on the sterile neutrino resonant production parameters and asymmetry lepton number by using most of the present cosmological measurements. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian 2014 from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the $\nu_e$ lepton number and non-thermal spectrum. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base \LambdaCDM model except for the active neutrino total mass upper limit that is decreased to 0.21 eV (95% CL).

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck [Replacement]

Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the electron neutrino lepton number and the non-thermal active neutrino spectra. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base LambdaCDM model except for the active neutrino total mass uper limit that is decreased to 0.21 eV (95% CL).

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck [Replacement]

Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the electron neutrino lepton number and the non-thermal active neutrino spectra. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base LambdaCDM model except for the active neutrino total mass uper limit that is decreased to 0.21 eV (95% CL).

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck [Replacement]

Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the electron neutrino lepton number and the non-thermal active neutrino spectra. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base LambdaCDM model except for the active neutrino total mass uper limit that is decreased to 0.21 eV (95% CL).

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck [Replacement]

Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium abundance yield which in turn is set by the electron neutrino lepton number and the non-thermal active neutrino spectra. Other cosmological parameters are in agreement with the predictions of the minimal extension of the base LambdaCDM model except for the active neutrino total mass uper limit that is decreased to 0.21 eV (95% CL).

Chemical Enrichment RGS cluster sample (CHEERS): Constraints on turbulence

Feedback from AGN, galactic mergers, and sloshing are thought to give rise to turbulence, which may prevent cooling in clusters. We aim to measure the turbulence in clusters of galaxies and compare the measurements to some of their structural and evolutionary properties. It is possible to measure the turbulence of the hot gas in clusters by estimating the velocity widths of their X-ray emission lines. The RGS Spectrometers aboard XMM-Newton are currently the only instruments provided with sufficient effective area and spectral resolution in this energy domain. We benefited from excellent 1.6Ms new data provided by the CHEERS project. The new observations improve the quality of the archival data and allow us to place constraints for some clusters, which were not accessible in previous work. One-half of the sample shows upper limits on turbulence less than 500km/s. For several sources, our data are consistent with relatively strong turbulence with upper limits on the velocity widths that are larger than 1000km/s. The NGC507 group of galaxies shows transonic velocities, which are most likely associated with the merging phenomena and bulk motions occurring in this object. Where both low- and high-ionization emission lines have good enough statistics, we find larger upper limits for the hot gas, which is partly due to the different spatial extents of the hot and cool gas phases. Our upper limits are larger than the Mach numbers required to balance cooling, suggesting that dissipation of turbulence may prevent cooling, although other heating processes could be dominant. The systematics associated with the spatial profile of the source continuum make this technique very challenging, though still powerful, for current instruments. The ASTRO-H and Athena missions will revolutionize the velocity estimates and discriminate between different spatial regions and temperature phases.

Constraints on Galactic Wino Densities from Gamma Ray Lines [Cross-Listing]

We systematically compute the annihilation rate for neutral winos into the final state gamma + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Constraints on Galactic Wino Densities from Gamma Ray Lines

We systematically compute the annihilation rate for neutral winos into the final state gamma + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Constraints on Galactic Wino Densities from Gamma Ray Lines [Replacement]

We systematically compute the annihilation rate for neutral winos into the final state gamma + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Constraints on Galactic Wino Densities from Gamma Ray Lines [Replacement]

We systematically compute the annihilation rate for neutral winos into the final state gamma + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Constraints on Galactic Wino Densities from Gamma Ray Lines [Replacement]

We systematically compute the annihilation rate for neutral winos into the final state gamma + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Homogeneity and isotropy in the 2MASS Photometric Redshift catalogue

Using the 2MASS Photometric Redshift catalogue we perform a number of statistical tests aimed at detecting possible departures from statistical homogeneity and isotropy in the large-scale structure of the Universe. Making use of the angular homogeneity index, an observable proposed in a previous publication, as well as studying the scaling of the angular clustering and number counts with magnitude limit, we place constraints on the fractal nature of the galaxy distribution. We find that the statistical properties of our sample are in excellent agreement with the standard cosmological model, and that it reaches the homogeneous regime significantly faster than fractal models with dimensions D<2.75. As part of our search for systematic effects, we also study the presence of hemispherical asymmetries in our data, finding no significant deviation beyond those allowed by the concordance model.

Homogeneity and isotropy in the 2MASS Photometric Redshift catalogue [Replacement]

Using the 2MASS Photometric Redshift catalogue we perform a number of statistical tests aimed at detecting possible departures from statistical homogeneity and isotropy in the large-scale structure of the Universe. Making use of the angular homogeneity index, an observable proposed in a previous publication, as well as studying the scaling of the angular clustering and number counts with magnitude limit, we place constraints on the fractal nature of the galaxy distribution. We find that the statistical properties of our sample are in excellent agreement with the standard cosmological model, and that it reaches the homogeneous regime significantly faster than a class of fractal models with dimensions $D<2.75$. As part of our search for systematic effects, we also study the presence of hemispherical asymmetries in our data, finding no significant deviation beyond those allowed by the concordance model.

Dark matter with two- and many-body decays and supernovae type Ia [Replacement]

We present a decaying dark matter scenario where the daughter products are a single massless relativistic particle and a single, massive but possibly relativistic particle. We calculate the velocity distribution of the massive daughter particle and its associated equation of state and derive its dynamical evolution in an expanding universe. In addition, we present a model of decaying dark matter where there are many massless relativistic daughter particles together with a massive particle at rest. We place constraints on these two models using supernovae type Ia observations. We find that for a daughter relativistic fraction of 1% and higher, lifetimes of at least less than 10 Gyrs are excluded, with larger relativistic fractions constraining longer lifetimes.

Two- and Many-Body Decaying Dark Matter and Supernovae Type Ia

We present a decaying dark matter scenario where the daughter products are a single massless relativistic particle and a single, massive but possibly relativistic particle. We calculate the velocity distribution of the massive daughter particle and its associated equation of state and derive its dynamical evolution in an expanding universe. In addition, we present a model of decaying dark matter where there are many massless relativistic daughter particles together with a massive particle at rest. We place constraints on these two models using supernovae type Ia observations. We find that for a daughter relativistic fraction of 1% and higher, lifetimes of at least less than 10 Gyrs are excluded, with larger relativistic fractions constraining longer lifetimes.

Two- and Many-Body Decaying Dark Matter and Supernovae Type Ia [Cross-Listing]

We present a decaying dark matter scenario where the daughter products are a single massless relativistic particle and a single, massive but possibly relativistic particle. We calculate the velocity distribution of the massive daughter particle and its associated equation of state and derive its dynamical evolution in an expanding universe. In addition, we present a model of decaying dark matter where there are many massless relativistic daughter particles together with a massive particle at rest. We place constraints on these two models using supernovae type Ia observations. We find that for a daughter relativistic fraction of 1% and higher, lifetimes of at least less than 10 Gyrs are excluded, with larger relativistic fractions constraining longer lifetimes.

Dark matter with two- and many-body decays and supernovae type Ia [Replacement]

We present a decaying dark matter scenario where the daughter products are a single massless relativistic particle and a single, massive but possibly relativistic particle. We calculate the velocity distribution of the massive daughter particle and its associated equation of state and derive its dynamical evolution in an expanding universe. In addition, we present a model of decaying dark matter where there are many massless relativistic daughter particles together with a massive particle at rest. We place constraints on these two models using supernovae type Ia observations. We find that for a daughter relativistic fraction of 1% and higher, lifetimes of at least less than 10 Gyrs are excluded, with larger relativistic fractions constraining longer lifetimes.

Observed parity-odd CMB temperature bispectrum

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Cross-Listing]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Cross-Listing]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Replacement]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Replacement]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Replacement]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Observed parity-odd CMB temperature bispectrum [Replacement]

Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\ell_1 + \ell_2 + \ell_3 = {\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

Short-period $g$-mode pulsations in low-mass white dwarfs triggered by H shell burning

The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structure through asteroseismology and place constraints on the binary evolutionary processes involved in their formation. In this paper we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that, apart from a dense spectrum of unstable radial modes and nonradial $g$- and $p$-modes driven by the $\kappa$-mechanism due to the partial ionization of H in the stellar envelope, some unstable $g$-modes with short pulsation periods are powered also by H burning via the $\varepsilon$-mechanism of mode driving. This is the first time that $\varepsilon$-destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

Multi-redshift limits on the 21cm power spectrum from PAPER

The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5<z<10.5$, extending previously published single redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of $k$-space. Our 500 hour integration is the longest such yet recorded and demonstrates this method to a dynamic range of $10^4$. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise limited measurements of $\Delta^2$ at $k=$0.2hMpc$^{-1}$ and z$=7.55$ reach as low as (48mK)$^2$ ($1\sigma$). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, and unflagged RFI. We conclude by discussing data reduction improvements that promise to remove much of this excess.

Multi-redshift limits on the 21cm power spectrum from PAPER [Replacement]

The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5<z<10.5$, extending previously published single redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of $k$-space. Our 500 hour integration is the longest such yet recorded and demonstrates this method to a dynamic range of $10^4$. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise limited measurements of $\Delta^2$ at $k=$0.2hMpc$^{-1}$ and z$=7.55$ reach as low as (48mK)$^2$ ($1\sigma$). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, and unflagged RFI. We conclude by discussing data reduction improvements that promise to remove much of this excess.

The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae [Replacement]

We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (<~5x10^3 yr), and likewise compact (R_neb<~0.15 pc), PNe with closed structures and high central electron densities (n_e>~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (<~5x10^3 yr), and likewise compact (R_neb<~0.15 pc), PNe with closed structures and high central electron densities (n_e>~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

KIC 10526294: a slowly rotating B star with rotationally split quasi-equally spaced gravity modes

Massive stars are important for the chemical enrichment of the universe. Since internal mixing processes influence their life, it is of high importance to place constraints on the corresponding physical parameters, such as core overshooting and the internal rotation profile, to calibrate their stellar structure and evolution models. Although asteroseismology was shown to be able to deliver the most precise constraints so far, the number of detailed seismic studies delivering quantitative results is limited. Our goal is to extend this limited sample with an in-depth case study and provide a well constrained set of asteroseismic parameters, contributing to the ongoing mapping efforts of the instability strips of the beta Cep and SPB stars. We derived fundamental parameters from high-resolution spectra using spectral synthesis techniques. We used custom masks to obtain optimal light curves from the original pixel level data from the Kepler satellite. We used standard time-series analysis tools to construct a set of significant pulsation modes which provide the basis for the seismic analysis carried out afterwards. We find that KIC 10526294 is a cool SPB star, one of the slowest rotators ever found. Despite this fact, the length of Kepler observations is sufficient to resolve narrow rotationally split multiplets for each of its nineteen quasi-equally spaced dipole modes. The number of detected consecutive (in radial order) dipole modes in this series is higher than ever before. The observed amount of splitting shows an increasing trend towards longer periods, which - largely independent of the seismically calibrated stellar models - points towards a non-rigid internal rotation profile. From the average splitting we deduce a rotation period of 188 d. From seismic modelling we find that the star is young with a central hydrogen mass fraction X_c>0.64; it has a core overshooting alpha_ov<=0.15.

KIC 10526294: a slowly rotating B star with rotationally split, quasi-equally spaced gravity modes [Replacement]

Massive stars are important for the chemical enrichment of the universe. Since internal mixing processes influence their lives, it is very important to place constraints on the corresponding physical parameters, such as core overshooting and the internal rotation profile, so as to calibrate their stellar structure and evolution models. Although asteroseismology has been shown to be able to deliver the most precise constraints so far, the number of detailed seismic studies delivering quantitative results is limited. Our goal is to extend this limited sample with an in-depth case study and provide a well-constrained set of asteroseismic parameters, contributing to the ongoing mapping efforts of the instability strips of the beta Cep and SPB stars. We derived fundamental parameters from high-resolution spectra using spectral synthesis techniques. We used custom masks to obtain optimal light curves from the original pixel level data from the Kepler satellite. We used standard time-series analysis tools to construct a set of significant pulsation modes that provide the basis for the seismic analysis carried out afterwards. We find that KIC 10526294 is a cool SPB star, one of the slowest rotators ever found. Despite this, the length of Kepler observations is sufficient to resolve narrow rotationally split multiplets for each of its 19 quasi-equally spaced dipole modes. The number of detected consecutive (in radial order) dipole modes in this series is higher than ever before. The observed amount of splitting shows an increasing trend towards longer periods, which - largely independent of the seismically calibrated stellar models - points towards a non-rigid internal rotation profile. From the average splitting we deduce a rotation period of ~188 d. From seismic modelling, we find that the star is young with a central hydrogen mass fraction X_c>0.64; it has a core overshooting alpha_ov<=0.15.

The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters

Cold fronts--contact discontinuities in the intracluster medium (ICM) of galaxy clusters--should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility to place constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ~ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The RMS velocity and turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g. viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significant affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters [Replacement]

Cold fronts--contact discontinuities in the intracluster medium (ICM) of galaxy clusters--should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility to place constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ~ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The RMS velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g. viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters [Replacement]

Cold fronts -- contact discontinuities in the intracluster medium (ICM) of galaxy clusters -- should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility to place constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ~ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The RMS velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g. viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significant affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^