Posts Tagged galactic disk

Recent Postings from galactic disk

Gravitational scattering of stars and clusters and the heating of the Galactic disk

Could the velocity spread, increasing with time, in the Galactic disk be explained as a result of gravitational interactions of stars with giant molecular clouds (GMCs) and spiral arms? Do the old open clusters high above the Galactic plane provide clues to this question? We explore the effects on stellar orbits of scattering by inhomogeneities in the Galactic potential due to GMCs, spiral arms and the Galactic bar, and whether high-altitude clusters could have formed in orbits closer to the Galactic plane and later been scattered. Simulations of test-particle motions are performed in a realistic Galactic potential. The effects of the internal structure of GMCs are explored. The destruction of clusters in GMC collisions is treated in detail with N-body simulations of the clusters. The observed velocity dispersions of stars as a function of time are well reproduced. The GMC structure is found to be significant, but adequate models produce considerable scattering effects. The fraction of simulated massive old open clusters, scattered into orbits with |z| > 400 pc, is typically 0:5%, in agreement with the observed number of high-altitude clusters and consistent with the present formation rate of massive open clusters. The heating of the thin Galactic disk is well explained by gravitational scattering by GMCs and spiral arms, if the local correlation between the GMC mass and the corresponding voids in the gas is not very strong. Our results suggest that the high-altitude metal-rich clusters were formed in orbits close to the Galactic plane and later scattered to higher orbits. It is possible, though not very probable, that the Sun formed in such a cluster before scattering occurred.

Gravitational scattering of stars and clusters and the heating of the Galactic disk [Replacement]

Could the velocity spread, increasing with time, in the Galactic disk be explained as a result of gravitational interactions of stars with giant molecular clouds (GMCs) and spiral arms? Do the old open clusters high above the Galactic plane provide clues to this question? We explore the effects on stellar orbits of scattering by inhomogeneities in the Galactic potential due to GMCs, spiral arms and the Galactic bar, and whether high-altitude clusters could have formed in orbits closer to the Galactic plane and later been scattered. Simulations of test-particle motions are performed in a realistic Galactic potential. The effects of the internal structure of GMCs are explored. The destruction of clusters in GMC collisions is treated in detail with N-body simulations of the clusters. The observed velocity dispersions of stars as a function of time are well reproduced. The GMC structure is found to be significant, but adequate models produce considerable scattering effects. The fraction of simulated massive old open clusters, scattered into orbits with |z| > 400 pc, is typically 0:5%, in agreement with the observed number of high-altitude clusters and consistent with the present formation rate of massive open clusters. The heating of the thin Galactic disk is well explained by gravitational scattering by GMCs and spiral arms, if the local correlation between the GMC mass and the corresponding voids in the gas is not very strong. Our results suggest that the high-altitude metal-rich clusters were formed in orbits close to the Galactic plane and later scattered to higher orbits. It is possible, though not very probable, that the Sun formed in such a cluster before scattering occurred.

Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

There is evidence in 21cm HI emission for voids several kpc in size centered approximately on the Galactic centre, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of HI at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii $R\lesssim 2.4$ kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM $\sim 125$ pc. An anti-correlation between HI and $\gamma$-ray emission at latitudes $10^{\circ} \leq |b| \leq 20^{\circ}$ suggests that the boundary of the extended HI layer marks the walls of the Fermi Bubbles. With HI we are able to trace the edges of the voids from $|z| > 2$ kpc down to $z\approx0$, where they have a radius $\sim 2$ kpc. The extended HI layer likely results from star formation in the disk, which is limited largely to $R \gtrsim 3$ kpc, so the wind may be expanding into an area of relatively little HI. Because the HI kinematics can discriminate between gas in the Galactic center and foreground material, 21cm HI emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

A correlation between the HI 21-cm absorption strength and impact parameter in external galaxies

By combining the data from surveys for HI 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of 5 x 10^8 Hz, compared to 1 x 10^8 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

North Galactic plane structure with IPHAS Be stars

Our goal is to investigate the spiral structure of the Northern Galactic plane using as tracers the classical Be stars detected by INT Photometric H$\alpha$ Survey (IPHAS). IPHAS scans the $29^o<l<+215^o, -5^o<b<+5^o$ region in the $r$, $i$ and H$\alpha$ bands. Spectroscopic follow up has been done for the bright H$\alpha$ emitters. We have developed an automatic procedure for spectral analysis, based on the BCD spectrophotometric system. In this paper we present a cataloque of 1135 Classical Be stars, for which we have determined spectral types, astrophysical parameters and distances. From these results we make a first attempt to map the structure of the Galactic disk in the anticenter direction.

An extremely fast halo hot subdwarf star in a wide binary system

New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 ($V=17.92$ mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: $T_{\rm eff}=30\,600\pm500$ K, $\log{g}=5.57\pm0.06$ cm s$^{-2}$ and He abundance $\log(n{\rm He}/n{\rm H})=-3.0\pm0.2$. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of $[{\rm Fe}/{\rm H}]=-1.3$. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system $d=5.5\pm0.5$ kpc, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or it was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

"Grandeur in this view of life": N-body simulation models of the Galactic habitable zone

We present an isolated Milky Way-like simulation in GADGET2 N-body SPH code. The Galactic disk star formation rate (SFR) surface densities and stellar mass indicative of Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life friendly environments. SFR and stellar component density are calculated averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from $10$ to $15$ kpc cylindrical galactocentric distance in $10$ Gyr simulated time span. At $10$ Gyr the simulation results imply the following. Stellar particles which have spent almost all of their life time in habitable friendly conditions reside typically at $\sim16$ kpc from Galactic centre and are $\sim 3$ Gyr old. Stellar particles that have spent $\ge 90 \%$ of their $4-5$ Gyr long life time in habitable friendly conditions, are also predominantly found in the outskirts of the Galactic disk. Less then $1 \%$ of these particles can be found at a typical Solar system galactocentric distance of $8-10$ kpc. Our results imply that the evolution of an isolated spiral galaxy is likely to result in galactic civilizations emerging at the outskirts of the galactic disk around stellar hosts younger than the Sun.

"Grandeur in this view of life": N-body simulation models of the Galactic habitable zone [Replacement]

We present an isolated Milky Way-like simulation in GADGET2 N-body SPH code. The Galactic disk star formation rate (SFR) surface densities and stellar mass indicative of Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life friendly environments. SFR and stellar component density are calculated averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from $10$ to $15$ kpc cylindrical galactocentric distance in $10$ Gyr simulated time span. At $10$ Gyr the simulation results imply the following. Stellar particles which have spent almost all of their life time in habitable friendly conditions reside typically at $\sim16$ kpc from Galactic centre and are $\sim 3$ Gyr old. Stellar particles that have spent $\ge 90 \%$ of their $4-5$ Gyr long life time in habitable friendly conditions, are also predominantly found in the outskirts of the Galactic disk. Less then $1 \%$ of these particles can be found at a typical Solar system galactocentric distance of $8-10$ kpc. Our results imply that the evolution of an isolated spiral galaxy is likely to result in galactic civilizations emerging at the outskirts of the galactic disk around stellar hosts younger than the Sun.

Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays? [Replacement]

We explore the possibility that Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, significantly contributes to the observed TeV-PeV cosmic rays (CRs) as a Galactic PeV particle accelerator ("Pevatron"). In our previous study (Fujita et al. Phys. Rev. D 92, 023001), we investigated Sgr A* as a Pevatron and studied neutrino and gamma-ray emissions from escaping CRs. In this work, we show that a large number of TeV-PeV CRs may have been injected from Sgr A*, and that those CRs may have filled in the Galactic halo and some of them may have entered the Galactic disk. Based on a diffusion-halo model, we solve diffusion equations for the CRs and compare the results with the CR spectrum and the anisotropy observed on the Earth as well as the diffuse gamma-ray emission from the Central Molecular Zone (CMZ) surrounding Sgr A*. We find that the CR spectrum, the anisotropy and the recent gamma-ray observations with the High Energy Stereoscopic System (HESS) can be explained simultaneously if (1) Sgr A* was more active in the past, (2) the CR spectrum at the source (Sgr A*) is relatively hard, (3) the diffusion coefficient for the Galactic disk is small, and (4) the energy dependence of the diffusion coefficient is different between the CMZ and the halo.

Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?

We explore the possibility that Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, significantly contributes to the observed TeV-PeV cosmic rays (CRs) as a Galactic PeV particle accelerator ("Pevatron"). In our previous study (Fujita et al. Phys. Rev. D 92, 023001), we investigated Sgr A* as a Pevatron and studied neutrino and gamma-ray emissions from escaping CRs. In this work, we show that a large number of TeV-PeV CRs may have been injected from Sgr A*, and that those CRs may have filled in the Galactic halo and some of them may have entered the Galactic disk. Based on a diffusion-halo model, we solve diffusion equations for the CRs and compare the results with the CR spectrum and the anisotropy observed on the Earth as well as the diffuse gamma-ray emission from the Central Molecular Zone (CMZ) surrounding Sgr A*. We find that the CR spectrum, the anisotropy and the recent gamma-ray observations with the High Energy Stereoscopic System (HESS) can be explained simultaneously if (1) Sgr A* was more active in the past, (2) the CR spectrum at the source (Sgr A*) is relatively hard, (3) the diffusion coefficient for the Galactic disk is small, and (4) the energy dependence of the diffusion coefficient is different between the CMZ and the halo.

Galactic masers: kinematics, spiral structure and the disk dynamic state

We investigate the kinematics of 131 Milky-Way masers associated with star-forming regions and with trigonometric parallaxes measured by Very Large Baseline Radio Interferometry. We developed a new algorithm for computing the structural and kinematic parameters of the Galactic disk, which implements the currently most comprehensive version of the statistical-parallax technique. To take into account the variation of the form and size of the ellipsoid of residual velocities as a function of Galactocentric distance, we assume that radial velocity dispersion is related to disk surface density and apply the Jeans hydrodynamic equations. We compute the Galactic rotation curve over the Galactocentric distance interval from 3 to 14 kpc and find the local circular rotation velocity to be 243 +/- 10 km/s, and we also determine a full set of kinematical parameters, including the parameters of the four-armed spiral pattern with the pitch angle i ~ -10.45 +/- 0.30 deg. The galactocentric distance is found to be R0 = 8.40 +/- 0.12 kpc. We use two methods - global and local - to estimate the exponential disk scale and we find HD ~ 2.70 +/- 0.32 kpc. The excellent agreement between the two estimates confirms the idea that the Galactic disk is governed by a single equation of state. Assuming marginal stability of the disk, we found that its local surface density is greater then 24 +/- 3 solar masses at sq. pc.

Global Spiral Arms Formation by Non-linear Interaction of Wakelets

The formation and evolution of galactic spiral arms is not yet clearly understood despite many analytic and numerical work. Recently, a new idea has been proposed that local density enhancements (waklets) arising in the galactic disk connect with each other and make global spiral arms. However, the understanding of this mechanism is not yet sufficient. We analyze the interaction of wakelets by using N-body simulations including perturbing point masses, which are heavier than individual N-body particles and act as the seeds for wakelets. Our simulation facilitates more straightforward interpretation of numerical results than previous work by putting a certain number of perturbers in a well-motivated configuration. We detected a clear sign of non-linear interaction between wakelets, which make global spiral arms by connecting two adjacent wakelets. We found that the wave number of the strongest non-linear interaction depends on galactic disk mass and shear rate. This dependence is consistent with the prediction of swing amplification mechanism and other previous results. Our results provide unification of previous results which seemed not consistent with each other.

Cosmic variance in [O/Fe] in the Galactic disk

We examine the distribution of the [O/Fe] abundance ratio in stars across the Galactic disk using H-band spectra from the Apache Point Galactic Evolution Experiment (APOGEE). We minimized systematic errors by considering groups of stars with similar atmospheric parameters. The APOGEE measurements in the Sloan Digital Sky Survey Data Release 12 reveal that the square root of the star-to-star cosmic variance in oxygen at a given metallicity is about 0.03-0.04 dex in both the thin and thick disk. This is about twice as high as the spread found for solar twins in the immediate solar neighborhood and is probably caused by the wider range of galactocentric distances spanned by APOGEE stars. We quantified measurement uncertainties by examining the spread among stars with the same parameters in clusters; these errors are a function of effective temperature and metallicity, ranging between 0.005 dex at 4000 K and solar metallicity, to about 0.03 dex at 4500 K and [Fe/H]= -0.6. We argue that measuring the spread in [O/Fe] and other abundance ratios provides strong constraints for models of Galactic chemical evolution.

Cosmic variance in [O/Fe] in the Galactic disk [Replacement]

We examine the distribution of the [O/Fe] abundance ratio in stars across the Galactic disk using H-band spectra from the Apache Point Galactic Evolution Experiment (APOGEE). We minimize systematic errors by considering groups of stars with similar atmospheric parameters. The APOGEE measurements in the Sloan Digital Sky Survey Data Release 12 reveal that the square root of the star-to-star cosmic variance in the oxygen-to-iron ratio at a given metallicity is about 0.03-0.04 dex in both the thin and thick disk. This is about twice as high as the spread found for solar twins in the immediate solar neighborhood and the difference is probably associated to the wider range of galactocentric distances spanned by APOGEE stars. We quantify the uncertainties by examining the spread among stars with the same parameters in clusters; these errors are a function of effective temperature and metallicity, ranging between 0.005 dex at 4000 K and solar metallicity, to about 0.03 dex at 4500 K and [Fe/H]= -0.6. We argue that measuring the spread in [O/Fe] and other abundance ratios provides strong constraints for models of Galactic chemical evolution.

The Size and Shape of the Milky Way Disk and Halo from M-type Brown Dwarfs in the BoRG Survey

We have identified 274 M-type Brown Dwarfs in the Hubble Space Telescope's Wide Field Camera 3 (WFC3) pure parallel fields from the Brightest of Reionizing Galaxies (BoRG) survey for high redshift galaxies. These are near-infrared observations with multiple lines-of-sight out of our Milky Way. Using these observed M-type Brown Dwarfs we fitted a Galactic disk and halo model with a Markov chain Monte Carlo (MCMC) analysis. This model worked best with the scale length of the disk fixed at $h$ = 2.6 kpc. For the scale height of the disk, we found $z_0 = 0.29^{+0.02}_{-0.019}$ kpc and for the central number density $\rho_0 = 0.29^{+0.20}_{-0.13}$ \#/pc$^3$. For the halo we derived a flattening parameter $\kappa$ = 0.45$\pm{0.04}$ and a power-law index $p$ = 2.4$\pm{0.07}$. We found the fraction of M-type brown dwarfs in the local density that belong to the halo to be $f_{h}$ = 0.0075$^{+0.0025}_{-0.0019}$. We found no correlation between subtype of M-dwarf and any model parameters. The total number of M-type Brown Dwarfs in the disk and halo was determined to be $58.2^{+9.81}_{-6.70} \times10^{9}$. We found an upper limit for the fraction of M-type Brown Dwarfs in the halo of 7$^{+5}_{-4}$\%. The upper limit for the total Galactic Disk mass in M-dwarfs is $4.34^{+0.73}_{-0.5}\times10^{9}$ $M_{\odot}$, assuming all M-type Brown Dwarfs have a mass of $80 M_J$.

Abundances and kinematics for ten anticentre open clusters

Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also exhibits a peculiar orbit with a large excursion above the plane. The irregular orbits of the three most metal-poor clusters (of which two are located at the edge of the Galactic disk), if confirmed by more robust astrometric measurements such as those of the Gaia mission, are compatible with an inside-out formation scenario for the Milky Way, in which extragalactic material is accreted onto the outer disk. We cannot determine if Be 20, Be 29,and Sau 1 are of extragalactic origin, as they may be old genuine Galactic clusters whose orbits were perturbed by accretion events or minor mergers in the past 5 Gyr, or they may be representants of the thick disk population. The nature of these objects is intriguing and deserves further investigations in the near future.

Abundances and kinematics for ten anticentre open clusters [Replacement]

Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also exhibits a peculiar orbit with a large excursion above the plane. The irregular orbits of the three most metal-poor clusters (of which two are located at the edge of the Galactic disk), if confirmed by more robust astrometric measurements such as those of the Gaia mission, are compatible with an inside-out formation scenario for the Milky Way, in which extragalactic material is accreted onto the outer disk. We cannot determine if Be 20, Be 29,and Sau 1 are of extragalactic origin, as they may be old genuine Galactic clusters whose orbits were perturbed by accretion events or minor mergers in the past 5 Gyr, or they may be representants of the thick disk population. The nature of these objects is intriguing and deserves further investigations in the near future.

Globular Clusters as Cradles of Life and Advanced Civilizations

Globular clusters are ancient stellar populations with no star formation or core-collapse supernovae. Several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk. The relative proximity would facilitate interstellar communication and travel. However, the very proximity that promotes interstellar travel also brings danger, since stellar interactions can destroy planetary systems. However, by modeling globular clusters and their stellar populations, we find that large regions of many globular clusters can be thought of as "sweet spots" where habitable-zone planetary orbits can be stable for long times. We also compute the ambient densities and fluxes in the regions within which habitable-zone planets can survive. Globular clusters are among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare globular clusters to the Galactic disk, in terms of the likelihood of housing advanced communicating civilizations. We also consider free-floating planets, since wide-orbit planets can be ejected and travel freely through the cluster. A civilization spawned in a globular cluster may have opportunities to establish self-sustaining outposts, thereby reducing the probability that a single catastrophic event will destroy the civilization or its descendants. Although individual civilizations within a cluster may follow different evolutionary paths, or even be destroyed, the cluster may always host some advanced civilization, once a small number of them have managed to jump across interstellar space.

Herbig Ae/Be candidate stars in the innermost Galactic disk: Quartet cluster

In order to investigate the Galactic-scale environmental effects on the evolution of protoplanetary disks, we explored the near-infrared (NIR) disk fraction of the Quartet cluster, which is a young cluster in the innermost Galactic disk at the Galactocentric radius Rg ~ 4 kpc. Because this cluster has a typical cluster mass of ~10^3 M_sun as opposed to very massive clusters, which have been observed in previous studies (>10^4 M_sun), we can avoid intra-cluster effects such as strong UV field from OB stars. Although the age of the Quartet is previously estimated to be 3-8 Myr old, we find that it is most likely ~3-4.5 Myr old. In moderately deep JHK images from the UKIDSS survey, we found eight HAeBe candidates in the cluster, and performed K-band medium-resolution ($R \equiv \Delta \lambda / \lambda ~ 800$) spectroscopy for three of them with the Subaru 8.2 m telescope. These are found to have both Br\gamma absorption lines as well as CO bandhead emission, suggesting that they are HAeBe stars with protoplanetary disks. We estimated the intermediate-mass disk fraction (IMDF) to be ~25 % for the cluster, suggesting slightly higher IMDF compared to those for young clusters in the solar neighborhood with similar cluster age, although such conclusion should await future spectroscopic study of all candidates of cluster members.

Weighing the Galactic disk using the Jeans equation: lessons from simulations [Replacement]

Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the "Solar" radius. Our simulation dataset includes galaxies formed in a cosmological context using state-of-the-art high resolution cosmological zoom simulations, and other idealised models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scale lengths of the assumed double exponential density distribution, and the scale length of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scale lengths may help reconcile conflicting estimates of the local dark matter density in the literature.

Weighing the Galactic disk using the Jeans equation: lessons from simulations

Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the "Solar" radius. Our simulation dataset includes galaxies formed in a cosmological context using state-of-the-art high resolution cosmological zoom simulations, and other idealised models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scale lengths of the assumed double exponential density distribution, and the scale length of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scale lengths may help reconcile conflicting estimates of the local dark matter density in the literature.

Galactic Wind in NGC 4460: New Observations

NGC4460 is an isolated lenticular galaxy, in which galactic wind has been earlier discovered as a gas outflow associated with circumnuclear regions of star formation. Using the results of observations in the Halpha line with the scanning Fabry-Perot interferometer on the SAO RAS 6-m telescope, we studied the kinematics of the ionized gas in this galaxy. The parameters of gas outflow from the plane of the galactic disk were refined within a simple geometric model. We show that it is impossible to characterize the wind by a fixed velocity value. Characteristic outflow velocities are within 30..80 km/s , and they are insufficient to make the swept-out matter ultimately leave the galaxy.

The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For $R_0 = 8$ kpc, the models have stellar mass $5 < M_* < 6 \times 10^{10}$ M$_{\odot}$, scale length $2.0 \le R_d \le 2.9$ kpc, LSR circular velocity $222 \le \Theta_0 \le 233$ km s$^{-1}$, and solar circle stellar surface density $34 \le \Sigma_d(R_0) \le 61$ M$_{\odot}$ pc$^{-2}$. The present inter-arm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus Arm is a $\sim 50\%$ overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude $\langle$$|$$dV/dR$$|^2$$\rangle$$^{1/2} \approx 14$ km s$^{-1}$ kpc$^{-1}$, implying that commonly neglected terms in the Jeans equations may be non-negligible. The spherically averaged local dark matter density is $\rho_{0,DM} \approx 0.009$ M$_{\odot}$ pc$^{-3}$ (0.3 GeV cm$^{-3}$). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the $c$-$V_{200}$ relation expected in $\Lambda$CDM while also helping to mitigate the too big to fail problem, but it remains difficult to reconcile the inner bulge/bar dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

Collisions between Dark Matter Confined High Velocity Clouds and Magnetized Galactic Disks: The Smith Cloud

The Galaxy's population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of $5 \times 10^6\,$M$_{\odot}$ and dark matter minihalo masses of 0, $3 \times 10^8$, or $1 \times 10^9\,$M$_{\odot}$. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud's collision with the galactic disk creates a hole in the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to $6.0 \times 10^5\,$M$_{\odot}$ in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.

The complex stellar populations in the lines of sight to open clusters in the third Galactic quadrant

Multi-color photometry of the stellar populations in five fields in the third Galactic quadrant centred on the clusters NGC 2215, NGC 2354, Haffner 22, Ruprecht 11, and ESO489SC01 is interpreted in terms of a warped and flared Galactic disk, without resort to an external entity such as the popular Monoceros or Canis Major overdensities. Except for NGC 2215, the clusters are poorly or unstudied previously. The data generate basic parameters for each cluster, including the distribution of stars along the line of sight. We use star counts and photometric analysis, without recourse to Galactic-model-based predictions or interpretations, and confirms earlier results for NGC 2215 and NGC 2354. ESO489SC01 is not a real cluster, while Haffner~22 is an overlooked cluster aged about 2.5 Gyr. Conclusions for Ruprecht~11 are preliminary, evidence for a cluster being marginal. Fields surrounding the clusters show signatures of young and intermediate-age stellar populations. The young population background to NGC~2354 and Ruprecht~11 lies 8-9 kpc from the Sun and $\sim$1 kpc below the formal Galactic plane, tracing a portion of the Norma-Cygnus arm, challenging Galactic models that adopt a sharp cut-off of the disk 12-14 kpc from the Galactic center. The old population is metal poor with an age of 2-3 Gyr, resembling star clusters like Tombaugh 2 or NGC 2158. It has a large color spread and is difficult to locate precisely. Young and old populations follow a pattern that depends critically on the vertical location of the thin and/or thick disk, and whether or not a particular line of sight intersects one, both, or none.

Search for Galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos

Arrival directions of 40 neutrino events with energies >~100 TeV, observed by the IceCube experiment, are studied. Their distribution in the Galactic latitude and in the angular distance to the Galactic Center allow to search for the Milky-Way disk and halo-related components, respectively. No statistically significant evidence for the disk component is found, though even 100% disk origin of the flux is allowed at the 90% confidence level. Contrary, the Galactic Center-Anticenter dipole anisotropy, specific for dark-matter decays (annihilation) or for interactions of cosmic rays with the extended halo of circumgalactic gas, is clearly favoured over the isotropic distribution (the probability of a fluctuation of the isotropic signal is ~2%).

Search for Galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos [Replacement]

Arrival directions of 40 neutrino events with energies >~100 TeV, observed by the IceCube experiment, are studied. Their distribution in the Galactic latitude and in the angular distance to the Galactic Center allow to search for the Milky-Way disk and halo-related components, respectively. No statistically significant evidence for the disk component is found, though even 100% disk origin of the flux is allowed at the 90% confidence level. Contrary, the Galactic Center-Anticenter dipole anisotropy, specific for dark-matter decays (annihilation) or for interactions of cosmic rays with the extended halo of circumgalactic gas, is clearly favoured over the isotropic distribution (the probability of a fluctuation of the isotropic signal is ~2%).

Excitation of coupled stellar motions in the Galactic Disk by orbiting satellites

We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of satellites predicted cosmologically. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, having the appearance of rings in face-on projections of the stellar disk. They also produce flares in the disk outer parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions, with no significant associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the coherent vertical oscillations recently detected locally. They can also induce non-zero vertical streaming motions as large as 10-20 km s$^{-1}$, consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring, with no associated disk heating.

Excitation of coupled stellar motions in the Galactic Disk by orbiting satellites [Replacement]

We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of satellites predicted cosmologically. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, having the appearance of rings in face-on projections of the stellar disk. They also produce flares in the disk outer parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions, with small significant associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the coherent vertical oscillations recently detected locally. They can also induce non-zero vertical streaming motions as large as 10-20 km s$^{-1}$, consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring, with modest associated disk heating.

Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars

Context: Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and $\xi$), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the different [X/H]-Tc slopes observed so far. Results: We confirm that the [X/Fe] ratios of all the species correlate with age. The slopes of these relations allow us to describe the effect that the chemical evolution of the Galactic disk has on the chemical patterns of the solar twins. After subtracting the chemical evolution effect, we find that the unevolved [X/H]-Tc slope values do not depend on the stellar ages anymore. However, the wide diversity among these [X/H]-Tc slopes, covering a range of $\pm$4~10$^{-5}$ dex K$^{-1}$, indicates that processes in addition to the chemical evolution may affect the [X/H]-Tc slopes. Conclusions: The wide range of unevolved [X/H]-Tc slope values spanned at all ages by our sample could reflect the wide diversity among exo-planetary systems observed so far and the variety of fates that the matter in circumstellar disks can experience.

Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars [Replacement]

Context: Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and $\xi$), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the different [X/H]-Tc slopes observed so far. Results: We confirm that the [X/Fe] ratios of all the species correlate with age. The slopes of these relations allow us to describe the effect that the chemical evolution of the Galactic disk has on the chemical patterns of the solar twins. After subtracting the chemical evolution effect, we find that the unevolved [X/H]-Tc slope values do not depend on the stellar ages anymore. However, the wide diversity among these [X/H]-Tc slopes, covering a range of $\pm$4~10$^{-5}$ dex K$^{-1}$, indicates that processes in addition to the chemical evolution may affect the [X/H]-Tc slopes. Conclusions: The wide range of unevolved [X/H]-Tc slope values spanned at all ages by our sample could reflect the wide diversity among exo-planetary systems observed so far and the variety of fates that the matter in circumstellar disks can experience.

No Evidence for Classical Cepheids and a New Dwarf Galaxy Behind the Galactic Disk

Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS) we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l~-27 deg and recently tentatively classified as classical Cepheids belonging to a, hence claimed, dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all and the third one with a period of 5.695 d and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the Ks-band light curve of the fourth star indicate that very likely none of them is a Cepheid and, thus, there is no evidence for a background dwarf galaxy. Our observations show that a great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimick pulsations and even eclipses.

Properties of the open cluster Tombaugh 1 from high resolution spectroscopy and uvbyCaH$\beta$ photometry

Open clusters can be the key to deepen our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster's properties are applicable to all its members. However the number of open clusters with detailed analysis from high resolution spectroscopy and/or precision photometry imposes severe limitation on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaH$\beta$ photometry and high resolution spectroscopy, we derive the cluster's properties and, for the first time, present detailed abundance analysis of 10 potential cluster stars. Using radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved probable, single-star members of Tombaugh 1. The weighted photometric metallicity from $m_1$ and $hk$ is [Fe/H] = -0.10 $\pm$ 0.02, while a match to the Victoria-Regina Str\"{o}mgren isochrones leads to an age of 0.95 $\pm$ 0.10 Gyr and an apparent modulus of $(m-M)$ = 13.10 $\pm$ 0.10. Radial velocities identify 6 giants as probable cluster members and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y,Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1, and reveals that this Cepheid presents signs of barium enrichment.

The chemical homogeneity of open clusters [Replacement]

Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forward modeling of the spectra and Approximate Bayesian Computation, I derive strong limits on the initial abundance spread of 15 elements: <0.01 (0.02) dex for C and Fe, <~0.015 (0.03) dex for N, O, Mg, Si, and Ni, <~0.02 (0.03) dex for Al, Ca, and Mn, and <~0.03 (0.05) dex for Na, S, K, Ti, and V (at 68% and 95% confidence, respectively). The strong limits on C and O imply that no pollution by massive core-collapse supernovae occurred during star formation in open clusters, which, thus, need to form within <~6 Myr. Further development of this and related techniques will bring the power of differential abundances to stars other than solar twins in large spectroscopic surveys and will help unravel the history of star formation and chemical enrichment in the Milky Way through chemical tagging.

The chemical homogeneity of open clusters

Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forward modeling of the spectra and Approximate Bayesian Computation, I derive strong limits on the initial abundance spread of 15 elements: <0.01 (0.02) dex for C and Fe, <~0.015 (0.03) dex for N, O, Mg, Si, and Ni, <~0.02 (0.03) dex for Al, Ca, and Mn, and <~0.03 (0.05) dex for Na, S, K, Ti, and V (at 68% and 95% confidence, respectively). The strong limits on C and O imply that no pollution by massive core-collapse supernovae occurred during star formation in open clusters, which, thus, need to form within <~6 Myr. Further development of this and related techniques will bring the power of differential abundances to stars other than solar twins in large spectroscopic surveys and will help unravel the history of star formation and chemical enrichment in the Milky Way through chemical tagging.

The connecting molecular ridge in the Galactic center

We report new observations of multiple transitions of the CS molecular lines in the SgrA region of the Galactic center, at an angular resolution of 40" (=1.5 pc). The objective of this paper is to study the polar arc, which is a molecular ridge near the SgrA region, with apparent non-coplanar motions, and a velocity gradient perpendicular to the Galactic plane. With our high resolution dense-gas maps, we search for the base and the origin of the polar arc, which is expected to be embedded in the Galactic disk. We find that the polar arc is connected to a continuous structure from one of the disk ring/arm in both the spatial and velocity domains. This structure near SgrA* has high CS(J=4-3)/CS(J=2-1) ratios >1. That this structure has eluded detection in previous observations, is likely due to the combination of high excitation and low surface brightness temperature. We call this new structure the connecting ridge. We discuss the possible mechanism to form this structure and to lift the gas above the Galactic plane.

The stellar population structure of the Galactic disk

The detailed spatial structure of stellar populations with different chemical abundances in the Milky Way's disk contains a wealth of information on Galactic growth and evolution over cosmic time. We use data on 14,699 red-clump stars from the spectroscopic APOGEE survey, covering 4 <~ R <~ 15 kpc, to determine the spatial structure of mono-abundance populations (MAPs)---stars in narrow bins in [a/Fe] and [Fe/H]---accounting for the effects of the APOGEE selection function and the spatially-variable dust obscuration. We determine that all MAPs with enhanced [a/Fe] are centrally concentrated and are well-described as exponentials with a scale length of 2.2+/-0.2 kpc over the whole radial range of the disk. We discover that the radial surface-density profiles of low-[a/Fe] MAPs are complex: they do not monotonically decrease outwards, but rather display a peak radius ranging from ~5 kpc to ~13 kpc. The radial coverage of the data allows us to measure radial trends in each MAP's thickness. While high-[a/Fe] MAPs have constant scale heights everywhere, low-[a/Fe] MAPs flare outward, with an exponential flaring profile with a scale length of 8.5+/-0.7 kpc. We confirm, now with high-precision abundances, previous results that each MAP contains only a single vertical scale height. We also confirm that low-[Fe/H], low-[a/Fe] and high-[Fe/H], high-[a/Fe] MAPs have intermediate scale heights that smoothly bridge the traditional thin- and thick-disk divide. That the high-[a/Fe], thick disk components do not flare is strong evidence against their thickness being caused by radial migration or satellite heating. The correspondence between the radial structure and chemical-enrichment age of stellar populations is clear confirmation of the inside-out growth of galactic disks. The details of these relations will constrain the variety of physical conditions under which stars form throughout the MW disk.

Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation

We report calculations of cosmic-ray proton, nuclei, antiproton, electron and positron energy spectra within a "two-halo model" of diffusive transport. The two halos represent a simple, physically consistent generalization of the standard diffusion models, which assume a unique type of diffusion for cosmic rays in the whole Galactic halo. We believe instead that cosmic rays may experience a smaller energy dependence of diffusion when they are in proximity of the Galactic disk. Our scenario is supported by recent observations of cosmic-ray protons, nuclei, anisotropy, and gamma-rays. We predict remarkably hard antiparticle spectra at high energy. In particular, at E>10 GeV, the antiproton/proton ratio is expected to flatten, while the positron fraction is found to increase with energy. We discuss the implications for cosmic-ray physics and dark matter searches via antimatter.

Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation [Replacement]

We report calculations of cosmic-ray proton, nuclei, antiproton, electron and positron energy spectra within a "two-halo model" of diffusive transport. The two halos represent a simple, physically consistent generalization of the standard diffusion models, which assume a unique type of diffusion for cosmic rays in the whole Galactic halo. We believe instead that cosmic rays may experience a smaller energy dependence of diffusion when they are in proximity of the Galactic disk. Our scenario is supported by recent observations of cosmic-ray protons, nuclei, anisotropy, and gamma-rays. We predict remarkably hard antiparticle spectra at high energy. In particular, at E>10 GeV, the antiproton/proton ratio is expected to flatten, while the positron fraction is found to increase with energy. We discuss the implications for cosmic-ray physics and dark matter searches via antimatter.

Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk

We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.

The Bochum Survey of the Southern Galactic Disk: II. Follow-up measurements and multi-filter photometry for 1323 square degrees monitored in 2010-2015

This paper is the second in a series describing the southern Galactic Disk Survey (GDS) performed at the Universit\"atssternwarte Bochum near Cerro Armazones in Chile. Haas et al. (2012, Paper I) presented the survey design and a the characteristics of the observations and data. They identified ~2200 variable stars in an area of 50 square degrees with more than 50 observations in 2011. Here we present the first complete version of the GDS covering all 268 fields with 1323 square degrees along the Galactic disk including revised data from Paper I. The individual fields were observed up to 272 times and comprise a maximum time span between September 2010 and May 2015. We detect a total of 64151 variable sources, which are presented in a catalog including some of their properties and their light curves. A comparison with the International Variable Star Index (VSX) and All Sky Automated Survey (ASAS) indicates that 56794 of these sources are previously unknown variables. Furthermore, we present UBVr'i'z' photometry for all sources within the GDS, resulting in a new multi-color catalog of nearly 16x10^6 sources detected in at least one filter. Both the GDS and the near-infrared VISTA Variables in the Via Lactea survey (VVV) complement each other in the overlap area of about 300 square degrees enabling future comparison studies.

A comparative study on the reliability of open cluster parameters

Open clusters are known as excellent tracers of the structure and chemical evolution of the Galactic disk, however, the accuracy and reliability of open cluster parameters is poorly known. In recent years, several studies aimed to present homogeneous open cluster parameter compilations, which are based on some different approaches and photometric data. These catalogues are excellent sources to facilitate testing of the actual accuracy of open cluster parameters. We compare seven cluster parameter compilations statistically and with an external sample, which comprises the mean results of individual studies. Furthermore, we selected the objects IC 4651, NGC 2158, NGC 2383, NGC 2489, NGC 2627, NGC 6603, and Trumpler 14, with the main aim to highlight differences in the fitting solutions. We derived correction terms for each cluster parameter, using the external calibration sample. Most results by the compilations are reasonable scaled, but there are trends or constant offsets of different degree. We also identified one data set, which appears too erroneous to allow adjustments. After the correction, the mean intrinsic errors amount to about 0.2 dex for the age, 0.08 mag for the reddening, and 0.35 mag for the distance modulus. However, there is no study that characterises the cluster morphologies of all test cases in a correct and consistent manner. Furthermore, we found that the largest compilations probably include at least 20 percent of problematic objects, for which the parameters differ significantly. These could be among others doubtful or unlikely open clusters that do not facilitate an unambiguous fitting solution.

APOGEE chemical tagging constraint on the maximum star cluster mass in the $\alpha$-enhanced Galactic disk [Replacement]

Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance space. Chemical tagging requires large samples of stars with precise abundances for many individual elements. With uncertainties of $\sigma_{[X/{\rm Fe}]}$ and $\sigma_{\rm [Fe/H]} \simeq 0.05$ for 10 elements measured for $>10^4$ stars, the APOGEE DR12 spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer only $\sim 500$ independent volume elements in the 10-dimensional abundance space, when we focus on the $\alpha$-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a dominant background. By injecting star clusters into the APOGEE data set we show that chemically homogeneous clusters with masses $\gtrsim 3 \times 10^7 \, {\rm M}_\odot$ would be easily detectable and yet no such signal is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the old disk stars in the Milky Way.

APOGEE chemical tagging constraint on the maximum star cluster mass in the $\alpha$-enhanced Galactic disk

Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance space. Chemical tagging requires large samples of stars with precise abundances for many individual elements. With uncertainties of $\sigma_{[X/{\rm Fe}]}$ and $\sigma_{\rm [Fe/H]} \simeq 0.05$ for 10 elements measured for $> 10^4$ stars, the APOGEE DR12 spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer only $\sim 500$ independent volume elements in the 10-dimensional abundance space, when we focus on the $\alpha$-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a dominant background. By injecting star clusters into the APOGEE data set we show that chemically homogeneous clusters with masses $\gtrsim 3 \times 10^7 \, {\rm M}_\odot$ would be easily detectable and yet no such signal is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the old disk stars in the Milky Way.

Using chemical tagging to redefine the interface of the Galactic disk and halo

We present a chemical abundance distribution study in 14 $\alpha$, odd-Z, even-Z, light, and Fe-peak elements of approximately 3200 intermediate metallicity giant stars from the APOGEE survey. The main aim of our analysis is to explore the Galactic disk-halo transition region between -1.20 $<$ [Fe/H] $<$ -0.55 as a means to study chemical difference (and similarities) between these components. In this paper, we show that there is an $\alpha$-poor and $\alpha$-rich sequence within both the metal-poor and intermediate metallicity regions. Using the Galactic rest-frame radial velocity and spatial positions, we further separate our sample into the canonical Galactic components. We then studied the abundances ratios, of Mg, Ti, Si, Ca, O, S, Al, C+N, Na, Ni, Mn, V, and K for each of the components and found the following: (1) the $\alpha$-poor halo subgroup is chemically distinct in the $\alpha$-elements (particularly O, Mg, and S), Al, C+N, and Ni from the $\alpha$-rich halo, consistent with the literature confirming the existence of an $\alpha$-poor accreted halo population; (2) the canonical thick disk and halo are not chemically distinct in all elements indicating a smooth transition between the thick disk and halo; (3) a subsample of the $\alpha$-poor stars at metallicities as low as [Fe/H] $\sim$ -0.85 dex are chemically and dynamically consistent with the thin disk indicating that the thin disk may extend to lower metallicities than previously thought, and (4) that the location of the most metal-poor thin disk stars are consistent with a negative radial metallicity gradient. Finally, we used our analysis to suggest a new set of chemical abundance planes ([$\alpha$/Fe], [C+N/Fe], [Al/Fe], and [Mg/Mn]) that may be able to chemically label the Galactic components in a clean and efficient way independent of kinematics.

Tracing the propagation of cosmic rays in the Milky Way halo with Fermi-LAT observations of high- and intermediate-velocity clouds

Cosmic rays up to at least PeV energies are usually described in the framework of an elementary scenario that involves acceleration by objects that are located in the disk of the Milky Way, such as supernova remnants or massive star-forming regions, and then diffusive propagation throughout the Galaxy. Details of the propagation process are so far inferred mainly from the composition of cosmic rays measured near the Earth and then extrapolated to the whole Galaxy. The details of the propagation in the Galactic halo and the escape into the intergalactic medium remain uncertain. The densities of cosmic rays in specific locations can be traced via the gamma rays they produce in inelastic collisions with clouds of interstellar gas. Therefore, we analyze 73 months of Fermi-LAT data from 300 MeV to 10 GeV in the direction of several high- and intermediate-velocity clouds that are located in the halo of the Milky Way. These clouds are supposed to be free of internal sources of cosmic rays and hence any gamma-ray emission from them samples the large-scale distribution of Galactic cosmic rays. We evaluate for the first time the gamma-ray emissivity per hydrogen atom up to ~7 kpc above the Galactic disk. The emissivity is found to decrease with distance from the disk, which provides direct evidence that cosmic rays at the relevant energies originate therein. Furthermore, the emissivity of one of the targets, the upper intermediate-velocity Arch, hints at a 50% decline of the cosmic-ray intensity within 2 kpc from the disk.

Wiggle Instability of Galactic Spiral Shocks: Effects of Magnetic Fields

It has been suggested that the wiggle instability (WI) of spiral shocks in a galactic disk is responsible for the formation of gaseous feathers observed in grand-design spiral galaxies. We perform both a linear stability analysis and numerical simulations to investigate the effect of magnetic fields on the WI. The disk is assumed to be infinitesimally-thin, isothermal, and non-self-gravitating. We control the strengths of magnetic fields and spiral-arm forcing using the dimensionless parameters $\beta$ and $\mathcal{F}$, respectively. By solving the perturbation equations as a boundary-eigenvalue problem, we obtain dispersion relations of the WI for various values of $\beta=1-\infty$ and $\mathcal{F}=5\%$ and $10\%$. We find that the WI arising from the accumulation of potential vorticity at disturbed shocks is suppressed, albeit not completely, by magnetic fields. The stabilizing effect of magnetic fields is not from the perturbed fields but from the unperturbed fields that reduce the density compression factor in the background shocks. When $\mathcal{F}=5\%$ and $\beta\lesssim 10$ or $\mathcal{F}=10\%$ and $\beta\sim5-10$, the most unstable mode has a wavelength of $\sim0.1-0.2$ times the arm-to-arm separation, which appears consistent with a mean spacing of observed feathers.

The Odd Offset between the Galactic Disk and Its Bar in NGC 3906

We use mid-infrared 3.6 and 4.5microns imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ~720 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter sub structure in the galaxy's halo or from a recent interaction with a fast moving neighbor which remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar / kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.

SUSY dark matter annihilation in the Galactic halo

Neutralino annihilation in the Galactic halo is the most definite observational signature proposed for indirect registration of the SUSY Dark Matter (DM) candidate particles. The corresponding annihilation signal (in the form of gamma-rays, positrons and antiprotons) may be boosted for one or three orders of magnitude due to the clustering of cold DM particles into the small-scale and very dense self-gravitating clumps. We discuss the formation of these clumps from the initial density perturbations and their successive fate in the Galactic halo. Only a small fraction of these clumps, $\sim0.1$%, in each logarithmic mass interval $\Delta\log M\sim1$ survives the stage of hierarchical clustering. We calculate the probability of surviving the remnants of dark matter clumps in the Galaxy by modelling the tidal destruction of the small-scale clumps by the Galactic disk and stars. It is demonstrated that a substantial fraction of clump remnants may survive through the tidal destruction during the lifetime of the Galaxy. The resulting mass spectrum of survived clumps is extended down to the mass of the core of the cosmologically produced clumps with a minimal mass. The survived dense remnants of tidally destructed clumps provide an amplification (boosting) of the annihilation signal with respect to the diffuse DM in the Galactic halo. We describe the anisotropy of clump distribution caused by the tidal destruction of clumps in the Galactic disk.

SUSY dark matter annihilation in the Galactic halo [Cross-Listing]

Neutralino annihilation in the Galactic halo is the most definite observational signature proposed for indirect registration of the SUSY Dark Matter (DM) candidate particles. The corresponding annihilation signal (in the form of gamma-rays, positrons and antiprotons) may be boosted for one or three orders of magnitude due to the clustering of cold DM particles into the small-scale and very dense self-gravitating clumps. We discuss the formation of these clumps from the initial density perturbations and their successive fate in the Galactic halo. Only a small fraction of these clumps, $\sim0.1$%, in each logarithmic mass interval $\Delta\log M\sim1$ survives the stage of hierarchical clustering. We calculate the probability of surviving the remnants of dark matter clumps in the Galaxy by modelling the tidal destruction of the small-scale clumps by the Galactic disk and stars. It is demonstrated that a substantial fraction of clump remnants may survive through the tidal destruction during the lifetime of the Galaxy. The resulting mass spectrum of survived clumps is extended down to the mass of the core of the cosmologically produced clumps with a minimal mass. The survived dense remnants of tidally destructed clumps provide an amplification (boosting) of the annihilation signal with respect to the diffuse DM in the Galactic halo. We describe the anisotropy of clump distribution caused by the tidal destruction of clumps in the Galactic disk.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^