Posts Tagged particle acceleration

Recent Postings from particle acceleration

Probing Efficient Cosmic-Ray Acceleration in Young Supernovae

The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star progenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined with the interplay of non-linear processes, results in the amplification of the magnetic field at the shock front, which can adequately account for the magnetic field strengths deduced from radio monitoring of the source. The maximum particle energy can reach, and perhaps exceed, 1 PeV, depending on the dominant instability. The gamma-ray signal is found to be heavily absorbed by pair production process during the first week after the outburst. We derive the time dependent particle spectra and associated hadronic signatures of secondary particles (gamma-ray, leptons and neutrinos) arising from proton proton interactions. We find that the Cherenkov Telescope Array (CTA) should be able to detect objects like SN 1993J above 1 TeV. We predict a low neutrino flux above 10 TeV, implying a detectability horizon with current or planned neutrino telescopes of 1 Mpc.

Radiation from a Relativistic Poynting Jet: some general considerations

We provide estimates for the flux and maximum frequency of radiation produced when the magnetic field in a relativistic, highly magnetized, jet is dissipated and particles are accelerated using general considerations. We also provide limits on the jet Lorentz factor and magnetization parameter from the observed flux. Furthermore, using the Lorentz invariance of scalar quantities produced with electromagnetic tensor, we provide constraints on particle acceleration, and general features of the emergent radiation. We find that the spectrum below the peak softens with decreasing frequency. This spectral feature might be one way of identifying a magnetic jet.

Study of high-energy particle acceleration in Tycho with gamma-ray observations

Gamma-ray emission from supernova remnants (SNRs) can provide a unique window to observe the cosmic-ray acceleration believed to take place in these objects. Tycho is an especially good target for investigating hadronic cosmic-ray acceleration and interactions because it is a young type Ia SNR that is well studied in other wavelengths, and it is located in a relatively clean environment. Several different theoretical models have been advanced to explain the broadband spectral energy emission of Tycho from radio to the gamma-ray emission detected by the Fermi-LAT in the GeV and by VERITAS in the TeV. We will present an update on the high-energy gamma-ray studies of Tycho with $\sim150$ hours of VERITAS and $\sim77$ months of the Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. VERITAS data also include exposure with an upgraded camera, which made it possible to extend the TeV measurements toward lower energy, thanks to its improved low energy sensitivity. We will interpret these observations in the context of the particle acceleration in Tycho and proposed emission models.

On the distribution of particle acceleration sites in plasmoid-dominated relativistic magnetic reconnection

We investigate the distribution of particle acceleration sites during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical time scale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons -- magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance -- (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids, and it can hardly be associated with magnetic mirrors due to the absence of plasmoid contraction after the initial stage of the simulation.

Low frequency radio observations of bi-directional electron beams in the solar corona

The radio signature of a shock travelling through the solar corona is known as a type II solar radio burst. In rare cases these bursts can exhibit a fine structure known as `herringbones', which are a direct indicator of particle acceleration occurring at the shock front. However, few studies have been performed on herringbones and the details of the underlying particle acceleration processes are unknown. Here, we use an image processing technique known as the Hough transform to statistically analyse the herringbone fine structure in a radio burst at $\sim$20-90 MHz observed from the Rosse Solar-Terrestrial Observatory on 2011 September 22. We identify 188 individual bursts which are signatures of bi-directional electron beams continuously accelerated to speeds of 0.16$_{-0.10}^{+0.11} c$. This occurs at a shock acceleration site initially at a constant altitude of $\sim$0.6 R$_{\odot}$ in the corona, followed by a shift to $\sim$0.5 R$_{\odot}$. The anti-sunward beams travel a distance of 170$_{-97}^{+174}$ Mm (and possibly further) away from the acceleration site, while those travelling toward the sun come to a stop sooner, reaching a smaller distance of 112$_{-76}^{+84}$ Mm. We show that the stopping distance for the sunward beams may depend on the total number density and the velocity of the beam. Our study concludes that a detailed statistical analysis of herringbone fine structure can provide information on the physical properties of the corona which lead to these relatively rare radio bursts.

Energetics and optical properties of $6$-dimensional rotating black hole in pure Gauss-Bonnet gravity [Cross-Listing]

We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, gravitational potential has slower fall off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by Penrose process is increased to $25.8\%$ and particle acceleration is increased to $55.28\%$, and optical shadow of the black hole is decreased. These are the distinguishing in principle observable features of pure GB black hole.

Energetics and optical properties of $6$-dimensional rotating black hole in pure Gauss-Bonnet gravity

We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, gravitational potential has slower fall off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by Penrose process is increased to $25.8\%$ and particle acceleration is increased to $55.28\%$, and optical shadow of the black hole is decreased. These are the distinguishing in principle observable features of pure GB black hole.

Gamma-Ray Bursts as Sources of Strong Magnetic Fields

Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their $\gamma$-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

Magnetic reconnection: from the Sweet-Parker model to stochastic plasmoid chains [Cross-Listing]

(abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perhaps the most popular example. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for ~50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e., independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the realization that SP-like current layers are violently unstable to the plasmoid instability - implying, therefore, that such current sheets are super-critically unstable and thus can never form in the first place. This suggests that the formation of a current sheet and the subsequent reconnection process cannot be decoupled, as is commonly assumed. This paper provides an introductory-level overview of the recent developments in reconnection theory and simulations that led to this essentially new framework. We briefly discuss the role played by the plasmoid instability in selected applications, and describe some of the outstanding challenges that remain at the frontier of this subject. Amongst these are the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-MHD regimes. New results are reported in both cases.

Millisecond newly born pulsars as efficient accelerators of electrons

The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10^{18}eV for parameters characteristic of a young star.

On the cosmic ray spectrum from type II Supernovae

One of the most important challenges for the largely accepted idea that Galactic CRs are accelerated in SNR shocks is the maximum energy at which particles can be accelerated. The resonant streaming instability, long invoked for magnetic field amplification at shocks, can not provide sufficiently high fields and efficient enough scattering so as to ensure particle acceleration up to the knee. Here we discuss the non-resonant version of this instability which, with its faster growth and larger value of the amplified field, increases the achievable maximum energy. Because of their higher explosion rate, we focus on type II SNe expanding in their red supergiant wind and we find that the transition between Ejecta Dominated (ED) and Sedov-Taylor (ST) phases takes place at very early times. In this environment, the accelerated particle spectrum shows no high energy exponential cut-off but a spectral break at the maximum energy (EM). Moreover, the maximum energy of protons can easily reach PeV energies. With this model, we tried to fit KASCADE Grande and ARGO -YBJ data but failed to find a parameter combination that can explain both data sets. We discuss the different scenarios implied by the two data sets.

On the novel mechanism of acceleration of cosmic particles

A novel model of particle acceleration in the rotating magnetospheres of active galactic nuclei (AGN) and pulsars is constructed. The particle energies may be boosted up to enormous energies in a several step mechanism. In the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. By considering the pulsars it is shown that the Langmuir waves very soon Landau damp on the relativistic electrons already present in a magnetosphere. It has been found that the process is so efficient that no energy losses might affect the mechanism of particle acceleration. Applying typical parameters for young pulsars we have shown that by means of this process the electrons might achieve energies of the order of $10^{18}$ eV. The situation in AGN magnetospheres is slightly different. In the second stage, the process of "Langmuir collapse" develops, creating appropriate conditions for transferring electric energy to boost up already high proton energies to much higher values. As in the previous case, one can show that various energy losses are relatively weak, and do not impose any significant constraints on maximum achievable proton energies of the order of $10^{21}$ eV.

$Suzaku$ X-ray study of the double radio relic galaxy cluster CIZA J2242.8+5301

Content: We present the results from $Suzaku$ observations of the merging cluster of galaxies CIZA J2242.8+5301 at $z$=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.5$_{-0.6}^{+0.8}$ keV to 2.7$_{-0.4}^{+0.7}$ keV across the northern radio relic. The temperature drop is consistent with a Mach number ${\cal M}_n=2.7^{+0.7}_{-0.4}$ and a shock velocity $v_{shock:n}=2300_{-400}^{+700}\rm\,km\,s^{-1}$. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number ${\cal M}_s=1.7^{+0.4}_{-0.3}$ and shock velocity $v_{shock:s}=2040_{-410}^{+550}\rm \,km\,s^{-1}$. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.

Particle acceleration by Black Holes in a model of $f(R)$ gravity

Particle collisions are considered within the context of $f(R)$ gravity described by $f(R)=R+2\alpha \sqrt{R}$, where R stands for the Ricci scalar and $\alpha $ is a non-zero constant. The center of mass (CM) energy of colliding particles near the horizon grows unbounded. Addition of a cosmological constant does not change the outcome. When the collision occurs near a non- black hole, i.e. a naked singularity (for $\alpha >0)$, the particles are absorbed with zero total CM energy. Collisions of a massless outgoing Hawking photon with an infalling particle and collision of two photons following null-geodesics are also taken into account.

Particle acceleration by Black Holes in a model of $f(R)$ gravity [Cross-Listing]

Particle collisions are considered within the context of $f(R)$ gravity described by $f(R)=R+2\alpha \sqrt{R}$, where R stands for the Ricci scalar and $\alpha $ is a non-zero constant. The center of mass (CM) energy of colliding particles near the horizon grows unbounded. Addition of a cosmological constant does not change the outcome. When the collision occurs near a non- black hole, i.e. a naked singularity (for $\alpha >0)$, the particles are absorbed with zero total CM energy. Collisions of a massless outgoing Hawking photon with an infalling particle and collision of two photons following null-geodesics are also taken into account.

Horizon-Scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87

It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse-Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A* with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.

Horizon structure of Kerr-Bardeen black hole and particle acceleration

We investigate the horizon structure and ergoregion in a Kerr-Bardeen regular black hole, a rotating generalization of the well known regular black hole due to Bardeen \cite{Bardeen:1968}, which has an additional parameter ($g$) due to magnetic charge, apart from mass ($M$) and rotation parameter ($a$). Interestingly, for each value of parameter $g$, there exist a critical rotation parameter ($a=a_{E}$), which corresponds to an extremal black hole with degenerate horizons, while for $a<a_{E}$ describes a non-extremal black hole with two horizons, and no black hole for $a>a_{E}$. We find that the extremal value $a_E$ is also influenced by the parameter $g$ and so is the ergoregion. While the value of $a_E$ remarkably decreases when compared with the Kerr black hole, the ergoregion becomes more thick with increase in $g$. We also study collision of two equal mass particle near the horizon of this black hole, and explicitly bring out the effect of parameter $g$. The center-of-mass energy ($E_{CM}$) not only depends on rotation parameter $a$, but also on parameter $g$. It is demonstrated that the center-of-mass energy ($E_{CM}$) could be arbitrary high in the extremal cases when one of the colliding particle has critical angular momentum, thereby suggesting that the Kerr-Bardeen regular black hole can act as a particle accelerator. Furthermore, we also show that, for a nonextremal black hole, there exists a finite upper limit of $E_{CM}$, which changes with charge $g$. Our results, in the limit $g \rightarrow 0$, goes over to the Kerr black hole.

Horizon structure of Kerr-Bardeen black hole and particle acceleration [Cross-Listing]

We investigate the horizon structure and ergoregion in a Kerr-Bardeen regular black hole, a rotating generalization of the well known regular black hole due to Bardeen \cite{Bardeen:1968}, which has an additional parameter ($g$) due to magnetic charge, apart from mass ($M$) and rotation parameter ($a$). Interestingly, for each value of parameter $g$, there exist a critical rotation parameter ($a=a_{E}$), which corresponds to an extremal black hole with degenerate horizons, while for $a<a_{E}$ describes a non-extremal black hole with two horizons, and no black hole for $a>a_{E}$. We find that the extremal value $a_E$ is also influenced by the parameter $g$ and so is the ergoregion. While the value of $a_E$ remarkably decreases when compared with the Kerr black hole, the ergoregion becomes more thick with increase in $g$. We also study collision of two equal mass particle near the horizon of this black hole, and explicitly bring out the effect of parameter $g$. The center-of-mass energy ($E_{CM}$) not only depends on rotation parameter $a$, but also on parameter $g$. It is demonstrated that the center-of-mass energy ($E_{CM}$) could be arbitrary high in the extremal cases when one of the colliding particle has critical angular momentum, thereby suggesting that the Kerr-Bardeen regular black hole can act as a particle accelerator. Furthermore, we also show that, for a nonextremal black hole, there exists a finite upper limit of $E_{CM}$, which changes with charge $g$. Our results, in the limit $g \rightarrow 0$, goes over to the Kerr black hole.

Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes [Replacement]

In this paper we consider rotating modified Hayward and rotating modified Bardeen black holes as particle accelerators. We investigate the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We investigate the range of the particle's angular momentum and the orbit of the particle. We also investigate the center of mass energy for extremal black hole.

Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes [Replacement]

In this paper we consider rotating modified Hayward and rotating modified Bardeen black holes as particle accelerators. We investigate the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We investigate the range of the particle's angular momentum and the orbit of the particle. We also investigate the center of mass energy for extremal black hole.

Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes

In this paper we consider rotating modified Hayward and Bardeen black holes as particle accelerators. We investigate the the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We also investigate the range of the particle's angular momentum and the orbit of the particle.

Hard X-ray emitting energetic electrons and photospheric electric currents

The energy released during solar flares is believed to be stored in non-potential magnetic fields associated with electric currents flowing in the corona. While no measurements of coronal electric currents are presently available, maps of photospheric electric currents can now be derived from SDO/HMI observations. Photospheric electric currents have been shown to be the tracers of the coronal electric currents. Particle acceleration can result from electric fields associated with coronal electric currents. We revisit here some aspects of the relationship between particle acceleration in solar flares and electric currents in the active region. We study the relation between the energetic electron interaction sites in the solar atmosphere, and the magnitudes and changes of vertical electric current densities measured at the photospheric level, during the X2.2 flare on February 15 2011 in AR NOAA 11158. X-ray images from RHESSI are overlaid on magnetic field and electric current density maps calculated from the spectropolarimetric measurements of SDO/HMI using the UNNOFIT inversion and Metcalf disambiguation codes. X-ray images are also compared with EUV images from SDO/AIA to complement the flare analysis. Part of the elongated X-ray emissions from both thermal and non-thermal electrons overlay the elongated narrow current ribbons observed at the photospheric level. A new X-ray source at 50-100 keV (produced by non-thermal electrons) is observed in the course of the flare and is cospatial with a region in which new vertical photospheric currents appeared during the same period (increase of 15%). These observational results are discussed in the context of the scenarios in which magnetic reconnection (and subsequent plasma heating and particle acceleration) occurs at current-carrying layers in the corona.

Relativistic Shocks: Particle Acceleration and Magnetization

We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of ~ 2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

Thermal and non-thermal emission from reconnecting twisted coronal loops

Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. Test-particle trajectories combined with the density distributions let us deduce synthetic hard X-ray bremsstrahlung intensities. Our simulations emphasise that the geometry of the emission patterns produced in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. The twist angles revealed by the soft X-ray thermal emission (SXR) are lower than the field-line twist present at the onset of the kink-instability. Hard X-ray (HXR) emission due to the collisions of energetic electrons with the stratified background are concentrated at the loop foot-points, even though the electrons are accelerated everywhere within the coronal volume of the loop. The HXR light-curve are approximately proportional to the temporal derivative of the SXR light-curve.

Type IIn supernovae as sources of high energy neutrinos

It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration.

First detection of >100 MeV gamma rays associated with a behind-the-limb solar flare

We report the first detection of >100 MeV gamma rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~ 9.9 degrees behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to GeV. The LAT emission centroid is consistent with the RHESSI hard X-ray source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a power-law spectrum with a number index of ~3.8. We show that high optical depths rule out the gamma rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma rays may be at work.

Particle acceleration and magnetic field amplification in the jets of 4C74.26

We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ~100 TeV.

Particle acceleration and magnetic field amplification in the jets of 4C74.26 [Replacement]

We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ~100 TeV.

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- and downflows (and hydrodynamic shocks). We synthesize emission line profiles covering different heights in the lower atmosphere, including H$\alpha$ 6563 \AA, HeII 304 \AA, CaII K 3934 \AA\ and SiIV 1393 \AA. One interesting result is the unusual high temperature (up to a few $10^5$ K) of the formation site of HeII 304 \AA, which is expected due to photonionization-recombination under flare conditions, compared to those in the quiet Sun dominated by collisional excitation. When compared with observations, our results can constrain the properties of non-thermal electrons and thus the poorly understood particle acceleration mechanism.

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN [Replacement]

Solar flares involve complex processes that are coupled and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present results from simulations that couple particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration and transport with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by accelerated electrons through detailed radiative transfer calculations. We perform simulations using two different electron spectra, one an {\it ad hoc} power law and the other predicted by the model of stochastic acceleration by turbulence or plasma waves. Surprisingly, the later model, even with energy flux $\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, can cause "explosive" chromospheric evaporation and drive stronger up- and downflows (and hydrodynamic shocks). This is partly because our acceleration model, like many others, produces a spectrum consisting of a quasi-thermal component plus a power-law tail. We synthesize emission line profiles covering different heights in the lower atmosphere, including H$\alpha$ 6563 \AA, HeII 304 \AA, CaII K 3934 \AA\ and SiIV 1393 \AA. One interesting result is the unusual high temperature (up to a few $10^5$ K) of the formation site of HeII 304 \AA, which is expected due to photoionization-recombination under flare conditions, compared to those in the quiet Sun dominated by collisional excitation. When compared with observations, our results can constrain the properties of non-thermal electrons and thus the poorly understood particle acceleration mechanism.

A complete model of the CR spectrum and composition across the Galactic to Extragalactic transition

We present a complete phenomenological model accounting for the evolution of the cosmic-ray spectrum and composition with energy, based on the available data over the entire spectrum. We show that there is no need to postulate any additional component, other than one single Galactic component depending on rigidity alone, and one extragalactic component, whose characteristics are similar to those derived from a study of particle acceleration at mildly relativistic shocks in a GRB environment (Globus et al., 2015). In particular, we show that the resulting cosmic ray spectrum and composition satisfy the various constraints derived from the current data in the Galactic/extragalactic transition region, notably from the measurements of KASCADE Grande and Auger. Finally, we derive some generic features that a working phenomenological scenario may exhibit to give a global account of the cosmic ray data with a minimum number of free parameters.

Particle Acceleration and Gamma-ray emission due to magnetic reconnection in the core region of radio galaxies

The current detectors of gamma-ray emission have too poor resolution to determine whether this emission is produced in the jet or in the core, specially of low luminous, non-blazar AGNs (as radio galaxies). In recent works it has been found that the power released by events of turbulent fast magnetic reconnection in the core region of these sources is more than sufficient to reproduce the observed gamma-ray luminosities. Besides, 3D MHD simulations with test particles have demonstrated that a first-order Fermi process within reconnection sites with embedded turbulence results very efficient particle acceleration rates. Employing this acceleration mechanism and the model above, and considering the relevant leptonic and hadronic loss processes in the core region, we computed the spectral energy distribution (SED) of radio galaxies for which very high energy (VHE) emission has been detected (namely, M87, Cen A, Per A, and IC 310). We found that these match very well specially with the VHE observations, therefore strengthening the conclusions above in favour of a core emission origin for the VHE emission of these sources. The model also naturally explains the observed very fast variability of the VHE emission.

Modeling Bright Gamma-ray and Radio Emission at Fast Cloud Shocks

Recent observations by the Large Area Telescope (LAT) onboard the Fermi satellite have revealed bright gamma-ray emission from middle-aged supernova remnants (SNRs) inside our Galaxy. These remnants, which also possess bright non-thermal radio shells, are often found to be interacting directly with surrounding gas clouds. We explore the non-thermal emission mechanism at these dynamically evolved SNRs by constructing a hydrodynamical model. Two scenarios of particle acceleration, either a re-acceleration of Galactic cosmic rays (CRs) or an efficient nonlinear diffusive shock acceleration (NLDSA) of particles injected from downstream, are considered. Using parameters inferred from observations, our models are contrasted with the observed spectra of SNR W44. For the re-acceleration case, we predict a significant enhancement of radio and GeV emission as the SNR undergoes a transition into the radiative phase. If sufficiently strong magnetic turbulence is present in the molecular cloud, the re-acceleration scenario can explain the observed broadband spectral properties. The NLDSA scenario also succeeds in explaining the $\gamma$-ray spectrum but fails to reproduce the radio spectral index. Efficient NLDSA also results in a significant post-shock non-thermal pressure that limits the compression during cooling and prevents the formation of a prominent dense shell. Some other interesting differences between the two models in hydrodynamical behavior and resulting spectral features are illustrated.

Characterization of the Inner Knot of the Crab: The Site of the Gamma-ray Flares?

One of the most intriguing results from the gamma-ray instruments in orbit has been the detection of powerful flares from the Crab Nebula. These flares challenge our understanding of pulsar wind nebulae and models for particle acceleration. We report on the portion of a multiwavelength campaign using Keck, HST, and Chandra concentrating on a small emitting region, the Crab's inner knot, located a fraction of an arcsecond from the pulsar. We find that the knot's radial size, tangential size, peak flux, and the ratio of the flux to that of the pulsar are correlated with the projected distance of the knot from the pulsar. A new approach, using singular value decomposition for analyzing time series of images, was introduced yielding results consistent with the more traditional methods while some uncertainties were substantially reduced. We exploit the characterization of the knot to discuss constraints on standard shock-model parameters that may be inferred from our observations assuming the inner knot lies near to the shocked surface. These include inferences as to wind magnetization, shock shape parameters such as incident angle and poloidal radius of curvature, as well as the IR/optical emitting particle enthalpy fraction. We find that while the standard shock model gives good agreement with observation in many respects, there remain two puzzles: (a) The observed angular size of the knot relative to the pulsar--knot separation is much smaller than expected; (b) The variable, yet high degree of polarization reported is difficult to reconcile with a highly relativistic downstream flow.

On the polar cap cascade pair multiplicity of young pulsars

We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ~few x 10^5. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically-dominated Regime

Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron-positron plasmas starting with a magnetically dominated, force-free current sheet ($\sigma \equiv B^2/(4\pi n_e m_e c^2) \gg 1$). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra $f \propto (\gamma-1)^{-p}$ and approaches $p = 1$ for sufficiently large $\sigma$ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to non-relativistic regimes. In the three-dimensional simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This study suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications to a variety of high-energy astrophysical problems.

Particle acceleration in superluminal strong waves

We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. However, when the amplitude of the secondary waves is not extremely weaker than that of the primary wave, the typical frequency can be estimated from the synchro-Compton theory by using the secondary waves. The primary wave does not contribute to the radiation, because the SLSW accelerates electrons almost linearly. This radiation can be observed as a radio knot at the upstream of the termination shock of the pulsar wind nebulae without counter parts in higher frequency range.

On the continuum radio-spectrum of Cas A: possible evidence of the non-linear particle acceleration

Integrated radio-spectrum of Cas A in continuum was analyzed with special emphasis on possible high frequency spectral curvature. We conclude that the most probable scenario is that Planck's new data reveal the imprint of non-linear particle acceleration in the case of this young Galactic supernova remnant (SNR).

Turbulence and Particle Acceleration in Giant Radio Halos: the Origin of Seed Electrons

About 1/3 of X-ray-luminous clusters show smooth, unpolarized radio emission on ~Mpc scales, known as giant radio halos. One promising model for radio halos is Fermi-II acceleration of seed relativistic electrons by turbulence of the intracluster medium (ICM); Coulomb losses prohibit acceleration from the thermal pool. However, the origin of seed electrons has never been fully explored. Here, we integrate the Fokker-Planck equation of the cosmic ray (CR) electron and proton distributions in a cosmological simulations of cluster formation. For standard assumptions, structure formation shocks lead to a seed electron population which produces too centrally concentrated radio emission. Instead, we present three realistic scenarios that each can reproduce the spatially flat radio emission observed in the Coma cluster: (1) the ratio of injected turbulent energy density to thermal energy density increase significantly with radius, as seen in cosmological simulations. This generates a flat radio profile even if the seed population of CRs is steep with radius. (2) Self-confinement of energetic CR protons can be inefficient, and CR protons may stream at the Alfven speed to the cluster outskirts when the ICM is relatively quiescent. A spatially flat CR proton distribution develops and produces the required population of secondary seed electrons. (3) The CR proton to electron acceleration efficiency K_ep ~ 0.1 is assumed to be larger than in our Galaxy (K_ep ~ 0.01), due to the magnetic geometry at the shock. The resulting primary electron population dominates. Due to their weaker density dependence compared to secondary electrons, these primaries can also reproduce radio observations. These competing non-trivial solutions provide incisive probes of non thermal processes in the high-beta ICM.

On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind

While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED) to the Sedov-Taylor (ST) phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (Em) achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton Em can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

Particle acceleration and radiation in Pulsar Wind Nebulae

Pulsar Wind Nebulae are the astrophysical sources that host the most relativistic shocks in Nature and the only Galactic sources in which we have direct evidence of PeV particles. These facts make them very interesting from the point of view of particle acceleration physics, and their proximity and brightness make them a place where fundamental processes common to different classes of relativistic sources have a better chance to be understood. I will discuss how well we understand the physics of Pulsar Wind Nebulae, describing recent progress and highlighting the main open questions. I will be mostly concerned with the subject of particle acceleration, but, as we will see, in order to clarify the physics of this process, it is important to determine the conditions of the plasma in the nebula. These in turn can only be constrained through detailed modelling of the PWN dynamics and radiation. The shock in the Crab Nebula is probably the most efficient accelerator known, both in terms of conversion of the flow energy into accelerated particles (tens of percent) and in terms of maximum energy achieved ($\approx 10^{15}$ eV). I will review the different mechanisms proposed to explain particle acceleration and recent constraints derived from the comparison of synthetic emission maps with multi-wavelength data, including variability.

Particle Acceleration in Astrophysical Sources

Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\approx 10^{20}$ eV. However they allow us to study in great detail acceleration mechanisms such as shock acceleration (both in the newtonian and relativistic regime) or magnetic reconnection, the same processes that are likely to be operating also in more powerful sources.

Missing Gamma-Rays from kpc-scale AGN Jets: A Test of the IC/CMB Model

The physical origin of the X-ray emission in powerful quasar jets has been a long-standing mystery. Though these jets start out on the sub-pc scale as highly relativistic flows, we do not have any direct measurement of their speeds on the kpc scale, where the vast distances from the core necessitate in situ particle acceleration. If the jets remain highly relativistic on kpc scales, then the X-rays could be due to inverse-Compton upscattering of CMB photons. However, the IC/CMB explanation predicts a high level of gamma-ray emission, which should be detectible by the Fermi/LAT. We have searched for and ruled out this emission at a high level of significance for the well-known sources 3C 273 and PKS 0637-752, suggesting the X-rays are synchrotron, though of unknown origin. These recent results with Fermi also suggest that the kpc-scale jets in powerful quasars are significantly slower than have been presumed under the IC/CMB model. I will discuss the surprising implications of these findings for the energetics and radiative output of powerful quasars as well as their impact on their environment.

Missing Gamma-Rays from kpc-scale AGN Jets: A Test of the IC/CMB Model [Replacement]

The physical origin of the X-ray emission in powerful quasar jets has been a long-standing mystery. Though these jets start out on the sub-pc scale as highly relativistic flows, we do not have any direct measurement of their speeds on the kpc scale, where the vast distances from the core necessitate in situ particle acceleration. If the jets remain highly relativistic on kpc scales, then the X-rays could be due to inverse-Compton upscattering of CMB photons. However, the IC/CMB explanation predicts a high level of gamma-ray emission, which should be detectible by the Fermi/LAT. We have searched for and ruled out this emission at a high level of significance for the well-known sources 3C 273 and PKS 0637-752, suggesting the X-rays are synchrotron, though of unknown origin. These recent results with Fermi also suggest that the kpc-scale jets in powerful quasars are significantly slower than have been presumed under the IC/CMB model. I will discuss the surprising implications of these findings for the energetics and radiative output of powerful quasars as well as their impact on their environment.

Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations

The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time variability of the inner nebula. Our main result is that the X-ray emitting particles are accelerated in the equatorial region of the pulsar wind. Possible implications on the nature of the acceleration mechanism are discussed.

Shedding new light on the Sun with the Fermi LAT

During its first six years of operation, the Fermi Large Area Telescope (LAT) has detected >30 MeV gamma-ray emission from more than 40 solar flares, nearly a factor of 10 more than those detected by EGRET. These include detections of impulsive and sustained emissions, extending up to 20 hours in the case of the 2012 March 7 X-class flares. We will present an overview of solar flare detections with LAT, highlighting recent results and surprising features, including the detection of >100 MeV emission associated with flares located behind the limb. Such flares may shed new light on the relationship between the sites of particle acceleration and gamma-ray emission.

Angular Momentum Transport and Particle Acceleration during Magnetorotational Instability in a Kinetic Accretion Disk

Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell (PIC) simulation. We show that the kinetic MRI can provide not only high energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with $p_{\|} > p_{\perp}$ induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which in turn leads to high magnetic field saturation and enhancement of Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection the plasma isotropization progresses in the channel flow, and the anisotropic plasma with $p_{\perp} > p_{\|}$ due to the dynamo action of MRI outside the channel flow contributes to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high energy particles observed around massive black holes.

Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310

IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole, challenging the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. Here we will show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.

PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles

The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections (CMEs), is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle to the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, enables unique observations of SEPs including composition and the angular distribution of the particles about the magnetic field, i.e. pitch angle distribution, over a broad energy range (>80 MeV) -- bridging a critical gap between space-based measurements and ground-based. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions; a low-energy population that extends to 90{\deg} and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^