Posts Tagged dust grains

Recent Postings from dust grains

Infrared polarimetry of Mrk 231: Scattering off hot dust grains in the central core

We present high-angular (0.17$-$0.35 arcsec) resolution imaging polarimetric observations of Mrk 231 in the 3.1 $\mu$m filter using MMT-Pol on the 6.5-m MMT, and in the 8.7 $\mu$m, 10.3 $\mu$m, and 11.6 $\mu$m filters using CanariCam on the 10.4-m Gran Telescopio CANARIAS. In combination with already published observations, we compile the 1$-$12 $\mu$m total and polarized nuclear spectral energy distribution (SED). The total flux SED in the central 400 pc is explained as the combination of 1) a hot (731 $\pm$ 4 K) dusty structure, directly irradiated by the central engine, which is at 1.6 $\pm$ 0.1 pc away and attributed to be in the pc-scale polar region, 2) an optically-thick, smooth and disk-like dusty structure (`torus') with an inclination of 48 $\pm$ 23$^{\circ}$ surrounding the central engine, and 3) an extinguished (A$_{\mbox{V}} =$ 36 $\pm$ 5 mag) starburst component. The polarized SED decreases from 0.77 $\pm$ 0.14 per cent at 1.2 $\mu$m to 0.31 $\pm$ 0.15 per cent at 11.6 $\mu$m and follows a power-law function, $\lambda^{\sim0.57}$. The polarization angle remains constant ($\sim$108$^{\circ}$) in the 1$-$12 $\mu$m wavelength range. The dominant polarization mechanism is explained as scattering off hot dust grains in the pc-scale polar regions.

The Herschel Exploitation of Local Galaxy Andromeda (HELGA) VII: A SKIRT radiative transfer model and insights on dust heating

The radiation of stars heats dust grains in the diffuse interstellar medium and in star-forming regions in galaxies. Modelling this interaction provides information on dust in galaxies, a vital ingredient for their evolution. It is not straightforward to identify the stellar populations heating the dust, and to link attenuation to emission on a sub-galactic scale. Radiative transfer models are able to simulate this dust-starlight interaction in a realistic, three-dimensional setting. We investigate the dust heating mechanisms on a local and global galactic scale, using the Andromeda galaxy (M31) as our laboratory. We perform a series of panchromatic radiative transfer simulations of Andromeda with our code SKIRT. The high inclination angle of M31 complicates the 3D modelling and causes projection effects. However, the observed morphology and flux density are reproduced fairly well from UV to sub-millimeter wavelengths. Our model reveals a realistic attenuation curve, compatible with previous, observational estimates. We find that the dust in M31 is mainly (91 % of the absorbed luminosity) heated by the evolved stellar populations. The bright bulge produces a strong radiation field and induces non-local heating up to the main star-forming ring at 10 kpc. The relative contribution of unevolved stellar populations to the dust heating varies strongly with wavelength and with galactocentric distance.The dust heating fraction of unevolved stellar populations correlates strongly with NUV-r colour and specific star formation rate. These two related parameters are promising probes for the dust heating sources at a local scale.

Infrared complex refractive index of astrophysical ices exposed to cosmic rays simulated in the laboratory

In dense and cold regions of the interstellar medium (ISM), molecules may be adsorbed onto dust grains to form the ice mantles. Once formed, they can be processed by ionizing radiation coming from stellar or interstellar medium leading to formation of several new molecules in the ice. Among the different kind of ionizing radiation, cosmic rays play an important role in the solid-phase chemistry because of the large amount of energy deposited in the ices. The physicochemical changes induced by the energetic processing of astrophysical ices are recorded in a intrinsic parameter of the matter called complex refractive index (CRI). In this paper, we present for the first time a catalogue containing 39 complex refractive indices (n, k) in the infrared from 2.0 - 16.6 micrometer for 13 different water-containing ices processed in laboratory by cosmic ray analogs. The calculation was done by using the NKABS (acronym of determination of N and K from ABSorbance data) code, which employs the Lambert-Beer and Kramers-Kronig equations to calculate the values of n and k. The results are also available at the website: http://www1.univap.br/gaa/nkabs-database/data.htm. As test case, a H2O:NH3:CO2:CH4 ice was employed in a radiative transfer simulation of a prototoplanetary disk to show that these data are indispensable to reproduce the spectrum of YSOs containing ices.

On the Formation of Molecular Clumps in QSO Outflows

We study the origin of the cold molecular clumps in quasar outflows, recently detected in CO and HCN emission. We first describe the physical properties of such radiation-driven outflows and show that a transition from a momentum- to an energy-driven flow must occur at a radial distance of R ~ 0.25 kpc. During this transition, the shell of swept up material fragments due to Rayleigh-Taylor instabilities, but these clumps contain little mass and are likely to be rapidly ablated by the hot gas in which they are immersed. We then explore an alternative scenario in which clumps form from thermal instabilities at R >~ 1 kpc, possibly containing enough dust to catalyze molecule formation. We investigate this processes with 3D two-fluid (gas+dust) numerical simulations of a kpc^3 patch of the outflow, including atomic and dust cooling, thermal conduction, dust sputtering, and photoionization from the QSO radiation field. In all cases, dust grains are rapidly destroyed in ~10,000 years; and while some cold clumps form at later times, they are present only as transient features, which disappear as cooling becomes more widespread. In fact, we only find a stable two-phase medium with dense clumps if we artificially enhance the QSO radiation field by a factor 100. This result, together with the complete destruction of dust grains, renders the interpretation of molecular outflows a very challenging problem.

Dust grains from the heart of supernovae

Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH\_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8$\%$ of the observed mass will survive, leading to a SN dust production rate of $(3.9 \pm 3.7) \times 10^{-4}$ M$_{\odot}$yr$^{-1}$ in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

Dust grains from the heart of supernovae [Replacement]

Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH\_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8$\%$ of the observed mass will survive, leading to a SN dust production rate of $(3.9 \pm 3.7) \times 10^{-4}$ M$_{\odot}$yr$^{-1}$ in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H2), and the sticking of H$_2$ is almost negligible. Finally, the remaining model is an intermediate solution known as the encounter desorption mechanism. We show that the efficiency of molecular hydrogen binding (and thus its abundance at the surface of the grains) can have a quantitative effect on the predicted column densities in the gas phase of major species such as CO, CS, CN, and HCN.

Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]

Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust grains, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Using a self-consistent numerical model of the dust dynamics and sublimation, we calculate the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generate synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which are then compared with the phase-folded Kepler light curve. We explore the free-parameter space thoroughly using a Markov chain Monte Carlo method. Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6 M_earth/Gyr (2-sigma ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.

Dust-depletion sequences in damped Lyman-{\alpha} absorbers: a unified picture from low-metallicity systems to the Galaxy

We study metal depletion due to dust in the interstellar medium (ISM) to infer the properties of dust grains and characterize the metal and dust content of galaxies, down to low metallicity and intermediate redshift z. We provide metal column densities and abundances of a sample of 70 damped Lyman-{\alpha} absorbers (DLAs) towards quasars, observed at high spectral resolution with the Very Large Telescope (VLT) Ultraviolet and Visual Echelle Spectrograph (UVES). This is the largest sample of phosphorus abundances measured in DLAs so far. We use literature measurements for Galactic clouds to cover the high-metallicity end. We discover tight (scatter <= 0.2 dex) correlations between [Zn/Fe] and the observed relative abundances, which are due to dust depletion. This implies that grain-growth in the ISM is an important process of dust production. These sequences are continuous in [Zn/Fe] from dust-free to dusty DLAs, and to Galactic clouds, suggesting that the availability of refractory metals in the ISM is crucial for dust production, regardless of the star-formation history. We observe [S/Zn] up to ~ 0.25 dex in DLAs, broadly consistent with Galactic stellar abundances. Furthermore, we find a good agreement between the nucleosynthetic pattern of Galactic halo stars and our observations of the least dusty DLAs. This supports recent star formation in low-metallicity DLAs. The derived depletions of Zn, O, P, S, Si, Mg, Mn, Cr, and Fe correlate with [Zn/Fe], with steeper slopes for more refractory elements. P is mostly not affected by dust depletion. We present canonical depletion patterns, to be used as reference in future studies of relative abundances and depletion. We derive the total (dust-corrected) metallicity, typically -2 <= [M/H]tot <= 0 for DLAs, and scattered around solar metallicity for the Galactic ISM. The dust-to-metals ratio increases with metallicity... [abridged]

Charged dust grain dynamics subject to solar wind, Poynting-Robertson drag, and the interplanetary magnetic field

We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason we derive a secular theory of motion by the means of averaging method and validate it with numerical simulations of the un-averaged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semi-major axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

Silicate Composition of the Interstellar Medium

The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. Analysis of the well-known 9.7{\mu}m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modelled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modelling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and {\zeta} Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as "polivene." Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays

Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 $\mu$m. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 $\mu$m detector array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for "shared risk" observing by the community.

H2S in the L1157-B1 Bow shock

Sulfur-bearing molecules are highly reactive in the gas phase of the ISM. However, the form in which most of the sulfur is locked onto interstellar dust grains is unknown. By taking advantage of the short time-scales of shocks in young molecular outflows, one could track back the main form of sulfur in the ices. In this paper, six transitions of H$_2$S and its isotopologues in the L1157-B1 bowshock have been detected using data from the Herschel-CHESS survey and the IRAM-30m ASAI large program. These detections are used to calculate the properties of H$_2$S gas in L1157-B1 through use of a rotation diagram and to explore the possible carriers of sulfur on the grains. The isotopologue detections allow the first calculation of the H$_2$S deuteration fraction in an outflow from a low mass protostar. The fractional abundance of H$_2$S in the region is found to be 6.0$\times$10$^{-7}$ and the deuteration fraction is 2$\times$10$^{-2}$. In order to investigate the form of sulfur on the grains, a chemical model is run with four different networks, each with different branching ratios for the freeze out of sulfur bearing species into molecules such as OCS and H$_2$S. It is found that the model best fits the data when at least half of each sulfur bearing species hydrogenates when freezing. We therefore conclude that a significant fraction of sulfur in L1157-B1 is likely to be locked in H$_2$S on the grains.

NICIL: A stand alone library to self-consistently calculate non-ideal magnetohydrodynamic coefficients in molecular cloud cores

In this paper, we introduce Nicil: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library. Nicil is a stand-alone Fortran90 module that calculates the ionisation values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. The module is fully parameterised such that the user can decide which processes to include and decide upon the values of the free parameters, making this a versatile and customisable code. The module includes both cosmic ray and thermal ionisation; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionised. We demonstrate tests of the module, and then describe how to implement it into an existing numerical code.

The interstellar dust reservoir: SPICA's view on dust production and the interstellar medium in galaxies

Typical galaxies emit about one third of their energy in the infrared. The origin of this emission reprocessed starlight absorbed by interstellar dust grains and reradiated as thermal emission in the infrared. In particularly dusty galaxies, such as starburst galaxies, the fraction of energy emitted in the infrared can be as high as 90%. Dust emission is found to be an excellent tracer of the beginning and end stages of a star's life, where dust is being produced by post-main-sequence stars, subsequently added to the interstellar dust reservoir, and eventually being consumed by star and planet formation. This work reviews the current understanding of the size and properties of this interstellar dust reservoir, by using the Large Magellanic Cloud as an example, and what can be learned about the dust properties and star formation in galaxies from this dust reservoir, using SPICA, building on previous work performed with the Herschel and Spitzer Space Telescopes, as well as the Infrared Space Observatory.

Chemical Enrichment of the Pre-Solar Cloud by Supernova Dust Grains

The presence of short-lived radioisotopes (SLRs) in solar system meteorites has been interpreted as evidence that the solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size (> 1 micron) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.

Chemical enrichment of the pre-solar cloud by supernova dust grains [Replacement]

The presence of short-lived radioisotopes (SLRs) in solar system meteorites has been interpreted as evidence that the solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size (> 1 micron) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.

Modelling the nebular emission from primeval to present-day star-forming galaxies

We present a new model of the nebular emission from star-forming galaxies in a wide range of chemical compositions, appropriate to interpret observations of galaxies at all cosmic epochs. The model relies on the combination of state-of-the-art stellar population synthesis and photoionization codes to describe the ensemble of HII regions and the diffuse gas ionized by young stars in a galaxy. A main feature of this model is the self-consistent yet versatile treatment of element abundances and depletion onto dust grains, which allows one to relate the observed nebular emission from a galaxy to both gas-phase and dust-phase metal enrichment. We show that this model can account for the rest-frame ultraviolet and optical emission-line properties of galaxies at different redshifts and find that ultraviolet emission lines are more sensitive than optical ones to parameters such as C/O abundance ratio, hydrogen gas density, dust-to-metal mass ratio and upper cutoff of the stellar initial mass function. We also find that, for gas-phase metallicities around solar to slightly sub-solar, widely used formulae to constrain oxygen ionic fractions and the C/O ratio from ultraviolet and optical emission-line luminosities are reasonable faithful. However, the recipes break down at non-solar metallicities, making them inappropriate to study chemically young galaxies. In such cases, a fully self-consistent model of the kind presented in this paper is required to interpret the observed nebular emission.

Modelling extragalactic extinction through gamma-ray burst afterglows

We analyze extragalactic extinction pro?les derived through gamma-ray burst afterglows, using a dust model speci?cally constructed on the assumption that dust grains are not immutable but respond time-dependently to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp2 and sp3 carbonaceous layers), and an additional molecular component, in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction pro?les. Failures occur for lines of sight presenting remarkable rises blueward the bump. We find a tendency in the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the moleclar component to the total extinction is more important in younger objects. The results of the ?tting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

Chemical differentiation in a prestellar core traces non-uniform illumination

Dense cloud cores present chemical differentiation due to the different distribution of C-bearing and N-bearing molecules, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH$_3$OH and $c$-C$_3$H$_2$, present a strikingly different (complementary) morphology while showing the same kinematics toward the prestellar core L1544. After comparing their distribution with large scale H$_2$ column density N(H$_2$) map from the Herschel satellite, we find that these two molecules trace different environmental conditions in the surrounding of L1544: the $c$-C$_3$H$_2$ distribution peaks close to the southern part of the core, where the surrounding molecular cloud has a N(H$_2$) sharp edge, while CH$_3$OH mainly traces the northern part of the core, where N(H$_2$) presents a shallower tail. We conclude that this is evidence of chemical differentiation driven by different amount of illumination from the interstellar radiation field: in the South, photochemistry maintains more C atoms in the gas phase allowing carbon chain (such as $c$-C$_3$H$_2$) production; in the North, C is mainly locked in CO and methanol traces the zone where CO starts to freeze out significantly. During the process of cloud contraction, different gas and ice compositions are thus expected to mix toward the central regions of the core, where a potential Solar-type system will form. An alternative view on carbon-chain chemistry in star-forming regions is also provided.

Investigating dust trapping in transition disks with millimeter-wave polarization

Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. We study the dust polarization at mm wavelength in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three ring structure. Two narrow inner rings are located at the planet gap edges. For increasing observing wavelengths all three rings slightly change their position, where the innermost and outermost rings move inward. This distance is detectable comparing the results at ALMA bands 3, 6 and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks the polarization degree is as high as ~ 2% at band 3, which is well above the detection limit of future ALMA observations.

Variations of the Interstellar Extinction Law within the Nearest Kiloparsec

Multicolor photometry from the Tycho-2 and 2MASS catalogues for 11 990 OB and 30 671 K-type red giant branch stars is used to detect systematic large-scale variations of the interstellar extinction law within the nearest kiloparsec. The characteristic of the extinction law, the total-to-selective extinction ratio $R_V$, which also characterizes the size and other properties of interstellar dust grains, has been calculated for various regions of space by the extinction law extrapolation method. The results for the two classes of stars agree: the standard deviation of the "red giants minus OB" $R_V$ differences within 500 pc of the Sun is 0.2. The detected $R_V$ variations between 2.2 and 4.4 not only manifest themselves in individual clouds but also span the entire space near the Sun, following Galactic structures. In the Local Bubble within about 100 pc of the Sun, $R_V$ has a minimum. In the inner part of the Gould Belt and at high Galactic latitudes, at a distance of about 150 pc from the Sun, $R_V$ reaches a maximum and then decreases to its minimum in the outer part of the Belt and other directions at a distance of about 500 pc from the Sun, returning to its mean values far from the Sun. The detected maximum of $R_V$ at high Galactic latitudes is important when allowance is made for the interstellar extinction toward extragalactic objects. In addition, a monotonic increase in $R_V$ by 0.3 per kpc toward the Galactic center has been found near the Galactic equator. It is consistent with the result obtained by Zasowski et al. (2009) for much of the Galaxy. Ignoring the $R_V$ variations and traditionally using a single value for the entire space must lead to systematic errors in the calculated distances reaching 10\%.

THz Time-Domain Spectroscopy of Mixed CO2-CH3OH Interstellar Ice Analogs

The icy mantles of interstellar dust grains are the birthplaces of the primordial prebiotic molecular inventory that may eventually seed nascent solar systems and the planets and planetesimals that form therein. Here, we present a study of two of the most abundant species in these ices after water: carbon dioxide (CO2) and methanol (CH3OH) using TeraHertz (THz) time-domain spectroscopy and mid-infrared spectroscopy. We study pure and mixed-ices of these species, and demonstrate the power of the THz region of the spectrum to elucidate the long-range structure (i.e. crystalline versus amorphous) of the ice, the degree of segregation of these species within the ice, and the thermal history of the species within the ice. Finally, we comment on the utility of the THz transitions arising from these ices for use in astronomical observations of interstellar ices.

Temperature spectra of interstellar dust grains heated by cosmic-rays I: translucent clouds

Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas-grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating $f_T$, s$^{-1}$, determines how often a certain temperature $T_{\rm CR}$, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with comprehensive and updated dataset on the CR-induced whole-grain heating. We present calculations of $f_T$ and $T_{\rm CR}$ spectra for bare olivine grains with radius $a$ of 0.05; 0.1; 0.2 $\mu$m, and such grains covered with ice mantles of thickness 0.1$a$ and 0.3$a$. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with $A_V=2$ mag. Energy deposition by CRs in grain material was calculated with the SRIM program. We report full $T_{\rm CR}$ spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum $T_{\rm CR}$ values. The calculated dataset can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20--30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

On the chemistry of hydrides of N atoms and O$^+$ ions [Replacement]

Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

On the chemistry of hydrides of N atoms and O$^+$ ions

Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

The role of ices in star-forming clouds

Ices play a critical role during the evolution of interstellar clouds. Their presence is ubiquitous in the dense molecular medium and their impact is not only limited to chemistry. Species adsorbed onto dust grains also affect cloud thermodynamics. It all depends on the interstellar conditions, the chemical parameters, and the composition of ice layers. In this work, I study the formation of ices by focusing on the interplay between gas and solid phase to determine their role on cloud evolution and star formation. I show that while the formation of ices greatly impacts the cloud chemistry, their role on the thermodynamics is more conservative, and their influence on star formation is only marginal.

Evidence for a CO desorption front in the outer AS 209 disk

Millimeter observations of CO isotopologues are often used to make inferences about protoplanetary disk gas density and temperature structures. The accuracy of these estimates depends on our understanding of CO freezeout and desorption from dust grains. Most models of these processes indicate that CO column density decreases monotonically with distance from the central star due to a decrease in gas density and freezeout beyond the CO snowline. We present ALMA Cycle 2 observations of $^{12}$CO, $^{13}$CO, and C$^{18}$O $J=2-1$ emission that instead suggest CO enhancement in the outer disk of T Tauri star AS 209. Most notably, the C$^{18}$O emission consists of a central peak and a ring at a radius of $\sim1''$ (120 AU), well outside the expected CO snowline. We propose that the ring arises from the onset of CO desorption near the edge of the millimeter dust disk. CO desorption exterior to a CO snowline may occur via non-thermal processes involving cosmic rays or high-energy photons, or via a radial thermal inversion arising from dust migration.

The JCMT Gould Belt Survey: Evidence for Dust Grain Evolution in Perseus Star-forming Clumps

The dust emissivity spectral index, $\beta$, is a critical parameter for deriving the mass and temperature of star-forming structures, and consequently their gravitational stability. The $\beta$ value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present $\beta$, dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting SEDs to combined Herschel and JCMT observations in the 160 $\mu$m, 250 $\mu$m, 350 $\mu$m, 500 $\mu$m, and 850 $\mu$m bands. Most of the derived $\beta$, and dust temperature values fall within the ranges of 1.0 - 2.7 and 8 - 20 K, respectively. In Perseus, we find the $\beta$ distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant, localized $\beta$ variations within individual clumps and find low $\beta$ regions correlate with local temperature peaks, hinting at the possible origins of low $\beta$ grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

A Primer on Unifying Debris Disk Morphologies [Replacement]

A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

A Primer on Unifying Debris Disk Morphologies

A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks.

A Primer on Unifying Debris Disk Morphologies [Replacement]

A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks.

Detection of Phosphorus, Sulphur, and Zinc in the Carbon-Enhanced Metal-Poor Star BD+44 493

The carbon-enhanced metal-poor star BD+44 493 ([Fe/H]=-3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44 493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe]=-0.34 +/- 0.21, [S/Fe]=+0.07 +/- 0.41, and [Zn/Fe]=-0.10 +/- 0.24. We increase by ten-fold the number of Si I lines detected in BD+44 493, yielding [Si/Fe]=+0.15 +/- 0.22. The solar [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44 493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova models suggests that the stellar progenitor that enriched BD+44 493 was massive and ejected much less than 0.07 Msun of Ni-56, characteristic of a faint supernova.

Significant enhancement of ${\rm H_2}$ formation in disk galaxies under strong ram pressure

We show, for the first time, that ${\rm H_2}$ formation on dust grains can be enhanced in disk galaxies under strong ram-pressure (RP). We numerically investigate how the time evolution, of ${\rm H}$ {\sc i} and ${\rm H_2}$ components in disk galaxies orbiting a group/cluster of galaxies, can be influenced by hydrodynamical interaction between the gaseous components of the galaxies and the hot intra-cluster medium (ICM). We find that compression of ${\rm H}$ {\sc i} caused by RP increases ${\rm H_2}$ formation in disk galaxies, before RP rapidly strips ${\rm H}$ {\sc i}, cutting off the fuel supply and causing a drop in ${\rm H_2}$ density. We also find that the level of this ${\rm H_2}$ formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter (DM) halo, initial positions and velocities of the disk galaxy, and disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the ${\rm H}$ {\sc i} and ${\rm H_2}$ mass in disk galaxies under strong RP. We discuss how the correlation between ${\rm H_2}$ fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether or not galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on ${\rm H_2}$ densities.

Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko

We analyze the physical properties and dynamical origin of a curved jet of comet 67P/Churyumov-Gerasimenko that was observed repeatedly in several nucleus rotations starting on May 30 and persisting until early August, 2015. We simulated the motion of dust grains ejected from the nucleus surface under the influence of the gravity and viscous drag effect of the expanding gas flow from the rotating nucleus. The formation of the curved jet is a combination of the size of the dust particles (~0.1-1 mm) and the location of the source region near the nucleus equator. This enhances the spiral feature of the collimated dust stream after the dust is accelerated to a terminal speed on the order of m/s.

Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs

While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L-dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T- and L-dwarfs, I derive the time dependent polarization profiles of these objects during transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2-1.0 % at I- and J-band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than that can be produced by rotation-induced oblateness of even the rapidly rotating L-dwarfs. Hence, I suggest that time resolved imaging polarization should be a potential technique to detect transiting exoplanets around L-dwarfs.

Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs [Replacement]

While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L-dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T- and L-dwarfs, I derive the time dependent polarization profiles of these objects during transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2-1.0 % at I- and J-band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than that can be produced by rotation-induced oblateness of even the rapidly rotating L-dwarfs. Hence, I suggest that time resolved imaging polarization should be a potential technique to detect transiting exoplanets around L-dwarfs.

Surface chemistry in photodissociation regions

The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations [Replacement]

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations [Replacement]

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations [Replacement]

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations [Replacement]

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations [Replacement]

We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.

Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

Context. "Snow lines", marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. Aims. We aim at using the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. Methods. As part of the CALYPSO IRAM Large Program, we have obtained observations of C$^{18}$O, N$_2$H$^+$ and CH$_3$OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources we have modeled the emission using a chemical code coupled with a radiative transfer module. Results. We observe an anti-correlation of C$^{18}$O and N$_2$H$^+$ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N$_2$H$^+$ forming a ring around the centrally peaked C$^{18}$O emission due to N$_2$H$^+$ being chemically destroyed by CO. The emission regions of models and observations match for a CO binding energy of 1200 K, which is higher than the binding energy of pure CO ices ($\sim$855 K). Furthermore, we find very low CO abundances inside the snow lines in our sources, about an order of magnitude lower than the total CO abundance observed in the gas on large scales in molecular clouds before depletion sets in. Conclusions. The high CO binding energy may hint at CO being frozen out in a polar ice environment like amorphous water ice or in non-polar CO$_2$-rich ice. The low CO abundances are comparable to values found in protoplanetary disks, which may indicate an evolutionary scenario where these low values are already established in the protostellar phase. (Abbr. Version)

Detecting Exomoons Around Self-luminous Giant Exoplanets Through Polarization

Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.

Extrasolar comets : the origin of dust in exozodiacal disks?

Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. We investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi 3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70 solar luminosities. This paper provides mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

Dust Evolution and the Formation of Planetesimals [Replacement]

The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.

Dust Evolution and the Formation of Planetesimals

The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^