Array ( [0] => tag/nasa/ ) nasa « Vox Charta

Posts Tagged nasa

Recent Postings from nasa

WFIRST Science with a Probe Class Mission [Cross-Listing]

WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we present a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.

WFIRST Science with a Probe Class Mission

WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we present a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.

The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: Identifying Regional Elemental Enrichment on Asteroids

The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid’s surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 cm for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes

During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth’s atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, a new monitoring quantity, the Cherenkov transparency coefficient, has been developed and will be presented here. This quantity is independent of hardware changes in the detector and, therefore, isolates atmospheric factors that can impact the performance of the instrument, and in particular the spectral results. Its positive correlation with independent measurements of the atmospheric optical depth (AOD) retrieved from data of the Multi-angle Imaging SpectroRadiometer (MISR) on board of the Terra NASA’s satellite is also presented here.

Precision near-infrared radial velocity instrumentation I: Absorption Gas Cells

We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 14NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain focus. Our results demonstrate the feasibility of using a gas cell on the next generation of near-infrared spectrographs such as iSHELL on IRTF, iGRINS, and an upgraded NIRSPEC at Keck.

Precision near-infrared radial velocity instrumentation II: Non-Circular Core Fiber Scrambler

We have built and commissioned a prototype agitated non-circular core fiber scrambler for precision spectroscopic radial velocity measurements in the near-infrared H band. We have collected the first on-sky performance and modal noise tests of these novel fibers in the near-infrared at H and K bands using the CSHELL spectrograph at the NASA InfraRed Telescope Facility (IRTF). We discuss the design behind our novel reverse injection of a red laser for co-alignment of star-light with the fiber tip via a corner cube and visible camera. We summarize the practical details involved in the construction of the fiber scrambler, and the mechanical agitation of the fiber at the telescope. We present radial velocity measurements of a bright standard star taken with and without the fiber scrambler to quantify the relative improvement in the obtainable blaze function stability, the line spread function stability, and the resulting radial velocity precision. We assess the feasibility of applying this illumination stabilization technique to the next generation of near-infrared spectrographs such as iSHELL on IRTF and an upgraded NIRSPEC at Keck. Our results may also be applied in the visible for smaller core diameter fibers where fiber modal noise is a significant factor, such as behind an adaptive optics system or on a small < 1 meter class telescope such as is being pursued by the MINERVA and LCOGT collaborations.

Experimental study of a low-order wavefront sensor for the high-contrast coronagraphic imager EXCEDE

The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, is designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One of the key challenges to achieve those contrasts is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment simulating the starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed shows that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing.

NEOKepler: Discovering Near-Earth Objects Using the Kepler Spacecraft

We propose a new Kepler mission, called NEOKepler, that would survey near Earth’s orbit to identify potentially hazardous objects (PHOs). To understand its surveying power, Kepler’s large field of view produces an ‘etendue’ (A*Omega) that is 4.5 times larger than the best survey telescope currently in operation. In this paper, we investigate the feasibility of NEOKepler using a double "fence post" survey pattern that efficiently detects PHOs. In a simulated 12-month survey, we estimate that NEOKepler would detect ~150 new NEOs with absolute magnitudes of less than 21.5, ~50 of which would be new PHOs. This would increase the annual PHO discovery rate by at least 50% and improve upon our goal of discovering 90% of PHOs by the end of 2020. Due to its heliocentric orbit, Kepler would also be sensitive to objects inside Earth’s orbit, discovering more objects in its first year than are currently known to exist. Understanding this undersampled sub-population of NEOs will reveal new insights into the actual PHO distribution by further constraining current NEO models. As an alternative science goal, NEOKepler could employ a different observing strategy to discover suitable targets for NASA’s Asteroid Redirect Mission.

Recent Kepler Results On Circumbinary Planets

Ranked near the top of the long list of exciting discoveries made with NASA’s Kepler photometer is the detection of transiting circumbinary planets. In just over a year the number of such planets went from zero to seven, including a multi-planet system with one of the planets in the habitable zone (Kepler-47). We are quickly learning to better detect and characterize these planets, including the recognition of their transit timing and duration variation "smoking gun" signature. Even with only a handful of such planets, some exciting trends are emerging.

Analytical Alignment Tolerances for Off-Plane Reflection Grating Spectroscopy

Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3–1.5 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present an analytical formulation of alignment tolerances that define grating orientations in all six degrees of freedom. We verify our analytical results with raytrace simulations to fully explore the alignment parameter space. We also investigate the effect of misalignments on diffraction efficiency.

Particle Astrophysics in NASA's Long Duration Balloon Program

A century after Viktor Hess’ discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons.

Particle Astrophysics in NASA's Long Duration Balloon Program [Replacement]

A century after Victor Hess’ discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons.

Red-channel (6000-8000 {\AA}) nuclear spectra of 376 local galaxies [Replacement]

We obtained long-slit optical spectra of the nuclear regions of 376 galaxies in the local Universe using the 1.5m Cassini telescope of Bologna Observatory. Of these spectra, 164 were either never taken before by the Sloan Digital Sky Survey (SDSS), or given by the Nasa Extragalactic Database (NED). With these new spectra, we contribute investigating the occurrence of active galactic nuclei (AGNs). Nevertheless, we stress that the present sample is by no means complete, thus, it cannot be used to perform any demographic study. Following the method presented in Gavazzi et al. (2011), we classify the nuclear spectra using a six bin scheme: SEY (Seyfert), sAGN (strong AGN), and wAGN (weak AGN) represent active galactic nuclei of different levels of activity; HII accounts for star-forming nuclei; RET (retired) and PAS (passive) refer to nuclei with poor or no star-formation activity. The spectral classification is performed using the ratio of 6584 {\lambda} [NII] to H{\alpha} lines and the equivalent width (EW) of H{\alpha} versus [NII]/H{\alpha} (WHAN diagnostic introduced by Cid Fernandes and collaborators) after correcting H{\alpha} for underlying absorption. The obtained spectra are made available in machine readable format via the Strasbourg Astronomical Data Center (CDS) and NED.

Red-channel (6000-8000 {\AA}) nuclear spectra of 376 local galaxies

We obtained long-slit optical spectra of the nuclear regions of 376 galaxies in the local Universe using the 1.5m Cassini telescope of Bologna Observatory. Of these, 164 were never taken before, neither by SDSS, nor given by NED. With these new spectra we hope to contribute investigating the occurrence of Active Galactic Nuclei (AGNs). Nevertheless we wish to stress that the present sample is by no means complete, thus it cannot be used to perform any demographic study. We classify the nuclear spectra in six classes: three classes (SEY, sAGN, wAGN) represent Active Galactic Nuclei in different stages of activity, one class (HII) accounts for nuclei dominated by a strong star formation activity and two classes (RET, PAS) refer to nuclei with poor or no activity. We perform the spectral classification as recommended by Cid Fernandes and collaborators using the ratio of 6584 {\lambda} [NII] to H{\alpha} lines and the equivalent width (EW) of H{\alpha} (WHAN diagnostic), after correcting the last quantity for underlying absorption. The obtained spectra are made available in machine readable format via the Nasa Extragalactic Database (NED).

Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn

NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types, a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), b) lobate patches with well-defined edges, and c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.

Ancient eclipses and long-term drifts in the Earth - Moon system

We investigate the anomalies in the Earth – Moon system using ancient eclipse data. We identify nine groups of anomalous eclipses between 400 and 1800 AD recorded in parts of India that should have completely missed the subcontinent as per NASA simulations (Espenak and Meeus, 2011). We show that the typical correction to the lunar location required to reconcile the anomalous eclipses is relatively small and consistent with the fluctuations in the length of day that are observed in recent periods. We then investigate the change in Earth’s moment of inertia due to differential acceleration of land and water that can account for this discrepancy. We show that 80 percent of these discrepancies occur when the Moon is at declinations greater than 10 deg and closer to its major standstill of 28 deg while it spends 46 percent of the time in this region. We simulate the differential interaction of the Moon’s gravity with landmass and water using finite element method to account for landmass and water mass. We show that the results of eclipse error are consistent with the estimate of a small differential acceleration when the Moon is over land at high latitudes. However, we encounter some examples where the results from simulations studies cannot explain the phenomena. Hence we propose that dT corrections have to be coupled with some other mechanism possibly a small vertical oscillation in the Moon’s rotational plane with a period of the order of a few hundred years to achieve the required adjustment in the Eclipse maps.

Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

Observations of asteroid 4 Vesta by NASA’s Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta’s formation. Prior to Dawn’s arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta’s rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretations were reasonable given the limitations set by spatial resolution and our knowledge of Vesta and HED meteorites at that time. Our analysis shows that ground-based and HST observations are critical for our understanding of small bodies and provide valuable support for ongoing and future spacecraft missions.

Study Of Casleo Clear Sky Aerosol Loads In 2011 From One Year Of Aeronet Quality Assured Data

In this work we analyze one year observation of an Aeronet (GSFC-NASA Aerosol Robotic Network) sun-photometer installed on January 11, 2011 in CASLEO and being operational up to date. The main goal of placing the instrument in this location is to characterize the aerosol loads of this astronomical complex which is close and has the same sky characteristics of El Leoncito (31deg 43.33′ South – 69deg 15.93′ West, 2552 m ASL) one of the southern candidate site for Cherenkov Telescope Array (CTA). The low aerosol optical depth (AOD) annual mean of 0.038 measured at 500 nm shows exceptional clear sky quality. Data is compared with the measurements being done at Mauna Loa (19deg 32.34′ North, 55deg 34.68′ West, 3397 m ASL), where Aeronet reference instruments are being re-calibrated two to four times per year. Long term MODIS observations are studied, showing that the site is far enough to biomass burning transport regions to be affected by its influence.

Optimization of Curvi-Linear Tracing Applied to Solar Physics and Biophysics

We developed an automated pattern recognition code that is particularly well suited to extract one-dimensional curvi-linear features from two-dimensional digital images. A former version of this {\sl Oriented Coronal CUrved Loop Tracing (OCCULT)} code was applied to spacecraft images of magnetic loops in the solar corona, recorded with the NASA spacecraft {\sl Transition Region And Coronal Explorer (TRACE)} in extreme ultra-violet wavelengths. Here we apply an advanced version of this code ({\sl OCCULT-2}) also to similar images from the {\sl Solar Dynamics Observatory (SDO)}, to chromospheric H-$\alpha$ images obtained with the {\sl Swedish Solar Telescope (SST)}, and to microscopy images of microtubule filaments in live cells in biophysics. We provide a full analytical description of the code, optimize the control parameters, and compare the automated tracing with visual/manual methods. The traced structures differ by up to 16 orders of magnitude in size, which demonstrates the universality of the tracing algorithm.

Enrico : a Python package to simplify Fermi-LAT analysis

With the advent of the Large Array Telescope (LAT) on board the Fermi satellite, a new window on the Universe has been opened. Publicly available, the Fermi-LAT data come together with an analysis software named ScienceTools (ST, http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/) which can be run through a Python interface. Nevertheless, for the user, the ST can be hard to run and imply several steps. Users already contributed with scripts for a specific task but no tool allowing a complete analysis is currently available. We present a Python package called {\tt Enrico}, designed to facilitate the data analysis. Using only configuration files and front end tools from the command line, the user can easily perform/reproduce an entire Fermi analysis and make plots for publications. It also include new features like debug plots, pipeline execution on one or several CPUs, downloading of the Fermi data or the generation of a sky model from the Fermi catalogue. {\tt Enrico} is an open-source project currently available for download at \url{https://github.com/gammapy/enrico}

The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial velocity measurements from the literature. Tools provided to work with these data include a transit ephemeris predictor, both for single planets and for observing locations, light curve viewing and normalization utilities, and a periodogram and phased light curve service. The archive can be accessed at http://exoplanetarchive.ipac.caltech.edu.

Development of sensitive long-wave infrared detector arrays for passively cooled space missions

The near-earth object camera (NEOCam) is a proposed infrared space mission designed to discover and characterize most of the potentially hazardous asteroids larger than 140 m in diameter that orbit near the Earth. NASA has funded technology development for NEOCam, including the development of long wavelength infrared detector arrays that will have excellent zodiacal background emission-limited performance at passively cooled focal plane temperatures. Teledyne Imaging Sensors has developed and delivered for test at the University of Rochester the first set of approximately 10 micron cutoff, 1024 x 1024 pixel HgCdTe detector arrays. Measurements of these arrays show the development to be extremely promising: noise, dark current, quantum efficiency, and well depth goals have been met by this technology at focal plane temperatures of 35 to 40 K, readily attainable with passive cooling. The next set of arrays to be developed will address changes suggested by the first set of deliverables.

Equation of State and Constitutive Models for Numerical Simulations of Dust Impacts on the Solar Probe

This report presents new EOS and strength models for use in numerical hydrocode simulations of dust impacts on the NASA solar probe space vehicle. This spacecraft will be subjected to impact at velocities up to 300 km/s, producing pressures as high as 100 TPa and temperatures as high as 200 eV. Hence the material models must treat a variety of physical and chemical phenomena, including solid-solid transitions, melting and vaporization, chemical reactions, electronic excitation and ionization. The EOSPro code is used to develop tabular EOS that include these effects. The report discusses the theoretical methods used to create the new EOS tables and constitutive models for six materials–Al2O3, two porous carbon materials, fused SiO2, a silicone elastomer, and germanium–which will be used in the thermal protection shield (TPS) and solar cells, the components most vulnerable to dust impacts. It also presents the results of hydrocode simulations of dust impacts on the TPS and on glass targets. It discusses the importance of radiation contributions to the EOS and the importance of reactions between Al2O3 and carbon during impacts. It makes recommendations for additional work, including experiments for testing the accuracy and reliability of the hydrocode simulations as well as for improving and calibrating the material models.

A High Earth, Lunar Resonant Orbit for Lower Cost Space Science Missions

NASA astrophysics robotic science missions often require continuous, unobstructed fields-of view (FOV) of the celestial sphere and orbits that provide stable thermal- and attitude-control environments. To date, the more expensive "flagship" missions use the second Earth/Sun Lagrange point (L2) approximately 1.5 million km from the Earth outside the orbit of the Moon or a "drift away" orbit to distances >10 million km. A High Earth Orbit (HEO) offers similar advantages with regard to continuous, unobstructed FOV and a thermally stable environment with minimal station-keeping requirements. The "P/2-HEO," an orbit in 2:1 resonance with the orbit of the Moon, also provides the opportunity for data downlink at orbit perigee distances close to the Earth allowing for lower-cost communications systems. The P/2-HEO oscillates on the order of 12 years and trades orbit eccentricity for orbit inclination. This orbit variability can be selected for optimum spacecraft performance by proper choice of the conditions using a lunar flyby for gravitational assist. The lunar flyby and the shorter distance for science data downlink offer lower cost astrophysics missions the advantages of the more expensive L2 or "drift away" orbits.

Local Interstellar Hydrogen's Disappearance at 1 Au: Four Years of IBEX in the Rising Solar Cycle

NASA’s Interstellar Boundary Explorer (IBEX) mission has recently opened a new window on the interstellar medium (ISM) by imaging neutral atoms. One "bright" feature in the sky is the interstellar wind flowing into the solar system. Composed of remnants of stellar explosions as well as primordial gas and plasma, the ISM is by no means uniform. The interaction of the local ISM with the solar wind shapes our heliospheric environment with hydrogen being the dominant component of the very local ISM. In this paper, we report on direct sampling of the neutral hydrogen of the local ISM over four years of IBEX observations. The hydrogen wind observed at 1 AU has decreased and nearly disappeared as the solar activity has increased over the last four years; the signal at 1 AU has dropped off in 2012 by a factor of ~8 to near background levels. The longitudinal offset has also increased with time presumably due to greater radiation pressure deflecting the interstellar wind. We present longitudinal and latitudinal arrival direction measurements of the bulk flow as measured over four years beginning at near solar minimum conditions. The H distribution we observe at 1 AU is expected to be different from that outside the heliopause due to ionization, photon pressure, gravity, and filtration by interactions with heliospheric plasma populations. These observations provide an important benchmark for modeling of the global heliospheric interaction. Based on these observations we suggest a further course of scientific action to observe neutral hydrogen over a full solar cycle with IBEX.

Solar wind reflection from the lunar surface: The view from far and near

The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India’s Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA’s Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1′s angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH = 0.11 +/- 0.06 for the global neutralized albedo, which is 25 % larger than the previous values of 0.09 +/- 0.05, based on an assumed uniform scattering distribution.

The formation of IRIS diagnostics II. The formation of the Mg II h&k lines in the solar atmosphere

NASA’s Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h&k line formation from 3D radiation-MHD models. We compute the vertically emergent h&k intensity from a snapshot of a dynamic 3D radiation-MHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and the k line we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anticorrelated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the transition region. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h&k lines are excellent probes of the very upper chromosphere just below the transition region, a height regime that is impossible to probe with other spectral lines.

The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines

NASA’s Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift

The NASA Kepler mission has revealed an abundant class of Systems with Tightly-packed Inner Planets (STIPs). The current paradigm for planet formation suggests that small planetesimals will quickly spiral into the host star due to aerodynamic drag, preventing rocky planet formation. In contrast, we find that aerodynamic drift, when acting on an ensemble of solids, can concentrate mass at short orbital periods in gaseous disks. Sublimation fronts may further aid this process. Kepler data suggest that the innermost known planets are found near the silicate sublimation zone. STIP planets should have a wide range of volatile fractions due to aerodynamic drift and H2 dissociation-driven gas accretion. We further propose that the low mass of Mars is evidence that the Solar System was once a proto-STIP.

Scientific Objectives for UV/Visible Astrophysics Investigations: A Summary of Responses by the Community (2012)

Following several recommendations presented by the Astrophysics Decadal Survey 2010 centered around the need to define "a future ultraviolet-optical space capability," on 2012 May 25, NASA issued a Request for Information (RFI) seeking persuasive ultraviolet (UV) and visible wavelength astrophysics science investigations. The goal was to develop a cohesive and compelling set of science objectives that motivate and support the development of the next generation of ultraviolet/visible space astrophysics missions. Responses were due on 10 August 2012 when 34 submissions were received addressing a number of potential science drivers. A UV/visible Mission RFI Workshop was held on 2012 September 20 where each of these submissions was summarized and discussed in the context of each other. We present a scientific analysis of these submissions and presentations and the pursuant measurement capability needs, which could influence ultraviolet/visible technology development plans for the rest of this decade. We also describe the process and requirements leading to the inception of this community RFI, subsequent workshop and the expected evolution of these ideas and concepts for the remainder of this decade.

Pulse Profiles from Spinning Neutron Stars in the Hartle-Thorne Approximation

We present a new numerical algorithm for the calculation of pulse profiles from spinning neutron stars in the Hartle-Thorne approximation. Our approach allows us to formally take into account the effects of Doppler shifts and aberration, of frame dragging, as well as of the oblateness of the stellar surface and of its quadrupole moment. We confirm an earlier result that neglecting the oblateness of the neutron-star surface leads to ~5-30% errors in the calculated profiles and further show that neglecting the quadrupole moment of its spacetime leads to ~1-5% errors at a spin frequency of 600 Hz. We discuss the implications of our results for the measurements of neutron-star masses and radii with upcoming X-ray missions, such as NASA’s NICER and ESA’s LOFT.

WFIRST-2.4: What Every Astronomer Should Know [Replacement]

The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope (WFIRST) as its top priority for a new large space mission. The report of the WFIRST-AFTA Science Definition Team (SDT) presents a Design Reference Mission for WFIRST that employs one of the 2.4-m, Hubble-quality mirror assemblies recently made available to NASA. The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the smaller aperture designs previously considered for WFIRST, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The option of adding an on-axis, coronagraphic instrument would enable imaging and spectroscopic studies of planets around nearby stars. This short article, produced as a companion to the SDT report, summarizes the key points of the WFIRST-2.4 DRM. It highlights the remarkable opportunity that the 2.4-m telescope affords for advances in many fields of astrophysics and cosmology, including dark energy, the demographics and characterization of exoplanets, the evolution of galaxies and quasars, and the stellar populations of the Milky Way and its neighbors.

WFIRST-2.4: What Every Astronomer Should Know

The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope (WFIRST) as its top priority for a new large space mission. The report of the AFTA-WFIRST Science Definition Team (SDT) presents a Design Reference Mission for WFIRST that employs one of the 2.4-m, Hubble-quality mirror assemblies recently made available to NASA. The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the smaller aperture designs previously considered for WFIRST, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The option of adding an on-axis, coronagraphic instrument would enable imaging and spectroscopic studies of planets around nearby stars. This short article, produced as a companion to the SDT report, summarizes the key points of the WFIRST-2.4 DRM. It highlights the remarkable opportunity that the 2.4-m telescope affords for advances in many fields of astrophysics and cosmology, including dark energy, the demographics and characterization of exoplanets, the evolution of galaxies and quasars, and the stellar populations of the Milky Way and its neighbors.

Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report [Replacement]

The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope (WFIRST) as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Project Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality mirror assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The option of adding an on-axis, coronagraphic instrument would enable imaging and spectroscopic studies of planets around nearby stars. This document presents the final report of the SDT.

Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report

The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope (WFIRST) as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Project Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality mirror assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The option of adding an on-axis, coronagraphic instrument would enable imaging and spectroscopic studies of planets around nearby stars. This document presents the final report of the SDT.

Detrending the long-term stellar activity and the systematics of the Kepler data with a non-parametric approach

The NASA Kepler mission is delivering groundbreaking results, with an increasing number of Earth-sized and moon-sized objects been discovered. A high photometric precision can be reached only through a thorough removal of the stellar activity and the instrumental systematics. We have explored here the possibility of using non-parametric methods to analyse the Simple Aperture Photometry data observed by the Kepler mission. We focused on a sample of stellar light curves with different effective temperatures and flux modulations, and we found that Gaussian Processes-based techniques can very effectively correct the instrumental systematics along with the long-term stellar activity. Our method can disentangle astrophysical features (events), such as planetary transits, flares or general sudden variations in the intensity, from the star signal and it is very efficient as it requires only a few training iterations of the Gaussian Process model. The results obtained show the potential of our method to isolate the main events in the light curves for both Kepler long cadence and short cadence data (i.e. integration time of 29.4 min and 58.9 s respectively). We tested our approach on the star Kepler-19, finding that the transit depth of its planetary companion is consistent at 1-sigma with the one published in the literature.

Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers [Cross-Listing]

The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

Recurrent Perihelion Activity in (3200) Phaethon

We present a study of planet-crossing asteroid (3200) Phaethon at three successive perihelia in 2009, 2010 and 2012, using the NASA STEREO spacecraft. Phaethon is clearly detected in 2009 and 2012, but not in 2010. In both former years, Phaethon brightened unexpectedly by ~1 magnitude at large phase angles, inconsistent with the ~1 magnitude of steady fading expected from a discrete, macroscopic body over the same phase angle range. With a perihelion distance of 0.14 AU and surface temperatures up to ~1000 K, a thermal origin of this anomalous brightening is strongly suspected. However, simple thermal emission from Phaethon is too weak, by a factor >1000, to explain the brightening. Neither can ice survive on this body, ruling out comet-like sublimation. Our preferred explanation is that brightening occurs as a result of dust produced and ejected from Phaethon, perhaps by thermal fracture and/or thermal decomposition of surface minerals when near perihelion. A contribution from prompt emission by oxygen released by desiccation of surface minerals cannot be excluded. We infer an ejected mass of order 4×10^8 a_mm kg per outburst, where a_mm is the mean dust radius in millimeters. For plausible dust radii, this mass is small compared to the estimated mass of Phaethon (~2×10^14 kg) and to the mass of the Geminid stream (10^12 kg to 10^13 kg) with which Phaethon is dynamically associated. Perihelion mass-loss events like those observed in 2009 and 2012 contribute to, but do not necessarily account for the Geminids stream mass.

Period Error Estimation for the Kepler Eclipsing Binary Catalog

The Kepler Eclipsing Binary Catalog (KEBC)describes 2165 eclipsing binaries identified in the 115 deg^2 Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model which provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days. KEBC systems with periods >=62.5 days have KEBC period errors of about 0.0144 days. Periods and period errors of 7 eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

Development of a MATLAB/STK TLE Accuracy Assessment Tool, in support of the NASA Ames Space Traffic Management Project [Cross-Listing]

In order to improve the effectiveness of conjunction analysis using publically available Two Line Elements (TLEs) a number of strategies are being investigated as part of the Space Traffic Management project at NASA Ames Research Center. To assist in evaluating the effectiveness of these approaches a tool was developed in the MATLAB programming language that interfaces with the AGI Satellite Toolkit and with Microsoft Excel. The TLEs and any available truth ephemerides are read in by the tool and propagated orbits are compared using STK to estimate the errors. This tool is employed to determine the covariance and investigate the growth of errors in propagating the orbit of the CNESStella geodetic satellite. The different sources of error are assessed and future improvements to the tool are suggested.

Characterizing the stellar photospheres and near-infrared excesses in accreting T Tauri systems

Using NASA IRTF SpeX data from 0.8 to 4.5 $\mu$m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars (WTTS) to account for the differences in surface gravity and chromospheric activity between the TTS and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.

NASA ExoPAG Study Analysis Group 5: Flagship Exoplanet Imaging Mission Science Goals and Requirements Report

The NASA Exoplanet Program Analysis Group (ExoPAG) has undertaken an effort to define mission Level 1 requirements for exoplanet direct detection missions at a range of sizes. This report outlines the science goals and requirements for the next exoplanet flagship imaging and spectroscopy mission as determined by the flagship mission Study Analysis Group (SAG) of the NASA Exoplanet Program Analysis Group (ExoPAG). We expect that these goals and requirements will be used to evaluate specific architectures for a future flagship exoplanet imaging and spectroscopy mission, and we expect this effort to serve as a guide and template for similar goals and requirements for smaller missions, an effort that we expect will begin soon. These goals and requirements were discussed, determined, and documented over a 1 year period with contributions from approximately 60 volunteer exoplanet scientists, technologists, and engineers. Numerous teleconferences, emails, and several in-person meetings were conducted to progress on this task, resulting in creating and improving drafts of mission science goals and requirements. That work has been documented in this report as a set of science goals, more detailed objectives, and specific requirements with deliberate flow-down and linkage between each of these sets. The specific requirements have been developed in two categories: "Musts" are nonnegotiable hard requirements, while "Discriminator" requirements assign value to performance in areas beyond the floor values set by the "Musts." We believe that this framework and content will ensure that this report will be valuable when applied to future mission evaluation activities. We envision that any future exoplanet imaging flagship mission must also be capable of conducting a broad range of other observational astrophysics. We expect that this will be done by the NASA Cosmic Origins Program Analysis Group (COPAG).

A Soft X-ray Beam-splitting Multilayer Optic for the NASA GEMS Bragg Reflection Polarimeter

A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.

Physical properties of B-type asteroids from WISE data

Aims: Our aim is to obtain more information about the physical nature of B-type asteroids and extend on the previous work by studying their physical properties derived from fitting an asteroid thermal model to their NASA’s Wide-field Infrared Survey Explorer (WISE) data. We also examine the Pallas collisional family, a B-type family with a moderately high albedo in contrast to the large majority of B-types. Methods: We apply a combination of the NEATM and a model of the reflected sunlight to WISE asteroid data in order to derive effective diameter (D), the so-called infrared beaming parameter (\eta), ratio of infrared to visible albedo (R_p = p_{IR}/p_V) and visible geometric albedo (p_V). Results: We obtained parameter values for $\ga$ 100 B-types asteroids and plotted the value distributions of p_V, R_p and \eta (p_V = 0.07 +- 0.03$, R_p = 1.0 +- 0.2, and \eta = 1.0 +- 0.1). By combining the IR and visible albedos with 2.5-micron reflectances from the literature we obtained the ratio of reflectances at 3.4 and 2.5 micron, from which we found statistically significant indications that the presence of a 3-micron absorption band related to water may be commonplace among the B-types. Finally, the Pallas collisional family members studied ($\sim$ 50 objects) present moderately high values of p_V (p_V = 0.14 +- 0.05), significantly higher than the average albedo of B-types. In addition, this family presents the lowest and most homogeneously distributed R_p-values of our whole sample, which shows that this group is clearly different from the rest, likely because its members are pieces probably originating from the same region of (2) Pallas, a particularly high-albedo B-type asteroid.

Planetesimal accumulation in 16 Kepler B

Recent observations from NASA’s Kepler mission detected the first planets in circumbinary orbits. The question we try to answer is where these planets formed in the circumbinary disk and how far inside they migrated to reach their present location. We investigate the first and more delicate phase of planet formation when planetesimals accumulate to form planetary embryos. We use the hydrodynamical code FARGO to study the evolution of the disk and of a test population of planetesimals embedded in it. With this hybrid hydrodynamical–N–body code we can properly account for the gas drag force on the planetesimals and for the gravitational force of the disk on them. The numerical simulations show that the gravity of the eccentric disk on the planetesimal swarm excites their eccentricities to values much larger than those induced by the binary perturbations only within 10 AU from the stars. Moreover, the disk gravity prevents a full alignment of the planetesimal pericenters. Both these effects lead to large impact velocities, beyond the critical value for erosion. Planetesimals accumulation in circumbinary disks appears to be prevented close to the stellar pair by the gravitational perturbations of the circumbinary disk. The observed planets possibly formed in the outer regions of the disk and then migrated inside by tidal interaction with the disk.

Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler 16 system [Replacement]

Recent observations from NASA’s Kepler mission detected the first planets in circumbinary orbits. The question we try to answer is where these planets formed in the circumbinary disk and how far inside they migrated to reach their present location. We investigate the first and more delicate phase of planet formation when planetesimals accumulate to form planetary embryos. We use the hydrodynamical code FARGO to study the evolution of the disk and of a test population of planetesimals embedded in it. With this hybrid hydrodynamical–N–body code we can properly account for the gas drag force on the planetesimals and for the gravitational force of the disk on them. The numerical simulations show that the gravity of the eccentric disk on the planetesimal swarm excites their eccentricities to values much larger than those induced by the binary perturbations only within 10 AU from the stars. Moreover, the disk gravity prevents a full alignment of the planetesimal pericenters. Both these effects lead to large impact velocities, beyond the critical value for erosion. Planetesimals accumulation in circumbinary disks appears to be prevented close to the stellar pair by the gravitational perturbations of the circumbinary disk. The observed planets possibly formed in the outer regions of the disk and then migrated inside by tidal interaction with the disk.

The Induced Electric Field Distribution in Solar Atmosphere

A method of calculating induced electric field is presented in this paper. Induced electric field in solar atmosphere is derived by the time variation of magnetic field when the charged particle accumulation is neglected. In order to get the spatial distribution of magnetic field, several extrapolation methods are introduced. With observational data from Helioseismic and Magnetic Imager (HMI) aboard the NASA’s Solar Dynamics Observatory (SDO) on May 20th, 2010, we extrapolate the magnetic field to the upper atmosphere from the photosphere. By calculating the time variation of magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 100 V/cm and the average electric field has a maximum point at the layer of 360 km above the photosphere. The Monte Carlo statistics method is used to compute the triple integration of induced electric field.

Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

During the past twelve years, NASA’s Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi’s multi-faceted E/PO program includes elements in each major outcome category: Higher Education; Elementary and Secondary Education; Informal Education and Public Outreach.

Spectroscopy of New and Poorly Known Cataclysmic Variables in the Kepler Field

The NASA {\it Kepler} mission has been in science operation since May 2009 and is providing high precision, high cadence light curves of over 150,000 targets. Prior to launch, nine cataclysmic variables were known to lie within {\it Kepler’s} field of view. We present spectroscopy for seven systems, four of which were newly discovered since launch. All of the stars presented herein have been observed by, or are currently being observed by, the {\it Kepler} space telescope. Three historic systems and one new candidate could not be detected at their sky position and two candidates are called into question as to their true identity.

Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65

Results on the obliquity of exoplanet host stars — the angle between the stellar spin axis and the planetary orbital axis — provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler Mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1-sigma level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favoured in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^