### Formation of a condensate during charged collapse *[Cross-Listing]*

(0 votes over all institutions)

We observe a condensate forming in the interior of a black hole (BH) during numerical simulations of gravitational collapse of a massless charged (complex) scalar field. The magnitude of the scalar field in the interior tends to a non-zero constant; spontaneous breaking of gauge symmetry occurs and a condensate forms. This phenomena occurs in the presence of a BH without the standard symmetry breaking quartic potential; the breaking occurs via the dynamics of the system itself. We also observe that the scalar field in the interior rotates in the complex plane and show that it matches numerically the electric potential to within $1\%$. That a charged scalar condensate can form near the horizon of a black hole in the Abelian Higgs model without the standard symmetry breaking potential had previously been shown analytically in an explicit model involving a massive scalar field in an $AdS_4$ background. Our numerical simulation lends strong support to this finding, although in our case the scalar field is massless and the spacetime is asymptotically flat.