Posts Tagged galaxy cluster

Recent Postings from galaxy cluster

A $\mathcal{M}\approx3$ shock in `El Gordo' cluster and the origin of the radio relic

We present an X-ray and radio study of the famous `El Gordo', a massive and distant ($z=0.87$) galaxy cluster. In the deep (340 ks) Chandra observation, the cluster appears with an elongated and cometary morphology, a sign of its current merging state. The GMRT radio observations at 610 MHz reveal the presence of a radio halo which remarkably overlaps the X-ray cluster emission and connects a couple of radio relics. We detect a strong shock ($\mathcal{M}\approx3$) in the NW periphery of the cluster, co-spatially located with the radio relic. This is the most distant ($z=0.87$) and one of the strongest shock detected in a galaxy cluster. This work supports the relic-shock connection and allows to investigate the origin of these radio sources in a uncommon regime of $\mathcal{M}\approx3$. For this particular case we found that shock acceleration from the thermal pool is a viable possibility.

Spectral Clustering for Optical Confirmation and Redshift Estimation of X-ray Selected Galaxy Cluster Candidates in the SDSS Stripe 82

We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1 to 0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142

In this Letter we compare the abundance of member galaxies of a rich, nearby ($z=0.09$) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by AGN. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant ($\gtrsim 7$ sigma confidence level) smaller amount of massive (circular velocity above $200\,{\rm km\, s^{-1}}$) subhalos, even before accounting for possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 (Grillo, et al. 2015) and suggest that the observed difference is already present at the level of dark matter subhalos and not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of dark matter particles and the effect of baryons on the formation and evolution of cosmological structures.

The 3XMM/SDSS Stripe 82 Galaxy Cluster Survey: Cluster catalogue and discovery of two merging cluster candidates

We present a galaxy cluster survey based on XMM-Newton observations that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). The survey covers an area of 11.25 deg$^2$. The X-ray cluster candidates were selected as serendipitously extended detected sources from the third XMM-Newton serendipitous source catalogue (3XMM-DR5). A cross-correlation of the candidate list that comprises 94 objects with recently published X-ray and optically selected cluster catalogues provided optical confirmations and redshift estimates for about half of the candidate sample. We present a catalogue of X-ray cluster candidates previously known in X-ray and/or optical bands from the matched catalogues or NED. The catalogue consists of 54 systems with redshift measurements in the range of 0.05-1.19 with a median of 0.36. Of these, 45 clusters have spectroscopic confirmations as stated in the matched catalogues. We spectroscopically confirmed another 6 clusters from the available spectroscopic redshifts in the SDSS-DR12. The cluster catalogue includes 17 newly X-ray discovered clusters while the remainder were detected in previous XMM-Newton and/or ROSAT cluster surveys. Based on the available redshifts and fluxes given in the 3XMM-DR5 catalogue, we estimated the X-ray luminosities and masses for the cluster sample. We also present the list of the remaining X-ray cluster candidates (40 objects) that have no redshift information yet in the literature. Of these candidates, 25 sources are considered as distant cluster candidates beyond a redshift of 0.6. We also searched for galaxy cluster mergers among our cluster sample and found two strong candidates for newly discovered cluster mergers at redshifts of 0.11 and 0.26. The X-ray and optical properties of these systems are presented.

Formation and evolution of heavy sub-structures in the centre of galaxy clusters: the local effect of dark energy

We discuss how the centres of galaxy clusters evolve in time, showing the results of a series of direct N-body simulations. In particular, we followed the evolution of a galaxy cluster with a mass $M_{clus} \simeq 10^{14} $M$_{\odot}$ in different configurations. The dynamical evolution of the system leads in all the cases to the formation of dense and massive sub-structures in the cluster centre, that form in consequence of a series of collisions and merging among galaxies travelling in the cluster core. We investigate how the structural properties of the main merging product depends on the characteristics of those galaxies that contributed to its formation.

The Frontier Fields Lens Modeling Comparison Project

Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass distribution. Deriving a lens magnification map for a galaxy cluster is a classic inversion problem and many methods have been developed over the past two decades to solve it. Several research groups have developed techniques independently to map the predominantly dark matter distribution in cluster lenses. While these methods have all provided remarkably high precision mass maps, particularly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions themselves have never been directly compared. In this paper, we report the results of comparing various independent lens modeling techniques employed by individual research groups in the community. Here we present for the first time a detailed and robust comparison of methodologies for fidelity, accuracy and precision. For this collaborative exercise, the lens modeling community was provided simulated cluster images -- of two clusters Ares and Hera -- that mimic the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted reconstructions with the un-blinded true mass profile of these two clusters are presented here. Parametric, free-form and hybrid techniques have been deployed by the participating groups and we detail the strengths and trade-offs in accuracy and systematics that arise for each methodology. We note in conclusion that lensing reconstruction methods produce reliable mass distributions that enable the use of clusters as extremely valuable astrophysical laboratories and cosmological probes.

Weighing the Giants V: Galaxy Cluster Scaling Relations

We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton $Y$ from Planck. While the richness--mass relation is in excellent agreement with recent work, the measured $Y$--mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.

Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129

We present a detailed strong lensing mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 ($\rm z_{cl}=0.589$) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from the CLASH-VLT survey. A background bright red passive galaxy at $\rm z_{sp}=1.36$, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 27 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region ($\rm R<100$ kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of $0.4''$. This translates in an high precision mass reconstruction of MACS 2129, which is constrained at level of 3%. The cluster has Einstein radius $\theta_E=(15\pm2)''$, for a source at $z_s=1.36$ and a projected total mass of $\rm M_{tot}(<\theta_E)=(3.4\pm0.1)\times 10^{13}M_{\odot}$ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic dataset for the cluster members and lensed images measured with VLT/VIMOS within the CLASH-VLT survey.

The shape of the extragalactic cosmic ray spectrum from Galaxy Clusters

We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for $E/Z<1$ EeV. This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.

The shape of the extragalactic cosmic ray spectrum from Galaxy Clusters [Cross-Listing]

We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for $E/Z<1$ EeV. This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.

Star formation activity in a young galaxy cluster at z=0.866

The galaxy cluster RXJ1257$+$4738 at $z=0.866$ is one of the highest redshift clusters with a richness of multi-wavelength data, and thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically-confirmed cluster members, we derive the star formation rates of our galaxies using two methods, (I) the relation between SFR and total infrared luminosity extrapolated from the observed \textit{Spitzer} MIPS 24$\mu$m imaging data, and (II) spectral energy distribution (SED) fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming less stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the SF, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.

The dynamical state of the galaxy cluster: Theoretical insights from cosmological simulations

Following the work of Cui et al. (2016b, hereafter Paper I), we investigate the dynamical state of the galaxy clusters from the theoretical point of view. After extending to vrial radius $R_{vir}$, we reselect out 123 clusters with $\log(M_{DM, vir}) \le 14.5$ from the galaxy cluster samples in Paper I, here DM indicate the dark-matter-only run. These clusters from the two hydro-dynamical runs are matched to the dark-matter-only run using the unique dark matter particle ID. We investigate 4 independent parameters, which are normally used to classify the cluster dynamical state. We find that the virial ratio $\eta$ from both hydro-dynamical runs is $\sim$ 10 per cent lower than from the dark-matter-only run; there is no clear bimodal distribution between the relaxed and un-relaxed clusters for all investigated parameters. Further, using the velocity dispersion deviation parameter $\zeta$ , which is defined as the ratio between cluster velocity dispersion $\sigma$ and the theoretical prediction $\sigma_t = \sqrt{G M_{total}/R}$, we find that there is a linear correlation between the virial ratio $\eta$ and the velocity dispersion deviation parameter $\zeta$. We propose to use this $\zeta$ parameter, which can be derived easily from observed clusters, as a substitute of the $\eta$ parameter to quantify the cluster dynamical state.

How did the Virgo cluster form?

While the Virgo cluster is the nearest galaxy cluster and therefore the best observed one, little is known about its formation history. In this paper, a set of cosmological simulations that resemble the Local Universe is used to shed the first light on this mystery. The initial conditions for these simulations are constrained with galaxy peculiar velocities of the second catalog of the Cosmicflows project using algorithms developed within the Constrained Local UniversE Simulation project. Boxes of 500 Mpc/h on a side are set to run a series of dark matter only constrained simulations. In each simulation, a unique dark matter halo can be reliably identified as Virgo's counterpart. The properties of these Virgo halos are in agreement at a 10-20% level with the global properties of the observed Virgo cluster. Their zero-velocity masses agree at one-sigma with the observational mass estimate. In all the simulations, the matter falls onto the Virgo objects along a preferential direction that corresponds to the observational filament and the slowest direction of collapse. A study of the mass accretion history of the Virgo candidates reveals the most likely formation history of the Virgo cluster, namely a quiet accretion over the last 7 Gigayears.

Detection of Lyman-Alpha Emission From a Triple Imaged z=6.85 Galaxy Behind MACS J2129.4-0741

We report the detection of Ly$\alpha$ emission at $\sim9538$\AA{} in the Keck/DEIMOS and \HST WFC3 G102 grism data from a triply-imaged galaxy at $z=6.846\pm0.001$ behind galaxy cluster MACS J2129.4$-$0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is \oii at $z=1.57$. After accounting for magnification, we calculate the weighted average of the intrinsic Ly$\alpha$ luminosity to be $\sim1.3\times10^{42}~\mathrm{erg}~\mathrm{s}^{-1}$ and Ly$\alpha$ equivalent width to be $74\pm15$\AA{}. Its intrinsic UV absolute magnitude at 1600\AA{} is $-18.6\pm0.2$ mag and stellar mass $(1.5\pm0.3)\times10^{7}~M_{\odot}$, making it one of the faintest (intrinsic $L_{UV}\sim0.14~L_{UV}^*$) galaxies with Ly$\alpha$ detection at $z\sim7$ to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at $z\gtrsim7$; the inferred Ly$\alpha$ escape fraction is high ($\gtrsim 10$\%), which could be common for sub-$L^*$ $z\gtrsim7$ galaxies with Ly$\alpha$ emission. This galaxy offers a glimpse of the galaxy population that is thought to drive reionization, and it shows that gravitational lensing is an important avenue to probe the sub-$L^*$ galaxy population.

What does the Bullet Cluster tell us about Self-Interacting Dark Matter?

We perform numerical simulations of the merging galaxy cluster 1E 0657-56 (the Bullet Cluster), including the effects of elastic dark matter scattering. In a similar manner to the stripping of gas by ram pressure, dark matter self-interactions would transfer momentum between the two galaxy cluster dark matter haloes, causing them to lag behind the collisionless galaxies. The absence of an observed separation between the dark matter and stellar components in the Bullet Cluster has been used to place upper limits on the cross-section for dark matter scattering. We emphasise the importance of analysing simulations in an observationally-motivated manner, finding that the way in which the positions of the various components are measured can have a larger impact on derived constraints on dark matter's self-interaction cross-section than reasonable changes to the initial conditions for the merger. In particular, we find that the methods used in previous studies to place some of the tightest constraints on this cross-section do not reflect what is done observationally, and overstate the Bullet Cluster's ability to constrain the particle properties of dark matter. We introduce the first simulations of the Bullet Cluster including both self-interacting dark matter and gas. We find that as the gas is stripped it introduces radially-dependent asymmetries into the stellar and dark matter distributions. As the techniques used to determine the positions of the dark matter and galaxies are sensitive to different radial scales, these asymmetries can lead to erroneously measured offsets between dark matter and galaxies even when they are spatially coincident.

Comparing Simulations of AGN Feedback

We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGN) to the simulations results in much better agreement between the methods. In this case both simulations display halo gas entropies of 100 keV cm^2, similar decrements in the star-formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data

We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the {\it Planck} 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Microwave Background at the location of each galaxy cluster. When fitting three different phenomenological parameterizations allowing for monopole and dipole amplitudes in the value of the fine structure constant we improve the results of earlier analysis involving clusters and CMB power spectrum, and we also found that the best-fit direction of a hypothetical dipole is compatible with the direction of other known anomalies. Although the constraining power of our current datasets do not allow us to test the indications of a dipole obtained though high-resolution optical/UV spectroscopy, our results do highlight that clusters of galaxies will be a very powerful tool to probe fundamental physics at low redshift.

Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data [Cross-Listing]

We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the {\it Planck} 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Microwave Background at the location of each galaxy cluster. When fitting three different phenomenological parameterizations allowing for monopole and dipole amplitudes in the value of the fine structure constant we improve the results of earlier analysis involving clusters and CMB power spectrum, and we also found that the best-fit direction of a hypothetical dipole is compatible with the direction of other known anomalies. Although the constraining power of our current datasets do not allow us to test the indications of a dipole obtained though high-resolution optical/UV spectroscopy, our results do highlight that clusters of galaxies will be a very powerful tool to probe fundamental physics at low redshift.

The WSRT ZoA Perseus-Pisces Filament wide-field HI imaging survey I. HI catalogue and atlas

We present results of a blind 21cm HI-line imaging survey of a galaxy overdensity located behind the Milky Way at $\ell,b$ $\approx$ 160 deg, 0.5 deg. The overdensity corresponds to a Zone-of-Avoidance crossing of the Perseus-Pisces Supercluster filament. Although it is known that this filament contains an X-ray galaxy cluster (3C129) hosting two strong radio galaxies, little is known about galaxies associated with this potentially rich cluster because of the high Galactic dust extinction. We mapped a sky area of $\sim$9.6 sq.deg using the Westerbork Synthesis Radio Telescope in a hexagonal mosaic of 35 pointings observed for 12 hours each, in the radial velocity range $cz = 2400 - 16600$ km/s. The survey has a sensitivity of 0.36 mJy/beam rms at a velocity resolution of 16.5 km/s. We detected 211 galaxies, 62% of which have a near-infrared counterpart in the UKIDSS Galactic Plane Survey. We present a catalogue of the HI properties and an HI atlas containing total intensity maps, position-velocity diagrams, global HI profiles and UKIDSS counterpart images. For the resolved galaxies we also present HI velocity fields and radial HI surface density profiles. A brief analysis of the structures outlined by these galaxies finds that 87 of them lie at the distance of the Perseus-Pisces Supercluster ($cz \sim 4000 - 8000$ km/s) and seem to form part of the 3C129 cluster. Further 72 detections trace an overdensity at a velocity of $cz \approx$ 10000 km/s and seem to coincide with a structure predicted from mass density reconstructions in the first 2MASS Redshift Survey.

A Systematic Survey of Protoclusters at $z\sim3\mathrm{-}6$ in the CFHTLS Deep Fields

We present the discovery of three protoclusters at $z\sim3\mathrm{-}4$ with spectroscopic confirmation in the Canada-France-Hawaii Telescope (CFHT) Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of $z\sim3\mathrm{-}6$ Lyman break galaxies and identify 21 protocluster candidates from regions that are overdense at more than $4\sigma$ overdensity significance. Based on cosmological simulations, it is expected that more than $76\%$ of these candidates will evolve into a galaxy cluster of at least a halo mass of $10^{14}\,\mathrm{M_\odot}$ at $z=0$. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, KeckII/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at $z=3\mathrm{-}4$ with more than five members spectroscopically identified, and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at $z\sim5\mathrm{-}6$ require more spectroscopic follow-up in order to be conclusive. A $z=3.67$ protocluster, which has eleven spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region ($<0.5\,\mathrm{physical\>Mpc}$) and an outskirts region ($\sim1.0\,\mathrm{physical\>Mpc}$). The Ly$\alpha$ equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at $z\sim4$ along with the growth of the protocluster structure.

Discovery of a galaxy cluster with a violently starbursting core at z=2.506

We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at $z_{spec} = 2.506$ in the COSMOS field. This structure contains in its center 11 massive ($M_{*} \gtrsim 10^{11} M_{\odot}$) galaxies distributed over 80-kpc, producing an 11.6$\sigma$ overdensity. We have spectroscopically confirmed 16 member galaxies extending to $\sim1$ Mpc from the core with half of them derived from CO with IRAM-NOEMA and JVLA and the other half from $H\alpha$ with VLT-KMOS. The X-ray luminosity, high stellar mass content and velocity dispersion all point to a collapsed, single cluster-sized dark matter halo with total mass $M_{200c} \sim 10^{13.9\pm0.2} M_{\odot}$, identifying it as the most distant X-ray detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies in the core with only two out of the 11 massive galaxies classified as quiescent. The star formation rate in the 80-kpc core reaches $\sim$3400 $M_{\odot}$ yr$^{-1}$ with a gas depletion time of $\sim 200$ Myr, suggesting that we caught this structure in rapid formation. The high star formation rate is driven by both a high abundance of massive star-forming galaxies and a higher starburst fraction ($\sim25\%$, compared to 3\%-5\% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of star-forming galaxies in the core suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights on massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

Discovery of a galaxy cluster with a violently starbursting core at z=2.506 [Replacement]

We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at $z_{spec} = 2.506$, which contains 11 massive ($M_{*} \gtrsim 10^{11} M_{\odot}$) galaxies in the central 80-kpc region (11.6$\sigma$ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from $H\alpha$. The X-ray luminosity, stellar mass content and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass $M_{200c} = 10^{13.9\pm0.2} M_{\odot}$, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only two out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80-kpc core reaches $\sim$3400 $M_{\odot}$ yr$^{-1}$ with gas depletion time of $\sim 200$ Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction ($\sim25\%$, compared to 3\%-5\% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

Discovery of a galaxy cluster with a violently starbursting core at z=2.506 [Replacement]

We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at $z_{spec} = 2.506$, which contains 11 massive ($M_{*} \gtrsim 10^{11} M_{\odot}$) galaxies in the central 80-kpc region (11.6$\sigma$ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from $H\alpha$. The X-ray luminosity, stellar mass content and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass $M_{200c} = 10^{13.9\pm0.2} M_{\odot}$, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only two out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80-kpc core reaches $\sim$3400 $M_{\odot}$ yr$^{-1}$ with gas depletion time of $\sim 200$ Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction ($\sim25\%$, compared to 3\%-5\% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

Reconstructing cosmic growth with kSZ observations in the era of Stage IV experiments

Future ground-based CMB experiments will generate competitive large-scale structure datasets by precisely characterizing CMB secondary anisotropies over a large fraction of the sky. We describe a method for constraining the growth rate of structure to sub-1% precision out to $z\approx 1$, using a combination of galaxy cluster peculiar velocities measured using the kinetic Sunyaev-Zel'dovich (kSZ) effect, and the velocity field reconstructed from galaxy redshift surveys. We consider only thermal SZ-selected cluster samples, which will consist of $\mathcal{O}(10^4-10^5)$ sources for Stage 3 and 4 CMB experiments respectively. Three different methods for separating the kSZ effect from the primary CMB are compared, including a novel blind "constrained realization" method that improves signal-to-noise by a factor of $\sim 2$ over a commonly-used aperture photometry technique. Measurements of the integrated tSZ $y$-parameter are used to break the kSZ velocity-optical depth degeneracy, and the effects of including CMB polarization and SZ profile uncertainties are also considered. A combination of future Stage 4 experiments should be able to measure the product of the growth and expansion rates, $\alpha\equiv f H$, to better than 1% in bins of $\Delta z = 0.1$ out to $z \approx 1$ -- competitive with contemporary redshift-space distortion constraints from galaxy surveys.

Deep Chandra study of the truncated cool core of the Ophiuchus cluster

We present the results of a deep (280 ks) Chandra observation of the Ophiuchus cluster, the second-brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT~1 keV in the core to kT~9 keV at r~30 kpc. Beyond r~30 kpc the intra-cluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The sloshing is the result of the strongly perturbed gravitational potential in the cluster core, with the central brightest cluster galaxy (BCG) being displaced southward from the global center of mass. The residual image reveals a likely subcluster south of the core at the projected distance of r~280 kpc. The cluster also harbors a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ~100 km/s. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r~120 kpc to the southeast of the cluster center. We conclude that this feature is most likely due to gas dynamics associated with a merger and not a result of an extraordinary active galactic nucleus (AGN) outburst. The cooling core lacks any observable X-ray cavities and the AGN only displays weak, point-like radio emission, lacking lobes or jets, indicating that currently it may be largely dormant. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.

Effect of Priomordial non-Gaussianities on Galaxy Clusters Scaling Relations

Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. In this work we investigate the impact of primordial non-gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of cosmological hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussian initial conditions within the $\Lambda$CDM framework. We focus on the T-M, S-M, Y-M and Yx-M scalings relating the total cluster mass with temperature, entropy and SZ cluster integrated pressure that reflect the thermodynamical state of the intra-cluster medium. Our results show that PNG have an impact on cluster scalings laws. The mass power-law indexes of the scalings are almost unaffected by the existence of PNG but the amplitude and redshift evolution of their normalizations are clearly affected. The effect is stronger for the evolution of the Y-M and Yx-M normalizations, which change by as much as 22% and 16% when $f_{NL}$ varies from -500 to 500, respectively. These results are consistent with the view that positive/negative $f_{NL}$ affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of $f_{NL}$, as suggested by present Planck constraints on a scale invariant $f_{NL}$, the impact on the scalings normalizations is only a few percent, which is small when compared with the effect of additional gas physics and other cosmological effects such as dark energy. However if $f_{NL}$ is in fact a scale dependent parameter, PNG may have larger positive/negative amplitudes at clusters scales and therefore our results suggest that PNG should be taken into account when galaxy cluster data is used to infer cosmological parameters or to asses the constraining power of future cluster surveys.

Weak Lensing Measurement of the Mass--Richness Relation of SDSS redMaPPer Clusters

We perform a measurement of the mass--richness relation of the redMaPPer galaxy cluster catalogue using weak lensing data from the Sloan Digital Sky Survey. We have carefully characterized a broad range of systematic uncertainties, including shear calibration errors, photo-$z$ biases, dilution by member galaxies, source obscuration, magnification bias, incorrect assumptions about cluster mass profiles, cluster centering, halo triaxiality, and projection effects. We also compare measurements of the lensing signal from two independently-produced shear and photometric redshift catalogues to characterize systematic errors in the lensing signal itself. Using a sample of 5,570 clusters from $0.1\le z\le 0.33$, the normalization of our power-law mass vs.\ $\lambda$ relation is $\log_{10}[M_{200m}/h^{-1}\ M_{\odot}]$ = $14.344 \pm 0.021$ (statistical) $\pm 0.023$ (systematic) at a richness $\lambda=40$, a 7 per cent calibration uncertainty, with a power-law index of $1.33^{+0.09}_{-0.10}$ ($1\sigma$). The detailed systematics characterization in this work renders it the definitive weak lensing mass calibration for SDSS redMaPPer clusters at this time.

Simulation tests of galaxy cluster constraints on chameleon gravity

We use two new hydrodynamical simulations of $\Lambda$CDM and $f(R)$ gravity to test the methodology used by Wilcox et al. 2015 (W15) in constraining the effects of a fifth force on the profiles of clusters of galaxies. We construct realistic simulated stacked weak lensing and X-ray surface brightness cluster profiles from these cosmological simulations, and then use these data projected along various lines-of-sight to test the spherical symmetry of our stacking procedure. We also test the applicability of the NFW profile to model weak lensing profiles of clusters in $f(R)$ gravity. Finally, we test the validity of the analytical model developed in W15 against the simulated profiles. Overall, we find our methodology is robust and broadly agrees with these simulated data. We also apply our full Markov Chain Monte Carlo (MCMC) analysis from W15 to our simulated X-ray and lensing profiles, providing consistent constraints on the modified gravity parameters as obtained from the real cluster data, e.g. for our $\Lambda$CDM simulation we obtain $|f_{\rm{R}0}| < 8.3 \times 10^{-5}$ (95% CL), which is in good agreement with the W15 measurement of $|f_{\rm{R}0}| < 6 \times 10^{-5}$. Overall, these tests confirm the power of our methodology which can now be applied to larger cluster samples available with the next generation surveys.

The merging galaxy cluster A520 --- a broken-up cool core, a dark subcluster, and an X-ray channel

We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map, after the subtraction of the cluster-scale emission, reveals a long trail of dense, cool clumps --- apparently the fragments of a cool core that has been completely stripped from the infalling subcluster by ram pressure. In this scenario, we can assume that the clumps are still connected by the magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor >100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed -along- the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. An X-ray hydrostatic mass estimate for one of the clumps (that has simple geometry) agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5-3%, which makes it a "dark subcluster". We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma $\beta\sim 10-20$). The shock in A520 will be studied in a separate paper.

The merging galaxy cluster A520 --- a broken-up cool core, a dark subcluster, and an X-ray channel [Replacement]

We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map, after the subtraction of the cluster-scale emission, reveals a long trail of dense, cool clumps --- apparently the fragments of a cool core that has been completely stripped from the infalling subcluster by ram pressure. In this scenario, we can assume that the clumps are still connected by the magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor >100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed -along- the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. An X-ray hydrostatic mass estimate for one of the clumps (that has simple geometry) agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5-3%, which makes it a "dark subcluster". We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma $\beta\sim 10-20$). The shock in A520 will be studied in a separate paper.

The structure and evolution of a forming galaxy cluster at z = 1.62

We present a comprehensive picture of the Cl0218.3-0510 protocluster at $z=1.623$ across 10 co-moving Mpc. Using filters that tightly bracket the Balmer and 4000 Angstrom breaks of the protocluster galaxies we obtain precise photometric redshifts resulting in a protocluster galaxy sample that is 89+/-5% complete and has a contamination of only 12+/-5%. Both star forming and quiescent protocluster galaxies are located allowing us to map the structure of the forming cluster for the first time. The protocluster contains 6 galaxy groups, the largest of which is the nascent cluster. Only a small minority of the protocluster galaxies are in the nascent cluster (11%) or in the other galaxy groups (22%), as most protocluster galaxies reside between the groups. Unobscured star forming galaxies predominantly reside between the protocluster's groups, whereas red galaxies make up a large fraction of the groups' galactic content, so observing the protocluster through only one of these types of galaxies results in a biased view of the protocluster's structure. The structure of the protocluster reveals how much mass is available for the future growth of the cluster and we use the Millennium Simulation, scaled to a Planck cosmology, to predict that Cl0218.3-0510 will evolve into a 2.7x 10^14 Msun cluster by the present day.

Search for a Non-equilibrium Plasma in the Merging Galaxy Cluster Abell 754

Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly-alpha / Fe He-alpha line ratio to search for possible deviation from ionization equilibrium. Fitting with a single temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (n_et>10^{13} s cm^{-3}) except for a specific region with the highest temperature (kT=13.3^{+1.4}_{-1.1} keV) where n_et=10^{11.6^{+0.6}_{-1.7}} s cm^{-3}. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This time scale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. We, however, note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5} keV and very high kT > 19.3 keV. The very high temperature component is alternatively fitted with a power law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of that with the non-equilibrium ionization plasma.

A Strong Merger Shock in Abell 665

Deep (103 ks) \chandra\ observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of $M$ = 3.0 $\pm$ 0.6, propagating in front of a cold disrupted cloud. This makes Abell~665 the second cluster where a strong merger shock of $M \approx$ 3 has been detected, after the Bullet cluster. The shock velocity from jump conditions is consistent with (2.7 $\pm$ 0.7) $\times$ 10$^3$ km sec$^{-1}$. The new data also reveal a prominent southern cold front, with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the re-acceleration model with the X-ray and radio data combined.

High-resolution tSZ cartography of clusters of galaxies with NIKA at the IRAM 30-m telescope

The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study clusters of galaxies and is complementary with respect to X-ray, lensing or optical observations. Previous arcmin resolution tSZ observations ({\it e.g.} SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium morphology for low redshift clusters ($z < 0.2$). Thus, the development of precision cosmology with clusters requires high angular resolution observations to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a wide-field (6.5 arcmin field of view) dual-band camera, operated at $100 \ {\rm mK}$ and containing $\sim 3300$ KID (Kinetic Inductance Detectors), designed to observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18 and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM 30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ observation program will allow us to observe a large sample of clusters (50) at redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters of galaxies have been observed at the IRAM 30-m telescope with the NIKA prototype to cover the various configurations and observation conditions expected for NIKA2.

nIFTy Galaxy Cluster simulations IV: Quantifying the Influence of Baryons on Halo Properties

Building on the initial results of the nIFTy simulated galaxy cluster comparison, we compare and contrast the impact of baryonic physics with a single massive galaxy cluster, run with 11 state-of-the-art codes, spanning adaptive mesh, moving mesh, classic and modern SPH approaches. For each code represented we have a dark matter only (DM) and non-radiative (NR) version of the cluster, as well as a full physics (FP) version for a subset of the codes. We compare both radial mass and kinematic profiles, as well as global measures of the cluster (e.g. concentration, spin, shape), in the NR and FP runs with that in the DM runs. Our analysis reveals good consistency (<= 20%) between global properties of the cluster predicted by different codes when integrated quantities are measured within the virial radius R200. However, we see larger differences for quantities within R2500, especially in the FP runs. The radial profiles reveal a diversity, especially in the cluster centre, between the NR runs, which can be understood straightforwardly from the division of codes into classic SPH and non-classic SPH (including the modern SPH, adaptive and moving mesh codes); and between the FP runs, which can also be understood broadly from the division of codes into those that include AGN feedback and those that do not. The variation with respect to the median is much larger in the FP runs with different baryonic physics prescriptions than in the NR runs with different hydrodynamics solvers.

Chandra Observation of Abell 1142: A Cool-Core Cluster Lacking a Central Brightest Cluster Galaxy?

Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched "cool core" of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

A new constraint on millicharged dark matter from galaxy clusters

We propose a new constraint on millicharged dark matter from considerations on galaxy clusters. The charged dark matter moves under the influence of the randomly oriented magnetic fields in galaxy clusters, and the corresponding dark matter density profile can significantly differ from the concordance CDM predictions which are well supported from the galaxy cluster observations. With a typical amplitude of magnetic fields $B=\mathcal O(1)\,\mu$G and dark matter velocity $v=\mathcal O(100)\,$km/sec at a cluster radius $R\simeq 1\,$Mpc, we claim that the charge $\epsilon e$ ($e$ is the elementary charge) of dark matter with mass $m$ should be bounded as $\epsilon \lesssim 10^{-14}(m/{\rm GeV})$ which is substantially tighter than the other previous constraints.

CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles

We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at $z=0.44$ to estimate the value of the ratio $\eta=\Psi/\Phi$ between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only $\Phi$), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum $\Phi+\Psi$). We thus express $\eta$ as a function of the mass profiles and perform our analysis over the radial range $0.5\,Mpc\le r\le r_{200}=1.96\,Mpc$. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain $\eta(r_{200})=1.01\,_{-0.28}^{+0.31}$ at the 68\% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied $f(R)$ modified gravity model, the constraint on $\eta$ translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the $f(R)$ interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.

Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing

We present a strong lensing system, composed of 4 multiple images of a source at z = 2.387, created by two lens galaxies, G1 and G2, belonging to the galaxy cluster MACS J1115.9+0129 at z = 0.353. We use observations taken as part of the Cluster Lensing and Supernova survey with Hubble, CLASH, and its spectroscopic follow-up programme at the Very Large Telescope, CLASH-VLT, to estimate the total mass distributions of the two galaxies and the cluster through strong gravitational lensing models. We find that the total projected mass values within the half-light radii, R_{e}, of the two lens galaxies are M_{T,G1}(< R_{e,G1}) = (3.6 +/- 0.4) x 10^{10}M_{Sun} and M_{T,G2}(< R_{e,G2}) = (4.2 +/- 1.6) x 10^{10}M_{Sun}. The effective velocity dispersion values of G1 and G2 are (122 +/- 7) km/s and (137 +/- 27) km/s, respectively. We remark that these values are relatively low when compared to those of ~200-300 km/s, typical of lens galaxies found in the field by previous surveys. By fitting the spectral energy distributions of G1 and G2, we measure projected luminous over total mass fractions within R_{e} of 0.11 +/- 0.03, for G1, and 0.73 +/- 0.32, for G2. The fact that the less massive galaxy, G1, is dark-matter dominated in its inner regions raises the question of whether the dark matter fraction in the core of early-type galaxies depends on their mass. Further investigating strong lensing systems will help us understand the influence that dark matter has on the structure and evolution of the inner regions of galaxies.

Shocking Features in the Merging Galaxy Cluster RXJ0334.2-0111

We present a 66 ksec $\textit{Chandra}$ X-ray observation of the galaxy cluster RXJ0334.2-0111. This deep observation revealed a unique bow shock system associated with a wide angle tail (WAT) radio galaxy and several intriguing substructures. The temperature across the bow shock jumps by a factor of $\sim$ 1.5 (from 4.1 keV to 6.2 keV), and is consistent with the Mach number $M = 1.6_{-0.3}^{+0.5}$. A second inner surface brightness edge is a cold front that marks the border between infalling subcluster cool core and the ICM of the main cluster. The temperature across the cold front increases from $1.3_{-0.8}^{+0.3}$ keV to $6.2_{-0.6}^{+0.6}$ keV. We find an overpressurized region $\sim$ 250 kpc east of the cold front that is named "the eastern extension (EE)". The EE may be a part of the third subcluster in the ongoing merger. We also find a tail shaped feature that originates near the bow shock and may extend up to a distance of $\sim$ 1 Mpc. This feature is also likely overpressurized. The luminous FR-I radio galaxy, 3C89, appears to be the cD galaxy of the infalling subcluster. We estimated 3C89's jet power from jet bending and the possible interaction between the X-ray gas and the radio lobes. A comparison between the shock stand-off distance and the Mach number for all known shock front/cold front combinations suggests that the core is continuously shrinking in size by stripping.

IDCS J1426.5+3508: Weak Lensing Analysis of a Massive Galaxy Cluster at $z=1.75$

We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at $z=1.75$, which is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at $2\sigma$ significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass $M_{200,\mathrm{crit}}=2.3^{+2.1}_{-1.4}\times10^{14}$ M$_{\odot}$. This mass is consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.

Discovery of an ultra-diffuse galaxy in the Pisces-Perseus supercluster

We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.4 degrees in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (mu_V = 24.8 mag/arcsec), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R_e(V) = 12 arcsec) and proximity (15 arcmin) to the well-known dwarf spheroidal galaxy And II. Its red color (V-I = 1.0), shallow Sersic index (n_V=0.68), and the absence of detectable H-alpha emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6-meter telescope (V_h=5450 +/- 40 km/s) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (~78 Mpc), DGSAT I would have an R_e ~ 4.7 kpc and M_V ~-16.3$. Its properties resemble those of the ultra-diffuse galaxies recently discovered in the Coma cluster. DGSAT I is the first case of these rare ultra-diffuse galaxies found in this galaxy cluster. Unlike the ultra-diffuse galaxies associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\alpha = -0.8 \pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\alpha \approx - 2$. The spectral index of the radio halo is remarkably uniform ($\alpha = -1.16$, with an intrinsic scatter of $\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ($\mathcal{M} \approx 1.2$, with an upper limit of $\mathcal{M} \approx 1.5$). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.

Probing dark energy via galaxy cluster outskirts

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT> 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favor the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Probing dark energy via galaxy cluster outskirts [Replacement]

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT> 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favor the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Probing dark energy via galaxy cluster outskirts [Replacement]

We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT>3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.

CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $\Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68\%$ confidence level) $\Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $\Lambda$CDM model, and $\Omega_m=0.31^{+0.12}_{-0.13}$ and $\Omega_\Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3\pm 0.1$.(ABRIDGED)

How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations

Galaxy clusters are an established and powerful test-bed for theories of both galaxy evolution and cosmology. Accurate interpretation of cluster observations often requires robust identification of the location of the centre. Using a statistical sample of clusters drawn from a suite of cosmological simulations in which we have explored a range of galaxy formation models, we investigate how the location of this centre is affected by the choice of observable - stars, hot gas, or the full mass distribution as can be probed by the gravitational potential. We explore several measures of cluster centre: the minimum of the gravitational potential, which would expect to define the centre if the cluster is in dynamical equilibrium; the peak of the density; the centre of BCG; and the peak and centroid of X-ray luminosity. We find that the centre of BCG correlates more strongly with the minimum of the gravitational potential than the X-ray defined centres, while AGN feedback acts to significantly enhance the offset between the peak X-ray luminosity and minimum gravitational potential. These results highlight the importance of centre identification when interpreting clusters observations, in particular when comparing theoretical predictions and observational data.

A mature galaxy cluster at z=1.58 around the radio galaxy 7C1753+6311

We report on the discovery of a z=1.58 mature cluster around the high-redshift radio galaxy 7C1753+6311, first identified in the Clusters Around Radio-Loud AGN survey. Two-thirds of the excess galaxies within the central 1Mpc lie on a red sequence with a colour that is consistent with an average formation redshift of zf~3. We show that 80+/-6% of the red sequence galaxies in the cluster core are quiescent, while the remaining 20% are red due to dusty star formation. We demonstrate that the cluster has an enhanced quiescent galaxy fraction that is three times that of the control field. We also show that this enhancement is mass dependent: 91+/-9% of the M* >10^{10.5}Msun cluster galaxies are quiescent, compared to only 36+/-2% of field galaxies, whereas the fraction of quiescent galaxies with lower masses is the same in the cluster and field environments. The presence of a dense core and a well-formed, quiescent red sequence suggest that this is a mature cluster. This means that distant radio galaxies do not solely reside in young, uncollapsed protoclusters, rather they can be found in clusters in a wide range of evolutionary states.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^