Posts Tagged irradiation

Recent Postings from irradiation

The negligible photodesorption of methanol ice and the active photon-induced desorption of its irradiation products

Methanol is a common component of interstellar and circumstellar ice mantles and is often used as an evolution indicator in star-forming regions. The observations of gas-phase methanol in the interiors of dense molecular clouds at temperatures as low as 10 K suggests that a non-thermal ice desorption must be active. Ice photodesorption was proposed to explain the abundances of gas-phase molecules toward the coldest regions. Laboratory experiments were performed to investigate the potential photodesorption of methanol toward the coldest regions. Solid methanol was deposited at 8 K and UV-irradiated at various temperatures starting from 8 K. The irradiation of the ice was monitored by means of infrared spectroscopy and the molecules in the gas phase were detected using quadrupole mass spectroscopy. Fully deuterated methanol was used for confirmation of the results. The photodesorption of methanol to the gas phase was not observed in the mass spectra at different irradiation temperatures. We estimate an upper limit of 3x10e-5 molecules per incident photon. On the other hand, photon-induced desorption of the main photoproducts was clearly observed. The negligible photodesorption of methanol could be explained by the ability of UV-photons in the 114 - 180 nm (10.87 - 6.88 eV) range to dissociate this molecule efficiently. Therefore, the presence of gas-phase methanol in the absence of thermal desorption remains unexplained. On the other hand, we find CH_4 to desorb from irradiated methanol ice, which was not found to desorb in the pure CH_4 ice irradiation experiments.

Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1

We present an XMM-Newton X-ray observation of TRAPPIST-1, which is an ultracool dwarf star recently discovered to host three transiting and temperate Earth-sized planets. We find the star is a relatively strong and variable coronal X-ray source with an X-ray luminosity similar to that of the quiet Sun, despite its much lower bolometric luminosity. We find L_x/L_bol=2-4x10^-4, with the total XUV emission in the range L_xuv/L_bol=6-9x10^-4. Using a simple energy-limited model we show that the relatively close-in Earth-sized planets, which span the classical habitable zone of the star, are subject to sufficient X-ray and EUV irradiation to significantly alter their primary and perhaps secondary atmospheres. Understanding whether this high-energy irradiation makes the planets more or less habitable is a complex question, but our measured fluxes will be an important input to the necessary models of atmospheric evolution.

Dust photophoretic transport around a T Tauri star: Implications for comets composition

There is a growing body of evidences for the presence of crystalline material in comets. These crystals are believed to have been annealed in the inner part of the proto-solar nebula, while comets should have been formed in the outer regions. Several transport processes have been proposed to reconcile these two facts; among them a migration driven by photophoresis. The primarily goal of this work is to assess whether disk irradiation by a Pre-Main Sequence star would influence the photophoretic transport. To do so, we have implemented an evolving 1+1D model of an accretion disk, including advanced numerical techniques, undergoing a time-dependent irradiation, consistent with the evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is described using a formalism introduced in several previous works. Adopting the opacity prescription used in these former studies, we find that the disk irradiation enhances the photophoretic transport: the assumption of a disk central hole of several astronomical units in radius is no longer strictly required, whereas the need for an ad hoc introduction of photoevaporation is reduced. However, we show that a residual trail of small particles could annihilate the photophoretic driven transport via their effect on the opacity. We have also confirmed that the thermal conductivity of transported aggregates is a crucial parameter which could limit or even suppress the photophoretic migration and generate several segregation effects.

Re-inflated Warm Jupiters Around Red Giants

Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these "re-inflated" gas giants and examine how the existence or absence of such planets can be used to place unique constraints of the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

Probing the effects of external irradiation on low-mass protostars through unbiased line surveys [Replacement]

(abridged) Context: The envelopes of molecular gas around embedded low-mass protostars show different chemistries, which can be used to trace their formation history and physical conditions. The excitation of some molecular species can also be used to trace these physical conditions, making it possible to constrain e.g. sources of heating and excitation. Aims: To study the range of influence of an intermediate-mass Herbig Be protostar, and to find what chemical and physical impact feedback effects from the environment may have on embedded protostars. Methods: We follow up on an earlier line survey of the Class 0/I source R CrA IRS7B in the 0.8 mm window with an unbiased line survey of the same source in the 1.3 mm window using the APEX telescope. We also study the excitation of the key species H2CO, CH3OH, and c-C3H2 in a complete sample of the 18 embedded protostars in the Corona Australis star-forming region. Radiative transfer models are used to establish abundances of the molecular species. Results: We detect line emission from 20 molecular species (32 including isotopologues) in the two surveys. The most complex species detected are CH3OH, CH3CCH, CH3CHO, and CH3CN. Several complex organics are significantly under-abundant in comparison with "hot corino" protostars. The H2CO temperatures of the sources in the region decrease with the distance to the Herbig Be star R CrA, whereas the c-C3H2 temperatures remain constant across the star-forming region. Conclusions: The high H2CO temperatures observed towards objects close to R CrA suggest that this star has a sphere of influence of several 10000 AU in which it increases the temperature of the molecular gas to 30-50 K through irradiation. The chemistry in the IRS7B envelope differs significantly from many other embedded protostars, which could be an effect of the external irradiation from R CrA.

Probing the effects of external irradiation on low-mass protostars through unbiased line surveys

(abridged) Context: The envelopes of molecular gas around embedded low-mass protostars show different chemistries, which can be used to trace their formation history and physical conditions. The excitation of some molecular species can also be used to trace these physical conditions, making it possible to constrain e.g. sources of heating and excitation. Aims: To study the range of influence of an intermediate-mass Herbig Be protostar, and to find what chemical and physical impact feedback effects from the environment may have on embedded protostars. Methods: We follow up on an earlier line survey of the Class 0/I source R CrA IRS7B in the 0.8 mm window with an unbiased line survey of the same source in the 1.3 mm window using the APEX telescope. We also study the excitation of the key species H2CO, CH3OH, and c-C3H2 in a complete sample of the 18 embedded protostars in the Corona Australis star-forming region. Radiative transfer models are used to establish abundances of the molecular species. Results: We detect line emission from 20 molecular species (32 including isotopologues) in the two surveys. The most complex species detected are CH3OH, CH3CCH, CH3CHO, and CH3CN. Several complex organics are significantly under-abundant in comparison with "hot corino" protostars. The H2CO temperatures of the sources in the region decrease with the distance to the Herbig Be star R CrA, whereas the c-C3H2 temperatures remain constant across the star-forming region. Conclusions: The high H2CO temperatures observed towards objects close to R CrA suggest that this star has a sphere of influence of several 10000 AU in which it increases the temperature of the molecular gas to 30-50 K through irradiation. The chemistry in the IRS7B envelope differs significantly from many other embedded protostars, which could be an effect of the external irradiation from R CrA.

Sputtering of Oxygen Ice by Low Energy Ions

Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

Sputtering of Oxygen Ice by Low Energy Ions [Replacement]

Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

Coronae and Winds from Irradiated Disks in X-ray binaries

X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds' cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, we decided to investigate the requirements to produce very dense winds. Using physical arguments, hydrodynamical simulations and absorption line calculations, we found that modification of the heating and cooling rates by a factor of a few results in an increase of the wind density of up to an order of magnitude and the wind velocity by a factor of about two. Therefore, the mass loss rate from the disk can be one, if not even two orders of magnitude higher than the accretion rate onto the central object. Such a high mass loss rate is expected to destabilize the disk and perhaps provides a mechanism for state change.

Coronae and Winds from Irradiated Disks in X-ray binaries [Replacement]

X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds' cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, we decided to investigate the requirements to produce very dense winds. Using physical arguments, hydrodynamical simulations and absorption line calculations, we found that modification of the heating and cooling rates by a factor of a few results in an increase of the wind density of up to an order of magnitude and the wind velocity by a factor of about two. Therefore, the mass loss rate from the disk can be one, if not even two orders of magnitude higher than the accretion rate onto the central object. Such a high mass loss rate is expected to destabilize the disk and perhaps provides a mechanism for state change.

On the location of the ice line in circumbinary discs

Position of the ice line in a circumbinary disc is determined using a simplified and illustrative model. Main sources of the heat in the energy balance of the disc, i.e. heating by the turbulence, irradiation by the components of the binary and the tidal heating are considered. Our goal is to clarify role of the tidal heating in the position of the ice line. When viscous heating and irradiation of the binary are considered, ice line lies interior to the inner radius of the disc in most of the binaries represented by our parameter survey. But tidal heating significantly extends position of the ice line to a larger radius, so that a smaller fraction of the circumbinaries' population may have ice lines interior to the inner radius of the disc.

Light Element Nucleosynthesis in a Molecular Cloud Interacting with a Supernova Remnant and the Origin of Beryllium-10 in the Protosolar Nebula

The presence of short-lived radionuclides in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct $^{10}$Be in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of $^{10}$Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we first show that the $^{10}$Be recorded in FUN-CAIs cannot have been produced in situ by cosmic-ray (CR) irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic CRs (GCRs) in the collapsing presolar cloud core induced a negligible $^{10}$Be contamination of the protosolar nebula. Irradiation of the presolar molecular cloud by background GCRs produced a steady-state $^{10}$Be/$^9$Be ratio ~2.3 times lower than the ratio recorded in FUN-CAIs, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the $^{10}$Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (i) the irradiation of a giant molecular cloud by CRs produced by >50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members and (ii) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. The second model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ($^{26}$Al, $^{41}$Ca and $^{36}$Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.

Radiation hydrodynamics including irradiation and adaptive mesh refinement with AZEuS. I. Methods

Aims. The importance of radiation to the physical structure of protoplanetary disks cannot be understated. However, protoplanetary disks evolve with time, and so to understand disk evolution and by association, disk structure, one should solve the combined and time-dependent equations of radiation hydrodynamics. Methods. We implement a new implicit radiation solver in the AZEuS adaptive mesh refinement magnetohydrodynamics fluid code. Based on a hybrid approach that combines frequency-dependent ray-tracing for stellar irradiation with non-equilibrium flux limited diffusion, we solve the equations of radiation hydrodynamics while preserving the directionality of the stellar irradiation. The implementation permits simulations in Cartesian, cylindrical, and spherical coordinates, on both uniform and adaptive grids. Results. We present several hydrostatic and hydrodynamic radiation tests which validate our implementation on uniform and adaptive grids as appropriate, including benchmarks specifically designed for protoplanetary disks. Our results demonstrate that the combination of a hybrid radiation algorithm with AZEuS is an effective tool for radiation hydrodynamics studies, and produces results which are competitive with other astrophysical radiation hydrodynamics codes.

Radiation hydrodynamics including irradiation and adaptive mesh refinement with AZEuS. I. Methods [Replacement]

Aims. The importance of radiation to the physical structure of protoplanetary disks cannot be understated. However, protoplanetary disks evolve with time, and so to understand disk evolution and by association, disk structure, one should solve the combined and time-dependent equations of radiation hydrodynamics. Methods. We implement a new implicit radiation solver in the AZEuS adaptive mesh refinement magnetohydrodynamics fluid code. Based on a hybrid approach that combines frequency-dependent ray-tracing for stellar irradiation with non-equilibrium flux limited diffusion, we solve the equations of radiation hydrodynamics while preserving the directionality of the stellar irradiation. The implementation permits simulations in Cartesian, cylindrical, and spherical coordinates, on both uniform and adaptive grids. Results. We present several hydrostatic and hydrodynamic radiation tests which validate our implementation on uniform and adaptive grids as appropriate, including benchmarks specifically designed for protoplanetary disks. Our results demonstrate that the combination of a hybrid radiation algorithm with AZEuS is an effective tool for radiation hydrodynamics studies, and produces results which are competitive with other astrophysical radiation hydrodynamics codes.

A tale of two exoplanets: the inflated atmospheres of the Hot Jupiters HD 189733 b and CoRoT-2 b

Planets in close orbits around their host stars are subject to strong irradiation. High-energy irradiation, originating from the stellar corona and chromosphere, is mainly responsible for the evaporation of exoplanetary atmospheres. We have conducted multiple X-ray observations of transiting exoplanets in short orbits to determine the extent and heating of their outer planetary atmospheres. In the case of HD 189733 b, we find a surprisingly deep transit profile in X-rays, indicating an atmosphere extending out to 1.75 optical planetary radii. The X-ray opacity of those high-altitude layers points towards large densities or high metallicity. We preliminarily report on observations of the Hot Jupiter CoRoT-2 b from our Large Program with XMM-Newton, which was conducted recently. In addition, we present results on how exoplanets may alter the evolution of stellar activity through tidal interaction.

Conditions for HD Cooling in the First Galaxies Revisited: Interplay between Far-Ultraviolet and Cosmic Ray Feedback in Population III Star Formation

HD dominates the cooling of primordial clouds with enhanced ionization, e.g. shock-heated clouds in structure formation or supernova remnants, relic HII regions of Pop III stars, and clouds with cosmic-ray (CR) irradiation. There, the temperature decreases to several 10 K and the characteristic stellar mass decreases to $\sim 10\ {\rm M}_{\odot}$, in contrast with first stars formed from undisturbed pristine clouds ($\sim 100\ {\rm M}_{\odot}$). However, without CR irradiation, even weak far ultra-violet (FUV) irradiation suppresses HD formation/cooling. Here, we examine conditions for HD cooling in primordial clouds including both FUV and CR feedback. At the beginning of collapse, the shock-compressed gas cools with its density increasing, while the relic HII region gas cools at a constant density. Moreover, shocks tend to occur in denser environments than HII regions. Owing to the higher column density and the more effective shielding, the critical FUV intensity for HD cooling in a shock-compressed gas becomes $\sim 10$ times higher than in relic HII regions. Consequently, in the shock-compressed gas, the critical FUV intensity exceeds the background level for most of the redshift we consider ($6 \lesssim z \lesssim 15$), while in relic HII regions, HD cooling becomes effective after the CR intensity increases enough at $z \lesssim 10$. Our result suggests that less massive ($\sim 10\ {\rm M}_{\odot}$) Pop III stars may be more common than previously considered and could be the dominant population of Pop III stars.

Unveiling the Surface Structure of Amorphous Solid Water via Selective Infrared Irradiation of OH Stretching Modes [Cross-Listing]

In the quest to understand the formation of the building blocks of life, amorphous solid water (ASW) is one of the most widely studied molecular systems. Indeed, ASW is ubiquitous in the cold interstellar medium (ISM), where ASW-coated dust grains provide a catalytic surface for solid phase chemistry, and is believed to be present in the Earth's atmosphere at high altitudes. It has been shown that the ice surface adsorbs small molecules such as CO, N$_2$, or CH$_4$, most likely at OH groups dangling from the surface. Our study presents completely new insights concerning the behaviour of ASW upon selective infrared (IR) irradiation of its dangling modes. When irradiated, these surface H$_2$O molecules reorganise, predominantly forming a stabilised monomer-like water mode on the ice surface. We show that we systematically provoke "hole-burning" effects (or net loss of oscillators) at the wavelength of irradiation and reproduce the same absorbed water monomer on the ASW surface. Our study suggests that all dangling modes share one common channel of vibrational relaxation; the ice remains amorphous but with a reduced range of binding sites, and thus an altered catalytic capacity.

Warm gas towards young stellar objects in Corona Australis - Herschel/PACS observations from the DIGIT key programme

The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distribution of CO, OH, H2O, [C II], [O I], and continuum emission is investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO ($282\pm4$ K), hot CO ($890\pm84$ K), OH ($79\pm4$ K), and H2O ($197\pm7$ K) emission, respectively, in the point sources and the extended emission. The rotational temperatures are also similar to what is found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular mm emission, indicative of external heating from the Herbig Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not suffering from external irradiation.

The Influence of Differential Irradiation and Circulation on the Thermal Evolution of Gas Giant Planets. I. Upper Limits from Radiative Equilibrium

As a planet ages it cools and its radius shrinks, at a rate set by the efficiency with which heat is transported from the interior out to space. The bottleneck for this transport is at the boundary between the convective interior and the radiative atmosphere; the opacity there sets the global cooling rate. Models of planetary evolution are often one-dimensional, such that the radiative-convective boundary (RCB) is defined by a single temperature, pressure, and opacity. In reality the spatially inhomogenous stellar heating pattern and circulation in the atmosphere could deform the RCB, allowing heat from the interior to escape more efficiently through regions with lower opacity. We present an analysis of the degree to which the RCB could be deformed and the resultant change in the evolutionary cooling rate. In this initial work we calculate the upper limit for this effect by comparing an atmospheric structure in local radiative equilibrium to its 1D equivalent. We find that the cooling through an uneven RCB could be enhanced over cooling through a uniform RCB by as much as 10-50%. We also show that the deformation of the RCB (and the enhancement of the cooling rate) increases with a greater incident stellar flux or a lower inner entropy. Our results indicate that this mechanism could significantly change a planet's thermal evolution, causing it to cool and shrink more quickly than would otherwise be expected. This may exacerbate the well known difficulty in explaining the very large radii observed for some hot Jupiters.

The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.

Radiation hydrodynamics integrated in the code PLUTO

The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile MHD code PLUTO. The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency independent (grey) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes), or matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases in order to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical and spherical, and also for non-equidistant grids. We have presented a new radiation-hydrodynamics solver coupled to the MHD-code \PLUTO that is a modern, versatile and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion discs) have been studied successfully. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we have added the possibility of irradiation by a central source.

Wavelength-dependent UV photodesorption of pure N2 and O2 ices

Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. N2 and O2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2 and O2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2 and O2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. N2 photodesorption mainly occurs through excitation of the b^1Pi_u state and subsequent desorption of surface molecules. The observed vibronic structure in the N2 photodesorption spectrum, together with the absence of N3 formation, supports that the photodesorption mechanism of N2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2 photodesorption in the 7 - 13.6 eV range occurs through dissociation and presents no vibrational structure. Photodesorption rates of N2 and O2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10E-3 and 10E-2 photodesorbed molecules per incoming photon.

Neutral and Ionized Hydrides in Star-forming Regions -- Observations with Herschel/HIFI

The cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two prototypical high-mass regions, AFGL 2591 and W3 IRS5, and compare them to chemical calculations making assumptions on the high-energy irradiation. A model assuming no ionizing protostellar emission is compared with (i) a model assuming strong protostellar X-ray emission and (ii) a two-dimensional (2D) model including emission in the far UV (FUV, 6 -- 13.6 eV) irradiating the outflow walls that separate the outflowing gas and infalling envelope material. We confirm that the effect of FUV in two dimensional models with enlarged irradiated surfaces is clearly noticeable. A molecule that is very sensitive to FUV irradiation is CH+, enhanced in abundance by more than 5 orders of magnitude. The HIFI observations of CH+ lines agree with the two-dimensional FUV model by Bruderer et al. which computes abundances, non-LTE excitation and line radiative transfer.{Ref 20} It is concluded that CH+ is a good FUV tracer in star-forming regions. The effect of potential X-ray irradiation is not excluded, but cannot be demonstrated by the present data.

Formation of black widows and redbacks -- two distinct populations of eclipsing binary millisecond pulsars

Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between $0.1-1.0\;{\rm days}$ their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) is responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.

Formation of black widows and redbacks -- two distinct populations of eclipsing binary millisecond pulsars [Replacement]

Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between $0.1-1.0\;{\rm days}$ their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) is responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.

AD 775 Pulse of Cosmogenic Radionuclides Production as Imprint of a Galactic Gamma-Ray Burst

We suggest an explanation of a sharp increase in the abundance of cosmogenic radiocarbon found in tree rings dated AD 775. The increase could originate from high-energy irradiation of the atmosphere by a galactic gamma-ray burst. We argue that, unlike a cosmic ray event, a gamma-ray burst does not necessarily result in a substantial increase in long-lived 10Be atmospheric production. At the same time, the 36Cl nuclide would be generated in the amounts detectable in the corresponding ice core samples from Greenland and Antarctica. These peculiar features allow experimental discrimination of nuclide effects caused by gamma-ray bursts and by powerful proton events.

Towards a dynamical mass of the ultraluminous X-ray source NGC 5408 X-1

We obtained multi-epoch Very Large Telescope (VLT) optical spectroscopic data in 2011 and 2012 on the ultraluminous X-ray source (ULX) NGC 5408 X-1. We confirm that the HeII\lambda4686 line has a broad component with an average FWHM of v=780\pm64 km/s with a variation of ~13% during observations spanning over 4 years, and is consistent with the origin in the accretion disc. The deepest optical spectrum does not reveal any absorption line from a donor star. Our aim was to measure the radial velocity curve and estimate the parameters of the binary system. We find an upper limit on the semi-amplitude of the radial velocity of K=132\pm42 km/s. A search for a periodic signal in the data resulted in no statistically significant period. The mass function and constraints on the binary system imply a black hole mass of less than ~510 M_sun. Whilst, a disc irradiation model may imply a black hole mass smaller than ~431-1985 M_sun, depending on inclination. Our data can also be consistent with an unexplored orbital period range from a couple of hours to a few days, thus with a stellar-mass black hole and a subgiant companion.

Orbital, Superhump, and Superorbital Periods in the Cataclysmic Variables AQ Mensae and IM Eridani [Replacement]

We report photometric detections of orbital and superorbital signals, and negative orbital sidebands, in the light curves of the nova-like cataclysmic variables AQ Mensae and IM Eridani. The frequencies of the orbital, superorbital, and sideband signals are 7.0686 (3), 0.263 (3), and 7.332 (3) cycles per day (c/d) in AQ Mensae, and 6.870 (1), 0.354 (7), and 7.226 (1) c/d in IM Eridani. We also find a spectroscopic orbital frequency in IM Eridani of 6.86649 (2) c/d. These observations can be reproduced by invoking an accretion disc that is tilted with respect to the orbital plane. This model works well for X-ray binaries, in which irradiation by a primary neutron star can account for the disc's tilt. A likely tilt mechanism has yet to be identified in CVs, yet the growing collection of observational evidence indicates that the phenomenon of tilt is indeed at work in this class of object. The results presented in this paper bring the number of CVs known to display signals associated with retrograde disc precession to twelve. We also find AQ Mensae to be an eclipsing system. The eclipse depths are highly variable, which suggests that the eclipses are grazing. This finding raises the possibility of probing variations in disc tilt by studying systematic variations in the eclipse profile.

Orbital, Superhump, and Superorbital Periods in the Cataclysmic Variables AQ Mensae and IM Eridani

We report photometric detections of orbital and superorbital signals, and negative orbital sidebands, in the light curves of the nova-like cataclysmic variables AQ Mensae and IM Eridani. The frequencies of the orbital, superorbital, and sideband signals are 7.0686 (3), 0.263 (3), and 7.332 (3) cycles per day (c/d) in AQ Mensae, and 6.870 (1), 0.354 (7), and 7.226 (1) c/d in IM Eridani. We also find a spectroscopic orbital frequency in IM Eridani of 6.86649 (2) c/d. These observations can be reproduced by invoking an accretion disc that is tilted with respect to the orbital plane. This model works well for X-ray binaries, in which irradiation by a primary neutron star can account for the disc's tilt. A likely tilt mechanism has yet to be identified in CVs, yet the growing collection of observational evidence indicates that the phenomenon of tilt is indeed at work in this class of object. The results presented in this paper bring the number of CVs known to display signals associated with retrograde disc precession to twelve. We also find AQ Mensae to be an eclipsing system. The eclipse depths are highly variable, which suggests that the eclipses are grazing. This finding raises the possibility of probing variations in disc tilt by studying systematic variations in the eclipse profile.

Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. We acquired 117 h of Stromgren uvy data during 19 nights. Our targets comprised the Beta Cephei stars Kappa and Lambda Sco, the eclipsing binary Mu 1 Sco, and the variable super/hypergiant Zeta 1 Sco. For Kappa Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l, m) = (1, -1) Beta Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For Lambda Sco, we recover the known dominant Beta Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 +/- 0.00003 d. We also argue that the components of the Lambda Sco system are some 30% more massive than previously thought. The binary light curve solution of Mu 1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. Zeta 1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations.

Testing protoplanetary disc dispersal with radio emission

We consider continuum free-free radio emission from the upper atmosphere of protoplanetary discs as a probe of the ionized luminosity impinging upon the disc. Making use of previously computed hydrodynamic models of disc photoevaporation within the framework of EUV and X-ray irradiation, we use radiative transfer post-processing techniques to predict the expected free-free emission from protoplanetary discs. In general, the free-free luminosity scales roughly linearly with ionizing luminosity in both EUV and X-ray driven scenarios, where the emission dominates over the dust tail of the disc and is partial optically thin at cm wavelengths. We perform a test observation of GM Aur at 14-18 Ghz and detect an excess of radio emission above the dust tail to a very high level of confidence. The observed flux density and spectral index are consistent with free-free emission from the ionized disc in either the EUV or X-ray driven scenario. Finally, we suggest a possible route to testing the EUV and X-ray driven dispersal model of protoplanetary discs, by combing observed free-free flux densities with measurements of mass-accretion rates. On the point of disc dispersal one would expect to find a M_dot^2 scaling with free-free flux in the case of EUV driven disc dispersal or a M_dot scaling in the case of X-ray driven disc dispersal.

Testing protoplanetary disc dispersal with radio emission [Replacement]

We consider continuum free-free radio emission from the upper atmosphere of protoplanetary discs as a probe of the ionized luminosity impinging upon the disc. Making use of previously computed hydrodynamic models of disc photoevaporation within the framework of EUV and X-ray irradiation, we use radiative transfer post-processing techniques to predict the expected free-free emission from protoplanetary discs. In general, the free-free luminosity scales roughly linearly with ionizing luminosity in both EUV and X-ray driven scenarios, where the emission dominates over the dust tail of the disc and is partial optically thin at cm wavelengths. We perform a test observation of GM Aur at 14-18 Ghz and detect an excess of radio emission above the dust tail to a very high level of confidence. The observed flux density and spectral index are consistent with free-free emission from the ionized disc in either the EUV or X-ray driven scenario. Finally, we suggest a possible route to testing the EUV and X-ray driven dispersal model of protoplanetary discs, by combining observed free-free flux densities with measurements of mass-accretion rates. On the point of disc dispersal one would expect to find a M_dot^2 scaling with free-free flux in the case of EUV driven disc dispersal or a M_dot scaling in the case of X-ray driven disc dispersal.

Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos

We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock salt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consistence with the power reflection fraction which was measured directly. A model taking into account the temperature change explained the phase and the amplitude of the reflected wave. Therefore the reflection mechanism was confirmed. The power reflection fraction was compared with that calculated with the Fresnel equations, the ratio between the measured result and that obtained with the Fresnel equations in ice was larger than that of rock salt.

Multi-periodic pulsations of a stripped red giant star in an eclipsing binary

Low mass white dwarfs are the remnants of disrupted red giant stars in binary millisecond pulsars and other exotic binary star systems. Some low mass white dwarfs cool rapidly, while others stay bright for millions of years due to stable fusion in thick surface hydrogen layers. This dichotomy is not well understood so their potential use as independent clocks to test the spin-down ages of pulsars or as probes of the extreme environments in which low mass white dwarfs form cannot be fully exploited. Here we present precise mass and radius measurements for the precursor to a low mass white dwarf. We find that only models in which this star has a thick hydrogen envelope can match the strong constraints provided by our new observations. Very cool low mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low mass white dwarf precursor is a new type of pulsating star. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

On the Nature of Superhumps

Further evidence is presented supporting the alternative interpretation of superhumps as being due to irradiation modulated periodically variable mass transfer rate. NZ Boo, HT Cas and PU UMa are added to the sample of high inclination dwarf novae showing -- during their superoutbursts -- modulation of the observed brightness of the disk with beat period. Simple model calculations confirm earlier hypothesis that this modulation is due to a non-axisymmetric structure of the outer parts of the disk, involving the azimuthal dependence of their geometrical thickness, rotating with the beat period. The modulation amplitude $A_{mod}$ is found to decrease during superoutbursts. In particular, it is found that during two superoutbursts of OY Car the rate of decline of the superhump amplitude $dA_{SH}/dt$ was correlated with the rate of decline $dA_{mod}/dt$. This leads to a simple explanation for the decreasing amplitudes of superhumps: it is a consequence of the decreasing modulation amplitude.

The Curious Case of Glass I: High Ionization and Variability of Different Types

Our Spitzer IRS observation of the infrared companion Glass Ib revealed fine structure emission with high ionization ([NeIII]/[NeII]=2.1 and [SIV]/[SIII]=0.6) that indicates the gas is likely illuminated by hard radiation. While models suggest extreme ultraviolet radiation could be present in T Tauri stars (Hollenbach & Gorti 2009 and references therein), this is the first detection of [SIV] and such a high [NeIII]/[NeII] ratio in a young star. We also find that Glass Ib displays the molecules HCN, CO2, and H2O in emission. Here we investigate the Glass I binary system and consider possible mechanisms that may have caused the high ionization, whether from an outflow or disk irradiation. We also model the spectral energy distributions of Glass Ia and Ib to test if the system is a young member of the Chameleon I star-forming region, and consider other possible classifications for the system. We find Glass Ib is highly variable, showing changes in continuum strength and emission features at optical, near-infrared, and mid-infrared wavelengths. The optical light curve indicates that a central stellar component in Glass Ib became entirely visible for 2.5 years beginning in mid-2002, and that possibly displayed periodic variability with repeated, short-period dimming during that time. As the fine structure emission was not detected in observations before or after our Spitzer IRS observation, we explore whether the variable nature of Glass Ib is related to the gas being highly ionized, possibly due to variable accretion or an X-ray flare.

The Role of Core Mass in Controlling Evaporation: the Kepler Radius Distribution and the Kepler-36 Density Dichotomy

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. (2012) can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune sized planets. We show that 1.8-4.0 R_earth planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow gap in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. (2013) that inner planets are preferentially smaller within the systems.

The Role of Core Mass in Controlling Evaporation: the Kepler Radius Distribution and the Kepler-36 Density Dichotomy [Replacement]

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. (2012) can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune sized planets. We show that 1.8-4.0 R_earth planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow "occurrence valley" in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. (2013) that inner planets are preferentially smaller within the systems.

A Self-Gravitating Disc Around L1527 IRS?

Recent observations of the Class 0 protostar L1527 IRS have revealed a rotationally supported disc with an outer radius of at least 100 au. Measurements of the integrated flux at 870 microns suggest a disc mass that is too low for gravitational instability to govern angular momentum transport. However, if parts of the disc are optically thick at sub-mm wavelengths, the sub-mm fluxes will underestimate the disc mass, and the disc's actual mass may be substantially larger, potentially sufficient to be self-gravitating. We investigate this possibility using simple self-gravitating disc models. To match the observed mass accretion rates requires a disc-to-star mass ratio of at least ~0.5, which produces sub-mm fluxes that are similar to those observed for L1527 IRS in the absence of irradiation from the envelope or central star. If irradiation is significant, then the predicted fluxes exceed the observed fluxes by around an order of magnitude. Our model also indicates that the stresses produced by the gravitational instability are low enough to prevent disc fragmentation. As such, we conclude that observations do not rule out the possibility that the disc around L1527 IRS is self-gravitating, but it is more likely that despite being a very young system, this disc may already have left the self-gravitating phase.

Delayed outflows from black hole accretion tori following neutron star binary coalescence

Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Numerical simulations of NS-NS coalescence find, however, a wide range in the quantity of prompt dynamically-ejected mass. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disk and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A >130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disk outflows contain a small residual fraction ~1% of helium, which could produce a unique spectroscopic signature.

Delayed outflows from black hole accretion tori following neutron star binary coalescence [Replacement]

Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disk and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A >130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disk outflows contain a small residual fraction ~1% of helium, which could produce a unique spectroscopic signature.

Mining the Aql X-1 long term X-ray light curve

Aql X-1 is the prototypical low mass X-ray binary transient. The Rossi X-ray Timing Explorer All Sky Monitor provided a ~16 yr coverage revealing 20 outbursts. This is by far the most extensive legacy of outbursts from the same source. We investigated the outbursts characteristics in terms of energetics, peak luminosities, durations, decays and recurrence times. We found that bright outbursts (peak luminosity >10^{37} erg s^-1) equal in number dimmer outbursts (<10^{36.6} erg s^-1). The peak luminosity does not correlate with outburst energetics, durations or quiescent times. We analysed the latest stages of the outbursts searching for exponential and/or linear decays. Light curve modeling led to constraints on the outer disk radius and enabled us to estimate the viscosity and the irradiation parameters. The former is larger than what has been obtained for other, shorter orbital period, transients, while the latter is somewhat smaller. This might be related to the longer orbital period of Aql X-1 with respect to other transient X-ray binaries.

The Response of Metal Rich Gas to X-Ray Irradiation from a Massive Black Hole at High Redshift: Proof of Concept

Observational studies show that there is a strong link between the formation and evolution of galaxies and the growth of supermassive black holes (SMBH) at their centers. However, the underlying physics of this observed relation is poorly understood. In order to study the effects of X-ray radiation on the surroundings of the black hole, we implement X-ray Dominated Region (XDR) physics into Enzo and use the radiation transport module Moray to calculate the radiative transfer for a polychromatic spectrum. In this work, we investigate the effects of X-ray irradiation, produced by a central massive black hole (MBH) with a mass of M = 5x10^4 M_(solar), on ambient gas with solar and zero metallicity. We find that in the solar metallicity case, due to high opacity of the metals, the energy deposition rate in the central region (< 20 pc) is high and hence the temperatures in the center are on the order of 10^(5-7) K. Moreover, due to the cooling ability and high intrinsic opacity of solar metallicity gas, column densities of 10^(24) cm^(-2) are reached at a radius of 20 pc from the MBH. These column densities are about 3 orders of magnitudes higher than in the zero metallicity case. Furthermore, in the zero metallicity case an X-ray induced H II region is formed already after 5.8 Myr. This causes a significant outflow of gas (~8x10^6 M_(solar) from the central region, with the gas reaching outflow velocities up to ~100 km s^(-1). At later times, ~23 Myr after we insert the MBH, we find that the solar metallicity case also develops an X-ray induced H II region, but delayed by ~17 Myr.

A 420 day X-ray/optical modulation and extended X-ray dips in the short-period transient Swift J1753.5-0127

We have discovered a \sim420d modulation, with associated X-ray dips, in RXTE-ASM/MAXI/Swift-BAT archival light-curves of the short-period (3.2h) black-hole X-ray transient, Swift J1753.5-0127. This modulation only appeared at the end of a gradual rebrightening, approximately 3 years after the initial X-ray outburst in mid-2005. The same periodicity is present in both the 2-20 keV and 15-50 keV bands, but with a \sim0.1 phase offset (\sim40d). Contemporaneous photometry in the optical and near-IR reveals a weaker modulation, but consistent with the X-ray period. There are two substantial X-ray dips (very strong in the 15-50 keV band, weaker at lower energies) that are separated by an interval equal to the X-ray period. This likely indicates two physically separated emitting regions for the hard X-ray and lower energy emission. We interpret this periodicity as a property of the accretion disc, most likely a long-term precession, where the disc edge structure and X-ray irradiation is responsible for the hard X-ray dips and modulation, although we discuss other possible explanations, including Lense-Thirring precession in the inner disc region and spectral state variations. Such precession indicates a very high mass ratio LMXB, which even for a \sim10M_sun BH requires a brown dwarf donor (\sim0.02M_sun), making Swift J1753.5-0127 a possible analogue of millisecond X-ray pulsars.We compare the properties of Swift J1753.5-0127 with other recently discovered short-period transients, which are now forming a separate population of high latitude BH transients located in the galactic halo.

A 420 day X-ray/optical modulation and extended X-ray dips in the short-period transient Swift J1753.5-0127 [Replacement]

We have discovered a \sim420d modulation, with associated X-ray dips, in RXTE-ASM/MAXI/Swift-BAT archival light-curves of the short-period (3.2h) black-hole X-ray transient, Swift J1753.5-0127. This modulation only appeared at the end of a gradual rebrightening, approximately 3 years after the initial X-ray outburst in mid-2005. The same periodicity is present in both the 2-20 keV and 15-50 keV bands, but with a \sim0.1 phase offset (\sim40d). Contemporaneous photometry in the optical and near-IR reveals a weaker modulation, but consistent with the X-ray period. There are two substantial X-ray dips (very strong in the 15-50 keV band, weaker at lower energies) that are separated by an interval equal to the X-ray period. This likely indicates two physically separated emitting regions for the hard X-ray and lower energy emission. We interpret this periodicity as a property of the accretion disc, most likely a long-term precession, where the disc edge structure and X-ray irradiation is responsible for the hard X-ray dips and modulation, although we discuss other possible explanations, including Lense-Thirring precession in the inner disc region and spectral state variations. Such precession indicates a very high mass ratio LMXB, which even for a \sim10M_sun BH requires a brown dwarf donor (\sim0.02M_sun), making Swift J1753.5-0127 a possible analogue of millisecond X-ray pulsars.We compare the properties of Swift J1753.5-0127 with other recently discovered short-period transients, which are now forming a separate population of high latitude BH transients located in the galactic halo.

Prototyping non-equilibrium viscous-timescale accretion theory using LMC X-3

Explaining variability observed in the accretion flows of black hole X-ray binary systems remains challenging, especially concerning timescales less than, or comparable to, the viscous timescale but much larger than the inner orbital period despite decades of research identifying numerous relevant physical mechanisms. We take a simplified but broad approach to study several mechanisms likely relevant to patterns of variability observed in the persistently high-soft Roche-lobe overflow system LMC X-3. Based on simple estimates and upper bounds, we find that physics beyond varying disk/corona bifurcation at the disk edge, Compton-heated winds, modulation of total supply rate via irradiation of the companion, and the likely extent of the partial hydrogen ionization instability is needed to explain the degree, and especially the pattern, of variability in LMC X-3 largely due to viscous dampening. We then show how evaporation--condensation may resolve or compound the problem given the uncertainties associated with this complex mechanism and our current implementation. We briefly mention our plans to resolve the question, refine and extend our model, and alternatives we have not yet explored.

Ultra-luminous X-ray Sources as Supercritical Accretion Disks: Spectral Energy Distributions [Replacement]

We describe a model of spectral energy distribution in supercritical accretion disks (SCAD) based on the conception by Shakura and Sunyaev. We apply this model to five ultra-luminous X-ray sources (ULXs). In this approach, the disk becomes thick at distances to the center less than the spherization radius, and the temperature dependence is T \propto r^{-1/2}. In this region the disk luminosity is L_bol ~ L_Edd ln(Mdot/Mdot_Edd), and strong wind arises forming a wind funnel above the disk. Outside the spherization radius, the disk is thin and its total luminosity is Eddington, L_Edd. The thin disk heats the wind from below. From the inner side of the funnel the wind is heated by the supercritical disk. In this paper we do not consider Comptonization in the inner hot winds which must cover the deep supercritical disk regions. Our model is technically similar to the DISKIR model of Gierlinski et al. The models differ in disk type (standard - supercritical) and irradiation (disk - wind). We propose to distinguish between these two models in the X-ray region, ~0.3 - 1 keV, where the SCAD model has a flat nu F_nu spectrum, and the DISKIR model never has a flat part, as it is based on the standard alpha-disk. An important difference between the models can be found in their resulting black hole masses. In application to the ULX spectra, the DISKIR model yields black hole masses of a few hundred solar masses, whereas the SCAD model produces stellar-mass black holes ~10 M_sun.

Ultra-luminous X-ray Sources as Supercritical Accretion Disks: Spectral Energy Distributions

We describe a model of spectral energy distribution in supercritical accretion disks (SCAD) based on the SCAD conception by Shakura and Sunyaev (1973). We apply this model to ultra-luminous X-ray sources (ULXs). In this approach, the disk becomes thick at distances to the center less than the spherization radius, and the temperature dependence is T \propto r^{-1/2}. In this region the disk luminosity is L_bol ~ L_Edd ln(Mdot/Mdot_Edd), and strong wind arises forming a wind funnel above the disk. Outside the spherization radius, the disk is thin and its total luminosity is Eddington, L_Edd. The thin disk heats the wind from below. From the inner side of the funnel the wind is heated by the supercritical disk. In this paper we do not consider Comptonization in the inner hot winds which cover the deep supercritical disk regions. Our model is technically similar to the DISKIR model of Gierlinski et al. (2008, 2009). The models differ in disk type (standard - supercritical) and irradiation (disk - wind). We propose to distinguish between these two models in the soft X-ray region (~0.3 - 1 keV), where the SCAD model has a flat (nu F_nu) spectrum, and the DISKIR model never has a flat part, as it is based on the standard alpha-disk. An important difference between the models can be found in their resulting black hole masses. In application to the ULX spectra, the DISKIR model yields black hole masses of a few hundred solar masses, whereas the SCAD model produces stellar-mass black holes ~10 M_sun.

X-ray Irradiation of the LkCa 15 Protoplanetary Disk

LkCa 15 in the Taurus star-forming region has recently gained attention as the first accreting T Tauri star likely to host a young protoplanet. High spatial resolution infrared observations have detected the suspected protoplanet within a dust-depleted inner gap of the LkCa 15 transition disk at a distance of 15 AU from the star. If this object's status as a protoplanet is confirmed, LkCa 15 will serve as a unique laboratory for constraining physical conditions within a planet-forming disk. Previous models of the LkCa 15 disk have accounted for disk heating by the stellar photosphere but have ignored the potential importance of X-ray ionization and heating. We report here the detection of LkCa 15 as a bright X-ray source with Chandra. The X-ray emission is characterized by a cool heavily-absorbed plasma component at kT_cool ~0.3 keV and a harder component at kT_hot ~5 keV. We use the observed X-ray properties to provide initial estimates of the X-ray ionization and heating rates within the tenuous inner disk. These estimates and the observed X-ray properties of LkCa 15 can be used as a starting point for developing more realistic disk models of this benchmark system.

Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the relline model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for all those cases and independent of the quality of the data, no unique solution for the spin value exists.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^