Posts Tagged galaxy cluster

Recent Postings from galaxy cluster

Discovery of a galaxy cluster with a violently starbursting core at z=2.506

We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at $z_{spec} = 2.506$ in the COSMOS field. This structure contains in its center 11 massive ($M_{*} \gtrsim 10^{11} M_{\odot}$) galaxies distributed over 80-kpc, producing an 11.6$\sigma$ overdensity. We have spectroscopically confirmed 16 member galaxies extending to $\sim1$ Mpc from the core with half of them derived from CO with IRAM-NOEMA and JVLA and the other half from $H\alpha$ with VLT-KMOS. The X-ray luminosity, high stellar mass content and velocity dispersion all point to a collapsed, single cluster-sized dark matter halo with total mass $M_{200c} \sim 10^{13.9\pm0.2} M_{\odot}$, identifying it as the most distant X-ray detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies in the core with only two out of the 11 massive galaxies classified as quiescent. The star formation rate in the 80-kpc core reaches $\sim$3400 $M_{\odot}$ yr$^{-1}$ with a gas depletion time of $\sim 200$ Myr, suggesting that we caught this structure in rapid formation. The high star formation rate is driven by both a high abundance of massive star-forming galaxies and a higher starburst fraction ($\sim25\%$, compared to 3\%-5\% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of star-forming galaxies in the core suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights on massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

Reconstructing cosmic growth with kSZ observations in the era of Stage IV experiments

Future ground-based CMB experiments will generate competitive large-scale structure datasets by precisely characterizing CMB secondary anisotropies over a large fraction of the sky. We describe a method for constraining the growth rate of structure to sub-1% precision out to $z\approx 1$, using a combination of galaxy cluster peculiar velocities measured using the kinetic Sunyaev-Zel'dovich (kSZ) effect, and the velocity field reconstructed from galaxy redshift surveys. We consider only thermal SZ-selected cluster samples, which will consist of $\mathcal{O}(10^4-10^5)$ sources for Stage 3 and 4 CMB experiments respectively. Three different methods for separating the kSZ effect from the primary CMB are compared, including a novel blind "constrained realization" method that improves signal-to-noise by a factor of $\sim 2$ over a commonly-used aperture photometry technique. Measurements of the integrated tSZ $y$-parameter are used to break the kSZ velocity-optical depth degeneracy, and the effects of including CMB polarization and SZ profile uncertainties are also considered. A combination of future Stage 4 experiments should be able to measure the product of the growth and expansion rates, $\alpha\equiv f H$, to better than 1% in bins of $\Delta z = 0.1$ out to $z \approx 1$ -- competitive with contemporary redshift-space distortion constraints from galaxy surveys.

Deep Chandra study of the truncated cool core of the Ophiuchus cluster

We present the results of a deep (280 ks) Chandra observation of the Ophiuchus cluster, the second-brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT~1 keV in the core to kT~9 keV at r~30 kpc. Beyond r~30 kpc the intra-cluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The sloshing is the result of the strongly perturbed gravitational potential in the cluster core, with the central brightest cluster galaxy (BCG) being displaced southward from the global center of mass. The residual image reveals a likely subcluster south of the core at the projected distance of r~280 kpc. The cluster also harbors a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ~100 km/s. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r~120 kpc to the southeast of the cluster center. We conclude that this feature is most likely due to gas dynamics associated with a merger and not a result of an extraordinary active galactic nucleus (AGN) outburst. The cooling core lacks any observable X-ray cavities and the AGN only displays weak, point-like radio emission, lacking lobes or jets, indicating that currently it may be largely dormant. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.

Effect of Priomordial non-Gaussianities on Galaxy Clusters Scaling Relations

Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. In this work we investigate the impact of primordial non-gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of cosmological hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussian initial conditions within the $\Lambda$CDM framework. We focus on the T-M, S-M, Y-M and Yx-M scalings relating the total cluster mass with temperature, entropy and SZ cluster integrated pressure that reflect the thermodynamical state of the intra-cluster medium. Our results show that PNG have an impact on cluster scalings laws. The mass power-law indexes of the scalings are almost unaffected by the existence of PNG but the amplitude and redshift evolution of their normalizations are clearly affected. The effect is stronger for the evolution of the Y-M and Yx-M normalizations, which change by as much as 22% and 16% when $f_{NL}$ varies from -500 to 500, respectively. These results are consistent with the view that positive/negative $f_{NL}$ affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of $f_{NL}$, as suggested by present Planck constraints on a scale invariant $f_{NL}$, the impact on the scalings normalizations is only a few percent, which is small when compared with the effect of additional gas physics and other cosmological effects such as dark energy. However if $f_{NL}$ is in fact a scale dependent parameter, PNG may have larger positive/negative amplitudes at clusters scales and therefore our results suggest that PNG should be taken into account when galaxy cluster data is used to infer cosmological parameters or to asses the constraining power of future cluster surveys.

Weak Lensing Measurement of the Mass--Richness Relation of SDSS redMaPPer Clusters

We perform a measurement of the mass--richness relation of the redMaPPer galaxy cluster catalogue using weak lensing data from the Sloan Digital Sky Survey. We have carefully characterized a broad range of systematic uncertainties, including shear calibration errors, photo-$z$ biases, dilution by member galaxies, source obscuration, magnification bias, incorrect assumptions about cluster mass profiles, cluster centering, halo triaxiality, and projection effects. We also compare measurements of the lensing signal from two independently-produced shear and photometric redshift catalogues to characterize systematic errors in the lensing signal itself. Using a sample of 5,570 clusters from $0.1\le z\le 0.33$, the normalization of our power-law mass vs.\ $\lambda$ relation is $\log_{10}[M_{200m}/h^{-1}\ M_{\odot}]$ = $14.344 \pm 0.021$ (statistical) $\pm 0.023$ (systematic) at a richness $\lambda=40$, a 7 per cent calibration uncertainty, with a power-law index of $1.33^{+0.09}_{-0.10}$ ($1\sigma$). The detailed systematics characterization in this work renders it the definitive weak lensing mass calibration for SDSS redMaPPer clusters at this time.

Simulation tests of galaxy cluster constraints on chameleon gravity

We use two new hydrodynamical simulations of $\Lambda$CDM and $f(R)$ gravity to test the methodology used by Wilcox et al. 2015 (W15) in constraining the effects of a fifth force on the profiles of clusters of galaxies. We construct realistic simulated stacked weak lensing and X-ray surface brightness cluster profiles from these cosmological simulations, and then use these data projected along various lines-of-sight to test the spherical symmetry of our stacking procedure. We also test the applicability of the NFW profile to model weak lensing profiles of clusters in $f(R)$ gravity. Finally, we test the validity of the analytical model developed in W15 against the simulated profiles. Overall, we find our methodology is robust and broadly agrees with these simulated data. We also apply our full Markov Chain Monte Carlo (MCMC) analysis from W15 to our simulated X-ray and lensing profiles, providing consistent constraints on the modified gravity parameters as obtained from the real cluster data, e.g. for our $\Lambda$CDM simulation we obtain $|f_{\rm{R}0}| < 8.3 \times 10^{-5}$ (95% CL), which is in good agreement with the W15 measurement of $|f_{\rm{R}0}| < 6 \times 10^{-5}$. Overall, these tests confirm the power of our methodology which can now be applied to larger cluster samples available with the next generation surveys.

The merging galaxy cluster A520 --- a broken-up cool core, a dark subcluster, and an X-ray channel

We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map, after the subtraction of the cluster-scale emission, reveals a long trail of dense, cool clumps --- apparently the fragments of a cool core that has been completely stripped from the infalling subcluster by ram pressure. In this scenario, we can assume that the clumps are still connected by the magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor >100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed -along- the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. An X-ray hydrostatic mass estimate for one of the clumps (that has simple geometry) agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5-3%, which makes it a "dark subcluster". We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma $\beta\sim 10-20$). The shock in A520 will be studied in a separate paper.

The merging galaxy cluster A520 --- a broken-up cool core, a dark subcluster, and an X-ray channel [Replacement]

We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map, after the subtraction of the cluster-scale emission, reveals a long trail of dense, cool clumps --- apparently the fragments of a cool core that has been completely stripped from the infalling subcluster by ram pressure. In this scenario, we can assume that the clumps are still connected by the magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor >100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed -along- the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. An X-ray hydrostatic mass estimate for one of the clumps (that has simple geometry) agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5-3%, which makes it a "dark subcluster". We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma $\beta\sim 10-20$). The shock in A520 will be studied in a separate paper.

The structure and evolution of a forming galaxy cluster at z = 1.62

We present a comprehensive picture of the Cl0218.3-0510 protocluster at $z=1.623$ across 10 co-moving Mpc. Using filters that tightly bracket the Balmer and 4000 Angstrom breaks of the protocluster galaxies we obtain precise photometric redshifts resulting in a protocluster galaxy sample that is 89+/-5% complete and has a contamination of only 12+/-5%. Both star forming and quiescent protocluster galaxies are located allowing us to map the structure of the forming cluster for the first time. The protocluster contains 6 galaxy groups, the largest of which is the nascent cluster. Only a small minority of the protocluster galaxies are in the nascent cluster (11%) or in the other galaxy groups (22%), as most protocluster galaxies reside between the groups. Unobscured star forming galaxies predominantly reside between the protocluster's groups, whereas red galaxies make up a large fraction of the groups' galactic content, so observing the protocluster through only one of these types of galaxies results in a biased view of the protocluster's structure. The structure of the protocluster reveals how much mass is available for the future growth of the cluster and we use the Millennium Simulation, scaled to a Planck cosmology, to predict that Cl0218.3-0510 will evolve into a 2.7x 10^14 Msun cluster by the present day.

Search for a Non-equilibrium Plasma in the Merging Galaxy Cluster Abell 754

Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly-alpha / Fe He-alpha line ratio to search for possible deviation from ionization equilibrium. Fitting with a single temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (n_et>10^{13} s cm^{-3}) except for a specific region with the highest temperature (kT=13.3^{+1.4}_{-1.1} keV) where n_et=10^{11.6^{+0.6}_{-1.7}} s cm^{-3}. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This time scale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. We, however, note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5} keV and very high kT > 19.3 keV. The very high temperature component is alternatively fitted with a power law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of that with the non-equilibrium ionization plasma.

A Strong Merger Shock in Abell 665

Deep (103 ks) \chandra\ observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of $M$ = 3.0 $\pm$ 0.6, propagating in front of a cold disrupted cloud. This makes Abell~665 the second cluster where a strong merger shock of $M \approx$ 3 has been detected, after the Bullet cluster. The shock velocity from jump conditions is consistent with (2.7 $\pm$ 0.7) $\times$ 10$^3$ km sec$^{-1}$. The new data also reveal a prominent southern cold front, with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the re-acceleration model with the X-ray and radio data combined.

High-resolution tSZ cartography of clusters of galaxies with NIKA at the IRAM 30-m telescope

The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study clusters of galaxies and is complementary with respect to X-ray, lensing or optical observations. Previous arcmin resolution tSZ observations ({\it e.g.} SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium morphology for low redshift clusters ($z < 0.2$). Thus, the development of precision cosmology with clusters requires high angular resolution observations to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a wide-field (6.5 arcmin field of view) dual-band camera, operated at $100 \ {\rm mK}$ and containing $\sim 3300$ KID (Kinetic Inductance Detectors), designed to observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18 and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM 30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ observation program will allow us to observe a large sample of clusters (50) at redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters of galaxies have been observed at the IRAM 30-m telescope with the NIKA prototype to cover the various configurations and observation conditions expected for NIKA2.

nIFTy Galaxy Cluster simulations IV: Quantifying the Influence of Baryons on Halo Properties

Building on the initial results of the nIFTy simulated galaxy cluster comparison, we compare and contrast the impact of baryonic physics with a single massive galaxy cluster, run with 11 state-of-the-art codes, spanning adaptive mesh, moving mesh, classic and modern SPH approaches. For each code represented we have a dark matter only (DM) and non-radiative (NR) version of the cluster, as well as a full physics (FP) version for a subset of the codes. We compare both radial mass and kinematic profiles, as well as global measures of the cluster (e.g. concentration, spin, shape), in the NR and FP runs with that in the DM runs. Our analysis reveals good consistency (<= 20%) between global properties of the cluster predicted by different codes when integrated quantities are measured within the virial radius R200. However, we see larger differences for quantities within R2500, especially in the FP runs. The radial profiles reveal a diversity, especially in the cluster centre, between the NR runs, which can be understood straightforwardly from the division of codes into classic SPH and non-classic SPH (including the modern SPH, adaptive and moving mesh codes); and between the FP runs, which can also be understood broadly from the division of codes into those that include AGN feedback and those that do not. The variation with respect to the median is much larger in the FP runs with different baryonic physics prescriptions than in the NR runs with different hydrodynamics solvers.

Chandra Observation of Abell 1142: A Cool-Core Cluster Lacking a Central Brightest Cluster Galaxy?

Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched "cool core" of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

A new constraint on millicharged dark matter from galaxy clusters

We propose a new constraint on millicharged dark matter from considerations on galaxy clusters. The charged dark matter moves under the influence of the randomly oriented magnetic fields in galaxy clusters, and the corresponding dark matter density profile can significantly differ from the concordance CDM predictions which are well supported from the galaxy cluster observations. With a typical amplitude of magnetic fields $B=\mathcal O(1)\,\mu$G and dark matter velocity $v=\mathcal O(100)\,$km/sec at a cluster radius $R\simeq 1\,$Mpc, we claim that the charge $\epsilon e$ ($e$ is the elementary charge) of dark matter with mass $m$ should be bounded as $\epsilon \lesssim 10^{-14}(m/{\rm GeV})$ which is substantially tighter than the other previous constraints.

CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles

We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at $z=0.44$ to estimate the value of the ratio $\eta=\Psi/\Phi$ between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only $\Phi$), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum $\Phi+\Psi$). We thus express $\eta$ as a function of the mass profiles and perform our analysis over the radial range $0.5\,Mpc\le r\le r_{200}=1.96\,Mpc$. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain $\eta(r_{200})=1.01\,_{-0.28}^{+0.31}$ at the 68\% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied $f(R)$ modified gravity model, the constraint on $\eta$ translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the $f(R)$ interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.

Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing

We present a strong lensing system, composed of 4 multiple images of a source at z = 2.387, created by two lens galaxies, G1 and G2, belonging to the galaxy cluster MACS J1115.9+0129 at z = 0.353. We use observations taken as part of the Cluster Lensing and Supernova survey with Hubble, CLASH, and its spectroscopic follow-up programme at the Very Large Telescope, CLASH-VLT, to estimate the total mass distributions of the two galaxies and the cluster through strong gravitational lensing models. We find that the total projected mass values within the half-light radii, R_{e}, of the two lens galaxies are M_{T,G1}(< R_{e,G1}) = (3.6 +/- 0.4) x 10^{10}M_{Sun} and M_{T,G2}(< R_{e,G2}) = (4.2 +/- 1.6) x 10^{10}M_{Sun}. The effective velocity dispersion values of G1 and G2 are (122 +/- 7) km/s and (137 +/- 27) km/s, respectively. We remark that these values are relatively low when compared to those of ~200-300 km/s, typical of lens galaxies found in the field by previous surveys. By fitting the spectral energy distributions of G1 and G2, we measure projected luminous over total mass fractions within R_{e} of 0.11 +/- 0.03, for G1, and 0.73 +/- 0.32, for G2. The fact that the less massive galaxy, G1, is dark-matter dominated in its inner regions raises the question of whether the dark matter fraction in the core of early-type galaxies depends on their mass. Further investigating strong lensing systems will help us understand the influence that dark matter has on the structure and evolution of the inner regions of galaxies.

Shocking Features in the Merging Galaxy Cluster RXJ0334.2-0111

We present a 66 ksec $\textit{Chandra}$ X-ray observation of the galaxy cluster RXJ0334.2-0111. This deep observation revealed a unique bow shock system associated with a wide angle tail (WAT) radio galaxy and several intriguing substructures. The temperature across the bow shock jumps by a factor of $\sim$ 1.5 (from 4.1 keV to 6.2 keV), and is consistent with the Mach number $M = 1.6_{-0.3}^{+0.5}$. A second inner surface brightness edge is a cold front that marks the border between infalling subcluster cool core and the ICM of the main cluster. The temperature across the cold front increases from $1.3_{-0.8}^{+0.3}$ keV to $6.2_{-0.6}^{+0.6}$ keV. We find an overpressurized region $\sim$ 250 kpc east of the cold front that is named "the eastern extension (EE)". The EE may be a part of the third subcluster in the ongoing merger. We also find a tail shaped feature that originates near the bow shock and may extend up to a distance of $\sim$ 1 Mpc. This feature is also likely overpressurized. The luminous FR-I radio galaxy, 3C89, appears to be the cD galaxy of the infalling subcluster. We estimated 3C89's jet power from jet bending and the possible interaction between the X-ray gas and the radio lobes. A comparison between the shock stand-off distance and the Mach number for all known shock front/cold front combinations suggests that the core is continuously shrinking in size by stripping.

IDCS J1426.5+3508: Weak Lensing Analysis of a Massive Galaxy Cluster at $z=1.75$

We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at $z=1.75$, which is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at $2\sigma$ significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass $M_{200,\mathrm{crit}}=2.3^{+2.1}_{-1.4}\times10^{14}$ M$_{\odot}$. This mass is consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.

Discovery of an ultra-diffuse galaxy in the Pisces-Perseus supercluster

We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.4 degrees in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (mu_V = 24.8 mag/arcsec), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R_e(V) = 12 arcsec) and proximity (15 arcmin) to the well-known dwarf spheroidal galaxy And II. Its red color (V-I = 1.0), shallow Sersic index (n_V=0.68), and the absence of detectable H-alpha emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6-meter telescope (V_h=5450 +/- 40 km/s) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (~78 Mpc), DGSAT I would have an R_e ~ 4.7 kpc and M_V ~-16.3$. Its properties resemble those of the ultra-diffuse galaxies recently discovered in the Coma cluster. DGSAT I is the first case of these rare ultra-diffuse galaxies found in this galaxy cluster. Unlike the ultra-diffuse galaxies associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\alpha = -0.8 \pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\alpha \approx - 2$. The spectral index of the radio halo is remarkably uniform ($\alpha = -1.16$, with an intrinsic scatter of $\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ($\mathcal{M} \approx 1.2$, with an upper limit of $\mathcal{M} \approx 1.5$). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.

Probing dark energy via galaxy cluster outskirts [Replacement]

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT>3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Probing dark energy via galaxy cluster outskirts

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT> 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favor the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Probing dark energy via galaxy cluster outskirts [Replacement]

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT> 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favor the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.

CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $\Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68\%$ confidence level) $\Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $\Lambda$CDM model, and $\Omega_m=0.31^{+0.12}_{-0.13}$ and $\Omega_\Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3\pm 0.1$.(ABRIDGED)

How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations

Galaxy clusters are an established and powerful test-bed for theories of both galaxy evolution and cosmology. Accurate interpretation of cluster observations often requires robust identification of the location of the centre. Using a statistical sample of clusters drawn from a suite of cosmological simulations in which we have explored a range of galaxy formation models, we investigate how the location of this centre is affected by the choice of observable - stars, hot gas, or the full mass distribution as can be probed by the gravitational potential. We explore several measures of cluster centre: the minimum of the gravitational potential, which would expect to define the centre if the cluster is in dynamical equilibrium; the peak of the density; the centre of BCG; and the peak and centroid of X-ray luminosity. We find that the centre of BCG correlates more strongly with the minimum of the gravitational potential than the X-ray defined centres, while AGN feedback acts to significantly enhance the offset between the peak X-ray luminosity and minimum gravitational potential. These results highlight the importance of centre identification when interpreting clusters observations, in particular when comparing theoretical predictions and observational data.

A mature galaxy cluster at z=1.58 around the radio galaxy 7C1753+6311

We report on the discovery of a z=1.58 mature cluster around the high-redshift radio galaxy 7C1753+6311, first identified in the Clusters Around Radio-Loud AGN survey. Two-thirds of the excess galaxies within the central 1Mpc lie on a red sequence with a colour that is consistent with an average formation redshift of zf~3. We show that 80+/-6% of the red sequence galaxies in the cluster core are quiescent, while the remaining 20% are red due to dusty star formation. We demonstrate that the cluster has an enhanced quiescent galaxy fraction that is three times that of the control field. We also show that this enhancement is mass dependent: 91+/-9% of the M* >10^{10.5}Msun cluster galaxies are quiescent, compared to only 36+/-2% of field galaxies, whereas the fraction of quiescent galaxies with lower masses is the same in the cluster and field environments. The presence of a dense core and a well-formed, quiescent red sequence suggest that this is a mature cluster. This means that distant radio galaxies do not solely reside in young, uncollapsed protoclusters, rather they can be found in clusters in a wide range of evolutionary states.

Cluster-Void Degeneracy Breaking: Dark Energy, Planck and the Largest Cluster & Void

Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density $\Omega_{\rm m}$ and power spectrum normalization $\sigma_8$. In a first for voids, we constrain $\Omega_{\rm m} = 0.21 \pm 0.10$ and $\sigma_8 = 0.95 \pm 0.21$ for a flat $\Lambda$CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies also offer complementarity in scale, density, and non-linearity - of particular interest for testing modified-gravity models.

Cluster-Void Degeneracy Breaking: Dark Energy, Planck and the Largest Cluster & Void [Replacement]

Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density $\Omega_{\rm m}$ and power spectrum normalization $\sigma_8$. In a first for voids, we constrain $\Omega_{\rm m} = 0.21 \pm 0.10$ and $\sigma_8 = 0.95 \pm 0.21$ for a flat $\Lambda$CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies also offer complementarity in scale, density, and non-linearity - of particular interest for testing modified-gravity models.

Cluster-Void Degeneracy Breaking: Dark Energy, Planck and the Largest Cluster & Void [Replacement]

Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density $\Omega_{\rm m}$ and power spectrum normalization $\sigma_8$. In a first for voids, we constrain $\Omega_{\rm m} = 0.21 \pm 0.10$ and $\sigma_8 = 0.95 \pm 0.21$ for a flat $\Lambda$CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies also offer complementarity in scale, density, and non-linearity - of particular interest for testing modified-gravity models.

nIFTy galaxy cluster simulations II: radiative models

We have simulated the formation of a massive galaxy cluster (M$_{200}^{\rm crit}$ = 1.1$\times$10$^{15}h^{-1}M_{\odot}$) in a $\Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at $z=0$, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.

The impact of the SZ effect on cm-wavelength (1-30 GHz) observation of galaxy cluster radio relics [Replacement]

(Abridged) Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power-law spectrum has been found, most noticeably in the famous 'Sausage' relic. In this paper, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed synchrotron flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed synchrotron fluxes can be diminished by a factor of several from their true values. Interferometric observations are not immune to this contamination, since the change in the SZ signal occurs roughly at the same length scale as the synchrotron emission, although there the flux loss is less severe than single-dish observations. We present a simple analytical approximation for the synchrotron-to-SZ flux ratio, based on a theoretical radio relic model that connects the non-thermal emission to the thermal gas properties, and show that by measuring this ratio one can potentially estimate the relic magnetic fields or the particle acceleration efficiency.

Simulating the galaxy cluster "El Gordo" and identifying the merger configuration

The observational features of the massive galaxy cluster "El Gordo" (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zel'dovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing high-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102-4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (\xi), gas fractions (f_b), initial relative velocity (V), and impact parameter (P), we find out an off-axis merger with P~800h_{70}^{-1}kpc, V~2500km/s, M~3x10^{15}Msun, and \xi=3.6 that can lead to most of the main observational features of ACT-CL J0102-4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Lambda cold dark matter (LCDM) cosmological simulations, which raises a potential challenge to the LCDM model, in addition to the case of the Bullet Cluster.

Dark matter phenomenology of high speed galaxy cluster collisions [Replacement]

We perform a computational analysis of possible post-collision mass distributions in high-speed collisions of galaxy clusters under different conditions, in relation to the potential presence of weakly self-interacting dark matter. Using this analysis, we show that astrophysically weak self-interacting dark matter can impart subtle yet measurable features to the distribution of mass in collision galaxy clusters even without significantly disrupting the colliding galaxy clusters themselves or their respective dark matter halos. Such features appear in the projected mass density maps of colliding galaxy clusters as mantle or ring-like concentrations of dark matter surrounding a collision galaxy cluster, present at large scattering angles as well as large distances from the center of the collision. Convincing observation of such structures would be a clear indication of the self-interacting nature of dark matter, as the gravitational effects in high-speed galaxy cluster collisions are only able to produce material ejecta in narrow forward and backward cones surrounding the collision axis. Our simulations indicate that as much as 20\% of the total collision galaxy cluster's mass may be deposited into such scattering structures without noticeable disruptions of the participating galaxy clusters or their halos. Our findings appear to explain the ring-like dark matter feature recently observed in long-range reconstructions of the mass profile of the galaxy cluster CL0024+017. The size of that feature suggests the dark matter self-interaction strength of $\sigma_{DM}/m_{DM} \approx 0.1\ cm^2/g$, as an order-of-magnitude estimate.

Dark matter phenomenology of high speed galaxy cluster collisions [Replacement]

We perform a computational analysis of possible post-collision mass distributions in high-speed collisions of galaxy clusters under different conditions, in relation to the potential presence of weakly self-interacting dark matter. Using this analysis, we show that astrophysically weak self-interacting dark matter can impart subtle yet measurable features to the distribution of mass in collision galaxy clusters even without significantly disrupting the colliding galaxy clusters themselves or their respective dark matter halos. Such features appear in the projected mass density maps of colliding galaxy clusters as mantle or ring-like concentrations of dark matter surrounding a collision galaxy cluster, present at large scattering angles as well as large distances from the center of the collision. Convincing observation of such structures would be a clear indication of the self-interacting nature of dark matter, as the gravitational effects in high-speed galaxy cluster collisions are only able to produce material ejecta in narrow forward and backward cones surrounding the collision axis. Our simulations indicate that as much as 20\% of the total collision galaxy cluster's mass may be deposited into such scattering structures without noticeable disruptions of the participating galaxy clusters or their halos. Our findings appear to explain the ring-like dark matter feature recently observed in long-range reconstructions of the mass profile of the galaxy cluster CL0024+017. The size of that feature suggests the dark matter self-interaction strength of $\sigma_{DM}/m_{DM} \approx 0.1\ cm^2/g$, as an order-of-magnitude estimate.

MC^2: Mapping the Dark Matter Distribution of the "Toothbrush" Cluster RX J0603.3+4214 with Hubble Space Telescope and Subaru Weak-lensing [Replacement]

The galaxy cluster RX J0603.3+4214 at z=0.225 is one of the rarest clusters boasting an extremely large (~2 Mpc) radio-relic. Because of the remarkable morphology of the relic, the cluster is nicknamed "Toothbrush Cluster". Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio-relic morphology, its proximity to the Galactic plane b~10 deg has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is comprised of complicated dark matter substructures closely tracing the galaxy distribution, however in contrast with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a ~3:1 mass ratio (M_{200}=6.29_{-1.62}^{+2.24} x 10^{14} Msun and 1.98_{-0.74}^{+1.24} x 10^{14} Msun for the northern and southern clumps, respectively). The southern mass peak is ~2' offset toward the south with respect to the corresponding X-ray peak, which has a "bullet"-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio-relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional sub-clusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.

Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $\gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $\gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $b\overline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}$. In a more optimistic scenario, we exclude $\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}}$ for $m_{\mathrm{DM}}\lesssim40\,\mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $\gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $\sim6\%$.

Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT [Cross-Listing]

Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $\gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $\gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $b\overline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}$. In a more optimistic scenario, we exclude $\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}}$ for $m_{\mathrm{DM}}\lesssim40\,\mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $\gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $\sim6\%$.

Hubble Frontier Fields: Predictions for the Return of SN Refsdal with the MUSE and GMOS Spectrographs [Replacement]

We present a high-precision mass model of the galaxy cluster MACSJ1149.6+2223, based on a strong-gravitational-lensing analysis of Hubble Space Telescope Frontier Fields (HFF) imaging data and spectroscopic follow-up with Gemini/GMOS and VLT/MUSE. Our model includes 12 new multiply imaged galaxies, bringing the total to 22, comprised of 65 individual lensed images. Unlike the first two HFF clusters, Abell 2744 and MACSJ0416.1-2403, MACSJ1149 does not reveal as many multiple images in the HFF data. Using the Lenstool software package and the new sets of multiple images, we model the cluster with several cluster-scale dark-matter halos and additional galaxy-scale halos for the cluster members. Consistent with previous analyses, we find the system to be complex, composed of five cluster-scale halos. Their spatial distribution and lower mass, however, makes MACSJ1149 a less powerful lens. Our best-fit model predicts image positions with an RMS of 0.91". We measure the total projected mass inside a 200~kpc aperture as ($1.840\pm 0.006$)$\times 10^{14}$M$_{\odot}$, thus reaching again 1% precision, following our previous HFF analyses of MACSJ0416.1-2403 and Abell 2744. In light of the discovery of the first resolved quadruply lensed supernova, SN Refsdal, in one of the multiply imaged galaxies identified in MACSJ1149, we use our revised mass model to investigate the time delays and predict the rise of the next image between November 2015 and January 2016.

AGN activity and IGM heating in fossil cluster RX J1416.4+2315

We study Active Galactic Nucleus (AGN) activity in the fossil galaxy cluster, RX J1416.4+2315. Radio observations were carried out using Giant Metrewave Radio Telescope (GMRT) at two frequencies, 1420 MHz and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in 610 MHz map. Assuming the radio lobe originated from the central AGN, we show the energy injection into the Inter Galactic Medium (IGM) is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger ( $\sim$ 130 kpc). In the hardness ratio map, three low energy cavities have been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, efficiency of Bondi accretion to power the AGN has been estimated.

Galaxy Cluster Thermal X-Ray Spectra Constrain Axion-Like Particles

Axion-like particles (ALPs) and photons inter-convert in the presence of a magnetic field. At keV energies in the environment of galaxy clusters, the conversion probability can become unsuppressed for light ALPs. Conversion of thermal X-ray photons into ALPs can introduce a step-like feature into the cluster thermal bremsstrahlung spectrum, and we argue that existing X-ray data on galaxy clusters should be sufficient to extend bounds on ALPs in the low-mass region $m_a \lesssim 1 \times 10^{-12}\,{\rm eV}$ down to $M \sim 7\times 10^{11}\, {\rm GeV}$, and that for $10^{11}\, {\rm GeV} < M \lesssim 10^{12}$ GeV light ALPs give rise to interesting and unique observational signatures that may be probed by existing and upcoming X-ray (and potentially X-ray polarisation) observations of galaxy clusters.

Galaxy Cluster Thermal X-Ray Spectra Constrain Axion-Like Particles [Cross-Listing]

Axion-like particles (ALPs) and photons inter-convert in the presence of a magnetic field. At keV energies in the environment of galaxy clusters, the conversion probability can become unsuppressed for light ALPs. Conversion of thermal X-ray photons into ALPs can introduce a step-like feature into the cluster thermal bremsstrahlung spectrum, and we argue that existing X-ray data on galaxy clusters should be sufficient to extend bounds on ALPs in the low-mass region $m_a \lesssim 1 \times 10^{-12}\,{\rm eV}$ down to $M \sim 7\times 10^{11}\, {\rm GeV}$, and that for $10^{11}\, {\rm GeV} < M \lesssim 10^{12}$ GeV light ALPs give rise to interesting and unique observational signatures that may be probed by existing and upcoming X-ray (and potentially X-ray polarisation) observations of galaxy clusters.

Constraining the Dark Matter decay lifetime with very deep observations of the Perseus cluster with the MAGIC telescopes

We present preliminary results on Dark Matter searches from observations of the Perseus galaxy cluster with the MAGIC Telescopes. MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. Galaxy clusters are the largest known gravitationally bound structures in the Universe, with masses of ~10^15 Solar masses. There is strong evidence that galaxy clusters are Dark Matter dominated objects, and therefore promising targets for Dark Matter searches, particularly for decay signals. MAGIC has taken almost 300 hours of data on the Perseus Cluster between 2009 and 2015, the deepest observational campaign on any galaxy cluster performed so far in the very high energy range of the electromagnetic spectrum. We analyze here a small sample of this data and search for signs of dark matter in the mass range between 100 GeV and 20 TeV. We apply a likelihood analysis optimized for the spectral and morphological features expected in the dark matter decay signals. This is the first time that a dedicated Dark Matter optimization is applied in a MAGIC analysis, taking into account the inferred Dark Matter distribution of the source. The results with the full dataset analysis will be published soon by the MAGIC Collaboration.

Peculiar Velocity Constraints from Five-Band SZ Effect Measurements Towards RX J1347.5-1145 with MUSIC and Bolocam from the CSO [Replacement]

We present Sunyaev-Zel'dovich (SZ) effect measurements from wide-field images towards the galaxy cluster RX J1347.5-1145 obtained from the Caltech Submillimeter Observatory with the Multiwavelength Submillimeter Inductance Camera (MUSIC) at 147, 213, 281, and 337 GHz and with Bolocam at 140 GHz. As part of our analysis, we have used higher frequency data from Herschel-SPIRE and previously published lower frequency radio data to subtract the signal from the brightest dusty star-forming galaxies behind RX J1347.5-1145 and from the AGN in RX J1347.5-1145's BCG. Using these five-band SZ effect images, combined with X-ray spectroscopic measurements of the temperature of the intra-cluster medium (ICM) from Chandra, we constrain the ICM optical depth to be $\tau_e = 7.33^{+0.96}_{-0.97} \times 10^{-3}$ and the ICM line of sight peculiar velocity to be $v_{pec} = -1040^{+870}_{-840}$ km s$^{-1}$. The errors for both quantities are limited by measurement noise rather than calibration uncertainties or astrophysical contamination, and significant improvements are possible with deeper observations. Our best-fit velocity is in good agreement with one previously published SZ effect analysis and in mild tension with the other, although some or all of that tension may be because that measurement samples a much smaller cluster volume. Furthermore, our best-fit optical depth implies a gas mass slightly larger than the Chandra-derived value, implying the cluster is elongated along the line of sight.

The Massive and Distant Clusters of WISE Survey: MOO J1142+1527, A 10$^{15}$ M$_\odot$ Galaxy Cluster at z=1.19

We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at $z=1.19$, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev-Zel'dovich (SZ) decrement at 13.2$\sigma$. The SZ data imply a mass of $\mathrm{M}_{200m}=(1.1\pm0.2)\times10^{15}$ $\mathrm{M}_\odot$, making MOO J1142+1527 the most massive galaxy cluster known at $z>1.15$ and the second most massive cluster known at $z>1$. For a standard $\Lambda$CDM cosmology it is further expected to be one of the $\sim 5$ most massive clusters expected to exist at $z\ge1.19$ over the entire sky. Our ongoing Spitzer program targeting $\sim1750$ additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.

An Extreme Starburst in Close Proximity to the Central Galaxy of a Rich Galaxy Cluster at z=1.7

We have discovered an optically rich galaxy cluster at z=1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, (SpARCS), and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of Ngal(500kpc) = 30+/-8 implies a total halo mass, within 500kpc, of ~3.8+/-1.2 x 10^14 Msun, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada-France-Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope (HST). The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with LIR = 6.2+/-0.9 x 10^12 Lsun. The detection of polycyclic aromatic hydrocarbons (PAHs) at z=1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ~860+/-30 Msun/yr. The optical source corresponding to the IR emission is likely a chain of of > 10 individual clumps arranged as "beads on a string" over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.

Radio Relics Tracing the Projected Mass Distribution in CIZA J2242.8+5301

We present a weak-lensing analysis for the merging galaxy cluster, CIZA J2242.8+5301, hosting double radio relics, using three-band Subaru/Suprime-Cam imaging ($Br'z'$). Since the lifetime of dark matter halos colliding into clusters is longer than that of X-ray emitting gas halos, weak-lensing analysis is a powerful method to constrain a merger dynamics. Two-dimensional shear fitting using a clean background catalog suggests that the cluster undergoes a merger with a mass ratio of about 2:1. The main halo is located around the gas core in the southern region, while no concentrated gas core is associated with the northern sub halo. We find that the projected cluster mass distribution resulting from an unequal-mass merger is in excellent agreement with the curved shapes of the two radio relics and the overall X-ray morphology except for the lack of the northern gas core. The lack of a prominent radio halo enables us to constrain an upper limit of the fractional energy of magneto-hydrodynamics turbulence of $(\delta B/B)^2<\mathcal{O}(10^{-6})$ at a resonant wavenumber, by a balance between the acceleration time and the time after the core passage or the cooling time, with an assumption of resonant acceleration by second-order Fermi process.

Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters

Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing, and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of PSF scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.

ZFIRE: Galaxy Cluster Kinematics, H$\alpha$ Star Formation Rates, and Gas-Phase Metallicities of XMM-LSS J02182-05102 at z=1.6233

We spectroscopically survey the galaxy cluster XMM-LSS J02182-05102 (hereafter IRC 0218) using LRIS (optical) and MOSFIRE (near-infrared) on Keck I as part of the ZFIRE survey. IRC 0218 has a narrow redshift range of $1.612<z_{\rm spec}<1.635$ defined by 33 members of which 20 are at R$_{\rm proj}<1$ Mpc. The cluster redshift and velocity dispersion are $z_{\rm cl}=1.6233\pm0.0003$ and $\sigma_{\rm cl}=254\pm50$ km s$^{-1}$. We reach NIR line sensitivities of $\sim0.3\times10^{-17}$ erg s$^{-1}$ cm$^{-2}$ that, combined with multi-wavelength photometry, provide extinction-corrected H$\alpha$ star formation rates (SFR), gas phase metallicities from [NII]/H$\alpha$, and stellar masses. We measure an integrated H$\alpha$ SFR of $\sim325{\rm M}_{\odot}$ yr$^{-1}$ (26 members; R$_{\rm proj}<2$ Mpc) and show that the elevated star formation in the cluster core (R$_{\rm proj}<0.25$ Mpc) is driven by the concentration of star-forming members, but the average SFR per H$\alpha$-detected galaxy is half that of members at R$_{\rm proj}\sim1$ Mpc. However, we do not detect any environmental imprint when comparing attenuation and gas phase metallicities: the cluster galaxies show similar trends with M$_{\star}$ as to the field, e.g. more massive galaxies have larger stellar attenuation. IRC 0218's gas phase metallicity-M$_{\star}$ relation (MZR) is offset to lower metallicities relative to $z\sim0$ and has a slope of $0.13\pm0.10$. Comparing the MZR in IRC 0218 to the COSMOS cluster at $z=2.1$ shows no evolution ($\Delta t\sim1$ Gyr): the MZR for both galaxy clusters are remarkably consistent with each other and virtually identical to several field surveys at $z\sim2$.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^