Posts Tagged gamma ray

Recent Postings from gamma ray

Galactic center gamma ray excess from two Higgs doublet portal dark matter [Cross-Listing]

We consider a simple extension of type-II two Higgs doublet model by introducing a real scalar being a candidate for the dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is into a $b\bar{b}$ pair, and this annihilation mode suitably explains the observed excess of the flux of gamma ray from the Galactic center. We identify the parameter region of the model which can fit the gamma ray excess and, at the same time, satisfy phenomenological constraints such as the observed dark matter relic density and the null results of the direct dark matter search experiments. Most of the parameter region is found to be within the search reach of the future direct dark matter detection experiments.

Galactic center gamma ray excess from two Higgs doublet portal dark matter

We consider a simple extension of type-II two Higgs doublet model by introducing a real scalar being a candidate for the dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is into a $b\bar{b}$ pair, and this annihilation mode suitably explains the observed excess of the flux of gamma ray from the Galactic center. We identify the parameter region of the model which can fit the gamma ray excess and, at the same time, satisfy phenomenological constraints such as the observed dark matter relic density and the null results of the direct dark matter search experiments. Most of the parameter region is found to be within the search reach of the future direct dark matter detection experiments.

From Engine to Afterglow: Collapsars Naturally Produce Top-Heavy Jets and Early-Time Plateaus in Gamma Ray Burst Afterglows

We demonstrate that the steep decay and long plateau in the early phases of gamma ray burst (GRB) afterglows are naturally produced in the collapsar model, by a means ultimately related to the dynamics of relativistic jet propagation through a massive star. We present hydrodynamical simulations which start from a collapsar engine and evolve all the way through the late afterglow phase. The resultant outflow includes a jet core which is highly relativistic after breaking out of the star, but becomes baryon-loaded and less relativistic after colliding with a massive outer shell, corresponding to mass from the stellar atmosphere of the progenitor star which became trapped in front of the jet core at breakout. The prompt emission produced before or during this collision would then have the signature of a high Lorentz factor jet, but the afterglow is produced by the amalgamated post-collision ejecta which has more inertia than the original highly relativistic jet core and thus has a delayed deceleration. This naturally explains the early light curve behavior discovered by Swift, including a steep decay and a long plateau, without invoking late-time energy injection from the central engine. The numerical simulation is performed continuously from engine to afterglow, covering a dynamic range of over ten orders of magnitude in radius as a relativistic jet propagates through a massive star, breaks out of the stellar surface and coasts, generating both internal and external shocks. Light curves calculated from the numerical output demonstrate that this mechanism reproduces basic features seen in early afterglow data. Initial steep decays are produced by internal shocks, and the plateau corresponds to the coasting phase of the outflow.

Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

Recent detection of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggests that starburst galaxies are huge revisors of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this {\it Letter}, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a $\sim5.5\sigma$ detection of gamma-ray emission above 200{\rm MeV} from a source spatially coincident with the location of the luminous infrared galaxy NGC~2146. Taking into account also the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC~2146. The gamma-ray luminosity suggests that cosmic rays in NGC~2146 convert nearly half of their energy into secondary pions, so NGC~2146 is approximately a "proton calorimeter". It is also found that NGC~2146 obeys the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission in star-forming galaxies.

Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146 [Replacement]

Recent detection of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggests that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this {\it Letter}, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a $\sim5.5\sigma$ detection of gamma-ray emission above 200{\rm MeV} from a source spatially coincident with the location of the luminous infrared galaxy NGC~2146. Taking into account also the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC~2146. The gamma-ray luminosity suggests that cosmic rays in NGC~2146 convert nearly half of their energy into secondary pions, so NGC~2146 is approximately a "proton calorimeter". It is also found that NGC~2146 obeys the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission in star-forming galaxies.

Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146 [Replacement]

Recent detection of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggests that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a $\sim5.5\sigma$ detection of gamma-ray emission above 200{\rm MeV} from a source spatially coincident with the location of the luminous infrared galaxy NGC~2146. Taking into account also the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC~2146. The gamma-ray luminosity suggests that cosmic rays in NGC~2146 convert most of their energy into secondary pions, so NGC~2146 is a "proton calorimeter". It is also found that NGC~2146 obeys the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC~2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

Simplified Dark Matter Models Confront the Gamma Ray Excess

Inspired by the excess of gamma rays from the Galactic Center, we confront a number of simplified dark matter models with experimental data. Assuming a single dark matter particle coupled to standard matter via a spin-0 mediator, we compare model evidences for Majorana fermion, real scalar and real vector dark matter candidates. We consider dark matter annihilation into various fermionic final states contributing to the observed differential gamma ray flux. Our likelihood function also includes the dark matter relic density, its elastic scattering cross section with nuclei, and collider limits. Using Bayesian inference we confine the mass and couplings strengths of the dark matter and mediator particle. Our results show that, if the gamma ray excess is due to dark matter the above parameters are well constrained by the observations. We find that the Majorana fermion dark matter model is supported the most by the data.

Constraints on The Hadronic Content of Gamma Ray Bursts

The IceCube high-energy neutrino telescope has been collecting data since 2006. Conversely, hundreds of Gamma Ray Bursts (GRBs) have been detected by the GBM on board Fermi, since its launch in 2008. So far no neutrino event has been associated with a GRB, despite many models predicting the generation of high energy neutrinos through GRB photon interaction with PeV protons in the GRB jet. We use the non-detection of neutrinos to constrain the hadronic content of GRB jets independent of jet model parameters. Assuming a generic particle spectrum of $E^{-\alpha}$ with $\alpha = 2$, we find that the ratio of the energy carried by pions to that in electrons has to be small $f_\pi / f_e \lesssim 0.24$ at 95\% confidence level. A distribution of spectral slopes can lower $f_\pi / f_e$ by orders of magnitude. Another limit, independent of neutrinos, is obtained if one ascribes the measured Fermi/LAT GeV gamma-ray emission to pair-photon cascades of high-energy photons resulting from (the same photon-hadronic interactions and subsequent) neutral pion decays. Based on the generally observed MeV to GeV GRB fluence ratio of $\approx 10$, we show that $f_\pi / f_e \lesssim 0.3$. In some bursts, where this ratio is as low as unity, $f_\pi / f_e \lesssim 0.03$. These findings add to the mounting doubts regarding the presence of PeV protons in GRB jets.

On the Composition of GRBs' Collapsar Jets

The duration distribution of long Gamma Ray Bursts reveals a plateau at durations shorter than ~20 s (in the observer frame) and a power-law decline at longer durations (Bromberg et al., 2012). Such a plateau arises naturally in the Collapsar model. In this model the engine has to operate long enough to push the jet out of the stellar envelope and the observed duration of the burst is the difference between the engine’s operation time and the jet breakout time. We compare the jet breakout time inferred from the duration distribution (~10 s in the burst’s frame) to the breakout time of a hydrodynamic jet (~10 s for typical parameters) and of a Poynting flux dominated jet with the same overall energy (<~1 s). As only the former is compatible with the duration of the plateau in the GRB duration distribution, we conclude that the jet is hydrodynamic during most of the time that its head is within the envelope of the progenitor star and around the time when it emerges from the star. This would naturally arise if the jet forms as a hydrodynamic jet in the first place or if it forms Poynting flux dominated but dissipates most of its magnetic energy early on within the progenitor star and emerges as a hydrodynamic jet.

Recombining Plasma in the Gamma-ray Emitting Mixed-Morphology Supernova Remnant 3C 391

A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MC) has been discovered as strong GeV gamma-ray emitters by Large Area Telescope on board Fermi Gamma Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MC. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3 $-$ 10.0 keV X-ray band by Suzaku. In this work, 3C 391 was detected in GeV gamma rays with a significance of $\sim$ 18 $\sigma$ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.

Bremsstrahlung and Gamma Ray Lines in 3 Scenarios of Dark Matter Annihilation

Gamma ray spectral features are of interest for indirect searches of dark matter (DM). Following Barger et al, we consider 3 simple scenarios of DM that annihilates into Standard Model (SM) fermion pairs. Scenario 1 is a Majorana DM candidate coupled to a charged scalar, scenario 2 is a Majorana DM coupled to a charged gauge boson and scenario 3 is a real scalar DM coupled a charged vector-like fermion. As shown by Barger et al, these 3 scenarios share precisely the same internal Bremsstrahlung spectral signature into gamma rays. Their phenomenology is however distinct. In particular for annihilation into light SM fermions, in the chiral limit, the 2-body annihilation cross section is p-wave suppressed for the Majorana candidates while it is d-wave suppressed for the real scalar. In the present work we study the annihilation into 2 gammas, showing that these three scenarios have distinct, and so potentially distinguishable, spectral signatures into gamma rays. In the case of the real scalar candidate we provide a new calculation of the amplitude for annihilation into 2 gammas.

Bremsstrahlung and Gamma Ray Lines in 3 Scenarios of Dark Matter Annihilation [Cross-Listing]

Gamma ray spectral features are of interest for indirect searches of dark matter (DM). Following Barger et al, we consider 3 simple scenarios of DM that annihilates into Standard Model (SM) fermion pairs. Scenario 1 is a Majorana DM candidate coupled to a charged scalar, scenario 2 is a Majorana DM coupled to a charged gauge boson and scenario 3 is a real scalar DM coupled a charged vector-like fermion. As shown by Barger et al, these 3 scenarios share precisely the same internal Bremsstrahlung spectral signature into gamma rays. Their phenomenology is however distinct. In particular for annihilation into light SM fermions, in the chiral limit, the 2-body annihilation cross section is p-wave suppressed for the Majorana candidates while it is d-wave suppressed for the real scalar. In the present work we study the annihilation into 2 gammas, showing that these three scenarios have distinct, and so potentially distinguishable, spectral signatures into gamma rays. In the case of the real scalar candidate we provide a new calculation of the amplitude for annihilation into 2 gammas.

Gamma Ray Bursts Are Observed Off-Axis

We use the ScaleFit package to perform Markov chain Monte Carlo light curve fitting on a large sample of Swift-XRT gamma-ray burst afterglows. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 188 bursts in total. We find the jet half opening angle varies widely but is commonly less than 0.1 radians. The distribution of the electron spectral index is also broad, with a median at 2.23. This approach allows, for the first time, for the off-axis observer angle to be inferred directly from the light curve. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and effects the beaming corrected total energies of gamma-ray bursts.

A Hadronic-Leptonic Model for the Fermi Bubbles: Cosmic-Rays in the Galactic Halo and Radio Emission

We investigate non-thermal emission from the Fermi bubbles on a hadronic model. Cosmic-ray (CR) protons are accelerated at the forward shock of the bubbles. They interact with the background gas in the Galactic halo and create $\pi^0$-decay gamma-rays and secondary electrons through proton-proton interaction. We follow the evolution of the CR protons and electrons by calculating their distribution functions. We find that the spectrum and the intensity profile of $\pi^0$-decay gamma-rays are consistent with observations. We predict that the shock front is located far ahead of the gamma-ray boundary of the Fermi bubbles. This naturally explains the fact that a clear temperature jump of thermal gas was not discovered at the gamma-ray boundary in recent Suzaku observations. We also consider re-acceleration of the background CRs in the Galactic halo at the shock front. We find that it can significantly affect the gamma-rays from the Fermi bubbles, unless the density of the background CRs is $\lesssim 10$\% of that in the Galactic disk. We indicate that secondary electrons alone cannot produce the observed radio emission from the Fermi bubbles. However, the radio emission from the outermost region of the bubbles can be explained, if electrons are directly accelerated at the shock front with an efficiency of $\sim 0.1$\% of that of protons.

Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of Gamma Ray Burst (GRB) afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power law shape with index 2.4. However, for real instruments, this value depends on their low energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 10^5-10^6 counts in the 0.3-10 keV band are needed to constrain the redshift with 10% accuracy. As a test case we discuss the XMM-Newton observation of GRB 090618 at z=0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

Afterglows from precursors in Gamma Ray Bursts. Application to the optical afterglow of GRB 091024

About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the "quasi-quiescent" phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode crashes with this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We apply this new model to GRB 091024, an event with a precursor in the prompt light curve and two well defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.

Variable optical polarization during high state in gamma-ray loud narrow line Seyfert 1 galaxy 1H 0323+342

We present results of optical polarimetric and multi-band photometric observations for gamma-ray loud narrow-line Seyfert 1 galaxy 1H 0323+342. This object has been monitored by 1.5 m Kanata telescope since 2012 September but following a gamma-ray flux enhancement detected by Fermi-LAT on MJD 56483 (2013 July 10) dense follow-up was performed by ten 0.5-2.0 m telescopes in Japan over one week. The 2-year R_C-band light curve showed clear brightening corresponding to the gamma-ray flux increase and then decayed gradually. The high state as a whole lasted for ~20 days, during which we clearly detected optical polarization from this object. The polarization degree (PD) of the source increased from 0-1% in quiescence to ~3% at maximum and then declined to the quiescent level, with the duration of the enhancement of less than 10 days. The moderate PD around the peak allowed us to precisely measure the daily polarization angle (PA). As a result, we found that the daily PAs were almost constant and aligned to the jet axis, suggesting that the magnetic field direction at the emission region is transverse to the jet. This implies either a presence of helical/toroidal magnetic field or transverse magnetic field compressed by shock(s). We also found small-amplitude intra-night variability during the 2-hour continuous exposure on a single night. We discuss these findings based on the turbulent multi-zone model recently advocated by Marscher (2014). Optical to ultraviolet (UV) spectrum showed a rising shape in the higher frequency and the UV magnitude measured by Swift/UVOT was steady even during the flaring state, suggesting that thermal emission from accretion disk is dominant in that band.

Variable optical polarization during high state in gamma-ray loud narrow line Seyfert 1 galaxy 1H 0323+342 [Replacement]

We present results of optical polarimetric and multi-band photometric observations for gamma-ray loud narrow-line Seyfert 1 galaxy 1H 0323+342. This object has been monitored by 1.5 m Kanata telescope since 2012 September but following a gamma-ray flux enhancement detected by Fermi-LAT on MJD 56483 (2013 July 10) dense follow-up was performed by ten 0.5-2.0 m telescopes in Japan over one week. The 2-year R_C-band light curve showed clear brightening corresponding to the gamma-ray flux increase and then decayed gradually. The high state as a whole lasted for ~20 days, during which we clearly detected optical polarization from this object. The polarization degree (PD) of the source increased from 0-1% in quiescence to ~3% at maximum and then declined to the quiescent level, with the duration of the enhancement of less than 10 days. The moderate PD around the peak allowed us to precisely measure the daily polarization angle (PA). As a result, we found that the daily PAs were almost constant and aligned to the jet axis, suggesting that the magnetic field direction at the emission region is transverse to the jet. This implies either a presence of helical/toroidal magnetic field or transverse magnetic field compressed by shock(s). We also found small-amplitude intra-night variability during the 2-hour continuous exposure on a single night. We discuss these findings based on the turbulent multi-zone model recently advocated by Marscher (2014). Optical to ultraviolet (UV) spectrum showed a rising shape in the higher frequency and the UV magnitude measured by Swift/UVOT was steady even during the flaring state, suggesting that thermal emission from accretion disk is dominant in that band.

The Peculiar Radio-Loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

We present a multi-wavelength study of the radio-loud narrow line Seyfert 1 galaxy (NLSy1), 1H 0323+342, detected by Fermi Gamma Ray Space Telescope. Multi-band light curves show many orphan X-ray and optical flares having no corresponding {\gamma}-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, {\gamma}-ray flux doubling time scale as small as $\sim$ 3 hours is noticed. We built spectral energy distribution (SED) during different activity states and modeled them using an one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states, however, during subsequent flares, non-thermal jet component dominates. The {\gamma}-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad line region. The source showed violent intra-night optical variability, coinciding with one of the high {\gamma}-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints for the presence of Fe K-{\alpha} line and returns a high black hole spin value of a=0.96 $\pm$ 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to flat spectrum radio quasars (FSRQs) as well as radio-quiet NLSy1s, though at a low jet power regime compared to powerful FSRQs.

Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations

The apparent excess of gamma rays in an extended region in the direction of the galactic center has a spatial distribution and amplitude that are suggestive of dark matter annihilations. If this excess is indeed due to dark matter annihilations, it would indicate the presence of both dark matter and an additional particle beyond the Standard Model that mediates the interactions between the dark matter and Standard Model states. We introduce reference models describing dark matter annihilation to pairs of these new mediators, which decouples the SM-mediator coupling from the thermal annihilation cross section and easily explains the lack of direct detection signals. We determine the parameter regions that give good descriptions of the gamma ray excess for several motivated choices of mediator couplings to the SM. We find fermion dark matter with mass 7-26 GeV and a dark vector mediator, or scalar dark matter in the 10-50 GeV range (Higgs portal mediator) or 10-65 GeV range (gluophilic mediator) can provide a comparable or improved fit, compared to the case of direct annihilation. We demonstrate that these models can easily satisfy all constraints from collider experiments, direct detection, and cosmology.

Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations [Replacement]

The apparent excess of gamma rays in an extended region in the direction of the galactic center has a spatial distribution and amplitude that are suggestive of dark matter annihilations. If this excess is indeed due to dark matter annihilations, it would indicate the presence of both dark matter and an additional particle beyond the Standard Model that mediates the interactions between the dark matter and Standard Model states. We introduce reference models describing dark matter annihilation to pairs of these new mediators, which decouples the SM-mediator coupling from the thermal annihilation cross section and easily explains the lack of direct detection signals. We determine the parameter regions that give good descriptions of the gamma ray excess for several motivated choices of mediator couplings to the SM. We find fermion dark matter with mass 7-26 GeV and a dark vector mediator, or scalar dark matter in the 10-50 GeV range (Higgs portal mediator) or 10-65 GeV range (gluophilic mediator) can provide a comparable or improved fit, compared to the case of direct annihilation. We demonstrate that these models can easily satisfy all constraints from collider experiments, direct detection, and cosmology.

Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations [Cross-Listing]

The apparent excess of gamma rays in an extended region in the direction of the galactic center has a spatial distribution and amplitude that are suggestive of dark matter annihilations. If this excess is indeed due to dark matter annihilations, it would indicate the presence of both dark matter and an additional particle beyond the Standard Model that mediates the interactions between the dark matter and Standard Model states. We introduce reference models describing dark matter annihilation to pairs of these new mediators, which decouples the SM-mediator coupling from the thermal annihilation cross section and easily explains the lack of direct detection signals. We determine the parameter regions that give good descriptions of the gamma ray excess for several motivated choices of mediator couplings to the SM. We find fermion dark matter with mass 7-26 GeV and a dark vector mediator, or scalar dark matter in the 10-50 GeV range (Higgs portal mediator) or 10-65 GeV range (gluophilic mediator) can provide a comparable or improved fit, compared to the case of direct annihilation. We demonstrate that these models can easily satisfy all constraints from collider experiments, direct detection, and cosmology.

Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations [Replacement]

The apparent excess of gamma rays in an extended region in the direction of the galactic center has a spatial distribution and amplitude that are suggestive of dark matter annihilations. If this excess is indeed due to dark matter annihilations, it would indicate the presence of both dark matter and an additional particle beyond the Standard Model that mediates the interactions between the dark matter and Standard Model states. We introduce reference models describing dark matter annihilation to pairs of these new mediators, which decouples the SM-mediator coupling from the thermal annihilation cross section and easily explains the lack of direct detection signals. We determine the parameter regions that give good descriptions of the gamma ray excess for several motivated choices of mediator couplings to the SM. We find fermion dark matter with mass 7-26 GeV and a dark vector mediator, or scalar dark matter in the 10-50 GeV range (Higgs portal mediator) or 10-65 GeV range (gluophilic mediator) can provide a comparable or improved fit, compared to the case of direct annihilation. We demonstrate that these models can easily satisfy all constraints from collider experiments, direct detection, and cosmology.

Gamma-ray and neutrino fluxes form Heavy Dark Matter in the Galactic Center [Cross-Listing]

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

Gamma-ray and neutrino fluxes form Heavy Dark Matter in the Galactic Center

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center [Replacement]

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center [Replacement]

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

On the Induced Gravitational Collapse at extreme cosmological distances: the case of GRB 090423 [Replacement]

(Shortened) Context: The Induced Gravitational Collapse (IGC) scenario has been introduced in order to explain the most energetic Gamma Ray Bursts (GRBs), Eiso=10^{52}-10^{54}erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hyper novae (BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron star (NS). Their evolution is characterized by a rapid sequence of events: [...]. AIMS: To investigate whether GRB 090423, one of the farthest observed GRB at z=8.2, is a member of the BdHN family. Methods: We compare and contrast the spectra, the luminosity evolution and the detectability in the observations by Swift of GRB 090423 with the corresponding ones of the best known BdHN case, i.e. GRB 090618. RESULTS: The identification of a constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the corresponding one in GRB 090618, measured in a common rest frame, represents the main result of this article. This result signs a very significant step on the way to use the scaling law properties, evidenced in Episode 3 of this BdHN family, as a cosmological standard candle. Conclusions: Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS formation, can occur already at z=8.2, namely at 650 Myr after the Big Bang. It is then possible that these BdHNe originate from 40-60M_Sun binaries. They are probing the Population II stars after the completion and possible disappearance of Population III stars.

On the Induced Gravitational Collapse at extreme cosmological distances: the case of GRB 090423

Context: The Induced Gravitational Collapse (IGC) scenario has been introduced in order to explain the most energetic Gamma Ray Bursts (GRBs), E_{iso}=10^{52}-10^{54}erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hyper novae (BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron star (NS). Their evolution is characterized by a rapid sequence of events: 1) the SN explodes giving birth to a new NS ($\nu$NS); 2) the accretion of SN ejecta onto the companion NS increases its mass up to the critical value; 3) the consequent gravitational collapse is triggered, leading to the formation of a black hole (BH) with a GRB emission. Aims: To investigate whether GRB 090423, one of the farthest observed GRB at z=8.2, is a member of the BdHN family. Methods: We compare and contrast the spectra, the luminosity evolution and the detectability in the observations by Swift of GRB 090423 with the corresponding ones of the best known BdHN case, i.e. GRB 090618. Results: The identification of a constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the corresponding one in GRB 090618, measured in a common rest frame, represent the main test for asserting that GRB 090423 is indeed a member of the BdHN family. Conclusions: Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS formation, can occur already at z=8.2, namely at 650 million years after the Big Bang.

Multifrequency Studies of the Peculiar Quasar 4C +21.35 During the 2010 Flaring Activity

The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) gamma-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) gamma-rays, poses intriguing questions on the location of the gamma-ray emitting region in this flat spectrum radio quasar (FSRQ). We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a gamma-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two gamma-ray peaks, while no clear connection was observed between the X-ray an gamma-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing gamma-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.

Multifrequency Studies of the Peculiar Quasar 4C +21.35 During the 2010 Flaring Activity [Replacement]

The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) gamma-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) gamma-rays, poses intriguing questions on the location of the gamma-ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a gamma-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two gamma-ray peaks, while no clear connection was observed between the X-ray an gamma-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing gamma-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.

Multifrequency Studies of the Peculiar Quasar 4C +21.35 During the 2010 Flaring Activity [Replacement]

The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) gamma-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) gamma-rays, poses intriguing questions on the location of the gamma-ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a gamma-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two gamma-ray peaks, while no clear connection was observed between the X-ray an gamma-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing gamma-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.

Did Gamma Ray Burst Induce Cambrian Explosion?

One longstanding mystery in bio-evolution since Darwin’s time is the origin of the Cambrian explosion that happened around 540 million years ago (Mya), where an extremely rapid increase of species occurred. Here we suggest that a nearby GRB event ~500 parsecs away, which should occur about once per 5 Gy, might have triggered the Cambrian explosion. Due to a relatively lower cross section and the conservation of photon number in Compton scattering, a substantial fraction of the GRB photons can reach the sea level and would induce DNA mutations in organisms protected by a shallow layer of water or soil, thus expediting the bio-diversification. This possibility of inducing genetic mutations is unique among all candidate sources for major incidents in the history of bio-evolution. A possible evidence would be the anomalous abundance of certain nuclear isotopes with long half-lives transmuted by the GRB photons in geological records from the Cambrian period. Our notion also imposes constraints on the evolution of exoplanet organisms and the migration of panspermia.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Cross-Listing]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Cross-Listing]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Cross-Listing]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Implications Of A Dark Sector U(1) For Gamma Ray Bursts [Replacement]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Gamma-ray Luminosity and Photon Index Evolution of FSRQ Blazars and Contribution to the Gamma-ray Background

We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7 sigma detection threshold in the first year catalog of the Fermi Gamma-ray Space Telescope’s Large Area Telescope, with redshfits as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accounted for we determine the density evolution and luminosity function of FSRQs, and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/-4)%, in agreement with previous studies.

The silicon matrix for the prototype for the Dark Matter Particle Explorer [Cross-Listing]

A new generation detector for the high energy cosmic ray – the DAMPE(DArk Matter Particle Explorer) is a satellite based project. Its main object is the measurement of energy spectrum of cosmic ray nuclei from 100GeV to 100TeV, the high energy electrons and gamma ray from 5GeV to 10TeV. A silicon matrix detector described in this paper, is employed for the sea level cosmic ray energy and position detection while the prototype testing of the DAMPE. This matrix is composed by the 180 silicon PIN detectors, which covers an area of 32*20 cm2. The primary testing results are shown including MIPs energy spectrum and the position sensitive map.

The silicon matrix for the prototype for the Dark Matter Particle Explorer [Replacement]

A new generation detector for the high energy cosmic ray – the DAMPE(DArk Matter Particle Explorer) is a satellite based project. Its main object is the measurement of energy spectrum of cosmic ray nuclei from 100GeV to 100TeV, the high energy electrons and gamma ray from 5GeV to 10TeV. A silicon matrix detector described in this paper, is employed for the sea level cosmic ray energy and position detection while the prototype testing of the DAMPE. This matrix is composed by the 180 silicon PIN detectors, which covers an area of 32*20 cm2. The primary testing results are shown including MIPs energy spectrum and the position sensitive map.

Can a millicharged dark matter particle emit an observable gamma-ray line?

If a gamma-ray line is observed in the near future, it will be important to determine what kind of dark matter (DM) particle could be at its origin. We investigate the possibility that the gamma-ray line would be induced by a slow DM particle decay associated to the fact that the DM particle would not be absolutely neutral. A "millicharge" for the DM particle can be induced in various ways, in particular from a kinetic mixing interaction or through the Stueckelberg mechanism. We show that such a scenario could lead in specific cases to an observable gamma-ray line. This possibility can be considered in a systematic model-independent way, by writing down the corresponding effective theory. This allows for a multi-channel analysis, giving in particular upper bounds on the intensity of the associated gamma-ray line from cosmic rays emission. Our analysis includes the possibility that in the two-body decay the photon is accompanied with a neutrino. We show that, given the stringent constraints which hold on the millicharge of the neutrinos, this is not an option, except if the DM particle mass lies in the very light KeV-MeV range, allowing for a possibility of explanation of the recently claimed, yet to be confirmed, ~3.5KeV X-ray line.

Can a millicharged dark matter particle emit an observable gamma-ray line? [Replacement]

If a gamma-ray line is observed in the near future, it will be important to determine what kind of dark matter (DM) particle could be at its origin. We investigate the possibility that the gamma-ray line would be induced by a slow DM particle decay associated to the fact that the DM particle would not be absolutely neutral. A "millicharge" for the DM particle can be induced in various ways, in particular from a kinetic mixing interaction or through the Stueckelberg mechanism. We show that such a scenario could lead in specific cases to an observable gamma-ray line. This possibility can be considered in a systematic model-independent way, by writing down the corresponding effective theory. This allows for a multi-channel analysis, giving in particular upper bounds on the intensity of the associated gamma-ray line from cosmic rays emission. Our analysis includes the possibility that in the two-body decay the photon is accompanied with a neutrino. We show that, given the stringent constraints which hold on the millicharge of the neutrinos, this is not an option, except if the DM particle mass lies in the very light KeV-MeV range, allowing for a possibility of explanation of the recently claimed, yet to be confirmed, ~3.5KeV X-ray line.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^