Posts Tagged dust grains

Recent Postings from dust grains

The dust scattering component of X-ray extinction: Effects on continuum fitting and high-resolution absorption edge structure

Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust scattering component is not included in the current absorption models: phabs, tbabs, and tbnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25%. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.

A young bipolar outflow from IRAS 15398-3359

Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry, as well as the kinematical information allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. We aim at determining the spatial distribution of different species, of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim at determining the nature of the infalling and outflowing gas in the system. We also aim at determining the physical properties of the outflow. Maps from the Sub-Millimeter Array reveal the spatial distribution of the gaseous emission toward IRAS15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. CO, HCO+ and N2H+ are detected and are shown to trace the motions of the outflow. For CO, also the circumstellar envelope and the surrounding cloud have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps due to the competing reaction between CO and H3+ in the densest regions as well as destruction of N2H+ by CO. N2D+ is detected in a ridge south-west from the protostellar condensation. The morphology and kinematics of the CO emission suggests that the source is younger than 1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.

A ring-like concentration of mm-sized particles in Sz 91

Models of planet formation and disc evolution predict a variety of observables in the dust structure of protoplanetary discs. Here we present Atacama Large Millimeter/submillimeter Array (ALMA) Band-6 and Band-7 observations of the transition disc Sz\,91 showing that the continuum emission at 870$\mu$m, which is dominated by emission from large dust grains, is localized in an optically thin narrow ring. We find that most of the emission ($\sim95\%$) is concentrated in a ring located at 110 au from the central star that is only about 44 au wide. In contrast, the $^{12}\mathrm{CO}$ (2-1) emission peaks closer to the star and is detected up to $\sim488$ au from the star. The concentration of large grains in a ring-like structure while the gas disc extends much further in and further out is in qualitative agreement with predictions of hydrodynamical models of planet-disc interactions including radial drift and gas drag.

Dust grains from the heart of supernovae

Dust grains are classically thought to form in the winds of AGB stars. However, nowadays there is increasing evidence for dust formation in SNe. In order to establish the relative importance of these two classes of stellar sources of dust it is important to know what is the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows to follow the dynamics of dust grains in the shocked SN ejecta and to compute the time evolution of the mass, composition and size distribution of the grains. We consider four well studied SNe in the Milky Way and LMC: SN 1987a, Cas A, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Conversely, in the other three SNe, the reverse shock has already destroyed between 10 and 40% of the initial dust mass. However, the largest dust mass destruction is predicted to occur between 10^3 and 10^5 yr after the explosions. Since the oldest SN in the sample has an estimated age of 4800 yr, current observations can only provide an upper limit to the mass of SN dust that will enrich the interstellar medium, the so-called effective dust yields. We find that only between 1 and 8% of the currently observed mass will survive. This is in good agreement with the values adopted in chemical evolution models which consider the effect of the SN reverse shock. We discuss the astrophysical implications of our results for dust enrichment in local galaxies and at high redshift.

The nature of the UV halo around the spiral galaxy NGC 3628

Thanks to deep UV observations with GALEX and Swift, diffuse UV haloes have recently been discovered around galaxies. Based on UV-optical colours, it has been advocated that the UV haloes around spiral galaxies are due to UV radiation emitted from the disc and scattered off dust grains at high latitudes. Detailed UV radiative transfer models that take into account scattering and absorption can explain the morphology of the UV haloes, and they require the presence of an additional thick dust disc next the to traditional thin disc for half of the galaxies in their sample. We test whether such an additional thick dust disc agrees with the observed infrared emission in NGC 3628, an edge-on galaxy with a clear signature of a thick dust disc. We extend the far-ultraviolet radiative transfer models to full-scale panchromatic models. Our model, which contains no fine-tuning, can almost perfectly reproduce the observed spectral energy distribution from UV to mm wavelengths. These results corroborate the interpretation of the extended UV emission in NGC 3628 as scattering off dust grains, and hence of the presence of a substantial amount of diffuse extra-planar dust. A significant caveat, however, is the geometrical simplicity and non-uniqueness of our model: other models with a different geometrical setting could lead to a similar spectral energy distribution. More detailed radiative transfer simulations that compare the model results to images from UV to submm wavelengths are a way to break this degeneracy, as are UV polarisation measurements.

Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

Protoplanetary disks, interstellar clouds, and active galactic nuclei, contain X-ray dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Our goal is to study the effects of hard X-rays on cosmic dust analogs via in-situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments, and provide an upper limit on the effect of hard X-rays on dust grain structure. We prepared enstatite nanograins, analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy and high-resolution transmission electron microscopy before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility. X-ray diffraction images were recorded in transmission mode. We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 x 10$^{27}$ eV cm$^{-2}$. Pure crystalline silicate grains (without resin) did not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyzed the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs, revealed the amorphization of the resin embedded (originally polycrystalline) silicate sample.

Efficient ortho-para conversion of H2 on interstellar grain surfaces

Context: Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and this mechanism has been proposed to play a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in Photo-Dissociation Regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Aims: We aim to build an accurate model of ortho-para conversion on dust surfaces based on the most recent experimental and theoretical results, and to validate it by comparison to observations of H2 rotational lines in PDRs. Methods: We propose a statistical model of ortho-para conversion on dust grains with fluctuating dust temperatures, based on a master equation approach. This computation is then coupled to full PDR models and compared to PDR observations. Results: We show that the observations of rotational H2 lines indicate a high conversion efficiency on dust grains, and that this high efficiency can be accounted for if taking dust temperature fluctuations into account with our statistical model of surface conversion. Simpler models neglecting the dust temperature fluctuations do not reach the high efficiency deduced from the observations. Moreover, this high efficiency induced by dust temperature fluctuations is quite insensitive to the values of microphysical parameters of the model. Conclusions: Ortho-para conversion on grains is thus an efficient mechanism in most astrophysical conditions that can play a significant role in controlling the ortho-para ratio.

Seasonal Evolution on the Nucleus of Comet C/2013 A1 (Siding Spring)

We observed Comet C/Siding Spring using the Hubble Space Telescope (HST) during its close approach to Mars. The high spatial resolution images obtained through the F689M, F775W, and F845M filters reveal the characteristics of the dust coma. The dust production rate of C/Siding Spring, quantified by $Af\rho$, is 590$\pm$30, 640$\pm$30, and 670$\pm$30 cm in a 420 km-radius aperture at 38$^\circ$ solar phase angle through the three filters, respectively, consistent with other observations at similar time and geometry, and with model predictions based on earlier measurements. The dust expansion velocity is ~150-250 m s$^{-1}$ for micron-sized dust grains, similar to the speeds found for other comets. The coma has a color slope of (5.5$\pm$1.5)%/100 nm between 689 and 845 nm, similar to previous HST measurements at comparable aperture sizes, consistent with the lack of color dependence on heliocentric distance for almost all previously observed active comets. The rotational period of the nucleus of C/Siding Spring is determined from the periodic brightness variation in the coma to be 8.00$\pm$0.08 hours, with no excited rotational state detected. The dust coma shows a broad and diffuse fan-shaped feature in the sunward direction, with no temporal morphological variation observed. The projected orientation of the dust feature, combined with the previous analysis of the coma morphology and other characteristics, suggests secular activity evolution of the comet in its inner solar system passage as one previously observed active region turns off whereas new regions exposed to sunlight due to seasonal illumination change.

The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A [Replacement]

Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the SCUBA-2 shared-risk observations at 450 $\mu$m and 850 $\mu$m of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the HARP $^{12}$CO J=3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index $\alpha$ map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high $^{12}$CO J=3-2 line contamination, to 27 previously identified clumps in OMC-4. This allows us to quantify the effect of line contamination on the ratio of 850 $\mu$m to 450 $\mu$m flux densities and how it modifies the deduced spectral index of emissivity $\beta$ for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC-5 has a $^{12}$CO J=3-2 contamination level of 16 %. Furthermore, we find the strongest contamination level (44 %) towards a young star with disk near OMC-2. This work is part of the JCMT Gould Belt Legacy Survey.

The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the SCUBA-2 shared-risk observations at 450 $\mu$m and 850 $\mu$m of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the HARP $^{12}$CO J=3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index $\alpha$ map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high $^{12}$CO J=3-2 line contamination, to 27 previously identified clumps in OMC-4. This allows us to quantify the effect of line contamination on the ratio of 850 $\mu$m to 450 $\mu$m flux densities and how it modifies the deduced spectral index of emissivity $\beta$ for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC-5 has a $^{12}$CO J=3-2 contamination level of 16 %. Furthermore, we find the strongest contamination level (44 %) towards a young star with disk near OMC-2. This work is part of the JCMT Gould Belt Legacy Survey.

The shadow of the Flying Saucer: A very low temperature for large dust grains

Dust determines the temperature structure of protoplanetary disks. However, dust temperature determinations almost invariably rely on a complex modeling of the Spectral Energy Distribution. We attempt a direct determination of the temperature of large grains emitting at mm wavelengths.} We observe the edge-on dust disk of the Flying Saucer, which appears in silhouette against the CO J=2-1 emission from a background molecular cloud in $\rho$ Oph. The combination of velocity gradients due to the Keplerian rotation of the disk and intensity variations in the CO background as a function of velocity allows us to directly measure the %absorbing dust temperature. The dust opacity can then be derived from the emitted continuum radiation. The dust disk absorbs the radiation from the CO clouds at several velocities. We derive very low dust temperatures, 5 to 7 K at radii around 100 au, which is much lower than most model predictions. The dust optical depth is $> 0.2$ at 230 GHz, and the scale height at 100 au is at least 8 au (best fit 13 au). However, the dust disk is very flat (flaring index -0.35), which is indicative of dust settling in the outer parts.

On the dissipation of the rotation energy of dust grains in interstellar magnetic fields

A new mechanism is described, analyzed and visualized, for the dissipation of suprathermal rotation energy of molecules in magnetic fields, a necessary condition for their alignment. It relies upon the Lorentz force perturbing the motion of every atom of the structure, as each is known to carry its own net electric charge because of spatial fluctuations in electron density. If the molecule is large enough that the frequency of its lowest-frequency phonon lies near or below the rotation frequency, then the rotation couples with the molecular normal modes and energy flows from the former to the latter. The rate of this exchange is very fast, and the vibrational energy is radiated away in the IR at a still faster rate, which completes the removal of rotation energy. The energy decay rate scales like the field intensity, the initial angular velocity, the number of atoms in the grain and the inverse of the moment of inertia. It does not depend on the susceptibility. Here, the focus is on carbon-rich molecules which are diamagnetic. The same process must occur if the molecule is paramagnetic or bathes in an electric field instead. A semi-empirical method of chemical modeling was used extensively to illustrate and quantify these concepts as applied to a hydrocarbon molecule. The motion of a rotating molecule in a field was monitored in time so as to reveal the energy transfer and visualize the evolution of its orientation towards the stable configuration.

Dust production in debris discs: constraints on the smallest grains [Replacement]

The surface energy constraint puts a limit on the smallest fragment $s_{surf}$ that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as been potentially able to prevent the production of small dust grains in debris discs and cut off their size distribution at sizes larger than the blow-out size. We numerically investigate the importance of this effect to find under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for micron-sized grains, in terms of the sizes of their collisional progenitors. We implement, for the first time, the surface energy constraint into a collisional evolution code. We consider a debris disc extending from 50 to 100AU and 2 different stellar types. We also consider two levels of stirring in the disc: dynamically "hot" (e=0.075) and "cold" (e=0.01). For all cases, we derive $s_{surf}$ maps as a function of target and projectile sizes, $s_t$ and $s_p$, and compare them to equivalent maps for the dust-production rate. We then compute disc-integrated PSDs and estimate the imprint of the surface energy constraint. We find that the ($s_p$,$s_t$) regions of high $s_{surf}$ values do not coincide with those of high dust production rate. As a consequence, the surface energy constraint has generally a weak effect on the system's PSD. The maximum $s_{surf}$-induced depletion of $\mu$m-sized grains is $\sim 30$% and is obtained for a sun-like star and a dynamically hot case. For the e=0.01 cases, the surface energy effect is negligible compared to the massive small grain depletion induced by another mechanism: the natural imbalance between dust production and destruction rates in low-stirring discs identified by Thebault&Wu(2008).

Dust production in debris discs: constraints on the smallest grains

The surface energy constraint puts a limit on the smallest fragment $s_{surf}$ that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as been potentially able to prevent the production of small dust grains in debris discs and cut off their size distribution at sizes larger than the blow-out size. We numerically investigate the importance of this effect to find under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for micron-sized grains, in terms of the sizes of their collisional progenitors. We implement, for the first time, the surface energy constraint into a collisional evolution code. We consider a debris disc extending from 50 to 100AU and 2 different stellar types. We also consider two levels of stirring in the disc: dynamically "hot" (e=0.075) and "cold" (e=0.01). For all cases, we derive $s_{surf}$ maps as a function of target and projectile sizes, $s_t$ and $s_p$, and compare them to equivalent maps for the dust-production rate. We then compute disc-integrated PSDs and estimate the imprint of the surface energy constraint. We find that the ($s_p$,$s_t$) regions of high $s_{surf}$ values do not coincide with those of high dust production rate. As a consequence, the surface energy constraint has generally a weak effect on the system's PSD. The maximum $s_{surf}$-induced depletion of $\mu$m-sized grains is $\sim 30$% and is obtained for a sun-like star and a dynamically hot case. For the e=0.01 cases, the surface energy effect is negligible compared to the massive small grain depletion induced by another mechanism: the natural imbalance between dust production and destruction rates in low-stirring discs identified by Thebault&Wu(2008).

Dust production in debris discs: constraints on the smallest grains [Replacement]

The surface energy constraint puts a limit on the smallest fragment $s_{surf}$ that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as been potentially able to prevent the production of small dust grains in debris discs and cut off their size distribution at sizes larger than the blow-out size. We numerically investigate the importance of this effect to find under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for micron-sized grains, in terms of the sizes of their collisional progenitors. We implement, for the first time, the surface energy constraint into a collisional evolution code. We consider a debris disc extending from 50 to 100AU and 2 different stellar types. We also consider two levels of stirring in the disc: dynamically "hot" (e=0.075) and "cold" (e=0.01). For all cases, we derive $s_{surf}$ maps as a function of target and projectile sizes, $s_t$ and $s_p$, and compare them to equivalent maps for the dust-production rate. We then compute disc-integrated PSDs and estimate the imprint of the surface energy constraint. We find that the ($s_p$,$s_t$) regions of high $s_{surf}$ values do not coincide with those of high dust production rate. As a consequence, the surface energy constraint has generally a weak effect on the system's PSD. The maximum $s_{surf}$-induced depletion of $\mu$m-sized grains is $\sim 30$% and is obtained for a sun-like star and a dynamically hot case. For the e=0.01 cases, the surface energy effect is negligible compared to the massive small grain depletion induced by another mechanism: the natural imbalance between dust production and destruction rates in low-stirring discs identified by Thebault&Wu(2008).

Modelling Dust Scattering in our Galaxy

I have used a Monte Carlo model for dust scattering in our Galaxy with multiple scattering to study the diffuse emission seen by the \galex\ mission. I find that the emission at low and mid latitudes is fit well by scattering from dust grains with an albedo of 0.4 and $g = 0$ (isotropically scattering grains). However, only about 30\%\ of the diffuse radiation at high Galactic latitudes is due to dust scattering. There is an additional component of 500 - 600 photons cm$^{-2}$ s$^{-1}$ sr$^{-1}$ \AA$^{-1}$ at all latitudes of an unknown origin.

A search for systemic mass loss in Algols with bow shocks

Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detection of systemic mass loss in Algols has been scarce so far. We aim at studying the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the asterosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 $12\,\mu$m and WISE W4 $22\,\mu$m data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks to be present in two systems, namely $\pi$ Aqr, and $\varphi$ Per, with a third system (CX Dra) showing a more irregular circumstellar environment morphology which might somehow be related to systemic mass-loss. The properties of the two bow shocks point to mass loss rates and wind velocities typical for (single) B stars, which do not support an enhanced systemic mass loss.

Search for systemic mass loss in Algols with bow shocks [Replacement]

Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detections of systemic mass loss in Algols have been scarce so far. We study the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the astrosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 $12\,\mu$m and WISE W4 $22\,\mu$m data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass-loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks present in two systems, namely $\pi$ Aqr, and $\varphi$ Per; a third system, CX Dra, shows a more irregular circumstellar environment morphology which might somehow be related to systemic mass loss. The properties of the two bow shocks point to mass-loss rates and wind velocities typical of single B stars, which do not support an enhanced systemic mass loss.

Detecting stellar-wind bubbles through infrared arcs in HII regions

Mid-infrared arcs of dust emission are often seen near ionizing stars within HII regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within HII regions around individual stars to predict the infrared emission properties of the dust within the HII region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the HII region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the TORUS code. We find that the outer edge of a wind bubble emits brightly at 24um through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24um intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the HII region RCW120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38 11636 in RCW120, and with comparable brightness. This suggests that infrared arcs around O stars in HII regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

Toroidal vortices as a solution to the dust migration problem

In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.

Multiple Carbon monoxide Snow-lines in Disks Sculpted by Radial Drift

Observations of protoplanetary disks suggest that the gas and dust follow significantly different radial distributions. This finding can be theoretically explained by a combination of radial drift and gas drag of intermediate-sized dust grains. Using a simple parametric model to approximate the different distributions of the gas and dust components, we calculate and examine the impact of radial drift on the global dust temperature structure. We find that the removal of large grains beyond the "truncation radius" allows this region to become significantly warmer from reprocessed stellar radiation shining down from the disk upper layers, increasing the outer disk temperature by $\sim10-30\%$. This change is sufficient to raise the local temperature to a value exceeding the CO desorption temperature. These findings imply that the disk density structures induced by radial drift are able to create multiple CO snow-lines. The inner disk CO is in the gas phase, freezing out near the classical snow-line at $R\sim20-40$ AU. Moving outward, the CO sublimates once again beyond the truncation radius (80 AU in our models) and subsequently re-freezes out at sufficiently large stellar distances, beyond $R\gtrsim130-200$ AU. We find that thermal desorption of CO in the outer disk becomes competitive with external UV photodesorption and that this additional transition from solid state CO to the gas-phase has significant implications for the C/O ratio in the outer disk.

Analysis of the instability due to gas-dust friction in protoplanetary discs

We study stability of a dust layer in a gaseous disc subject to the linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary discs. A second dust phase with a small mass, comparing to the first dust phase, would reduce the growth timescale even by a factor of two or more especially when its coupling to the gas is weak. It means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping are accelerated. Thus, presence of dust particles with various sizes must be considered in studies of dust clumping in protoplanetary discs where both large and small dust grains are present.

Are the Formation and Abundances of Metal-Poor Stars the Result of Dust Dynamics?

Large dust grains can fluctuate dramatically in their local density, relative to gas, in neutral, turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains under these conditions. This can have important consequences for star formation and stellar abundances in extremely metal-poor stars. Low-mass stars could form in dust-enhanced regions almost immediately after some dust forms, even if the galaxy-average metallicity is too low for fragmentation to occur. The abundances of these 'promoted' stars may contain interesting signatures, as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced or fluctuate independently. Remarkably, otherwise puzzling abundance patterns of some metal-poor stars can be well-fit by standard core-collapse SNe yields, if we allow for fluctuating dust-to-gas ratios. We also show that the observed log-normal-like distribution of enhancements in these species agrees with our simulations. Moreover, we confirm Mg and Si are correlated in these stars, with abundance ratios similar to those in local silicate grains. Meanwhile [Mg/Ca], predicted to be nearly invariant from pure SNe yields, shows large enhancements as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. This suggests that (1) dust exists in second-generation star formation, (2) dust-to-gas ratio fluctuations occur and can be important for star formation, and (3) light element abundances of these stars may be affected by the chemistry of dust where they formed, rather than directly tracing nucleosynthesis.

Infrared emission from tidal disruption events --- probing the pc-scale dust content around galactic nuclei

Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy ~ 10^51-52 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ~ 1 pc from the BH and re-radiated in the infrared. We calculate the dust emission lightcurve from a 1-D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 microns and has typical luminosities ~ 10^42-43 erg/s (with sky covering factor of dusty clouds ranging from 0.1-1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon (PAH) features may be found. Observations at rest-frame wavelength > 2 microns have only been reported from two TDE candidates, SDSS J0952+2143 and Swift J1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASSASN-14ae and -14li) where the dust emission may be currently detectable. The dust infrared emission can give a snapshot of the pc-scale dust content around weakly- or non-active galactic nuclei, which is hard to probe otherwise.

Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC6720

Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC6720 reveals the presence of the 11.3 micron aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7 to 8 micron range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.

Large dust grains in the wind of VY Canis Majoris

Massive stars live short lives, losing large amounts of mass through their stellar wind. Their mass is a key factor determining how and when they explode as supernovae, enriching the interstellar medium with heavy elements and dust. During the red supergiant phase, mass-loss rates increase prodigiously, but the driving mechanism has proven elusive. Here we present high-contrast optical polarimetric-imaging observations of the extreme red supergiant VY Canis Majoris and its clumpy, dusty, mass-loss envelope, using the new extreme-adaptive-optics instrument SPHERE at the VLT. These observations allow us to make the first direct and unambiguous detection of submicron dust grains in the ejecta; we derive an average grain radius $\sim$ 0.5 $\mu$m, 50 times larger than in the diffuse ISM, large enough to receive significant radiation pressure by photon scattering. We find evidence for varying grain sizes throughout the ejecta, highlighting the dynamical nature of the envelope. Grains with 0.5 $\mu$m sizes are likely to reach a safe distance from the eventual explosion of VY Canis Majoris; hence it may inject upwards of 10$^{-2}$ M$_\odot$ of dust into the ISM.

Using cm Observations to Constrain the Abundance of Very Small Dust Grains in Galactic Cold Cores

In this analysis we illustrate how the relatively new emission mechanism known as spinning dust can be used to characterize dust grains in the interstellar medium. We demonstrate this by using spinning dust emission observations to constrain the abundance of very small dust grains (a $\lesssim$ 10nm) in a sample of Galactic cold cores. Using the physical properties of the cores in our sample as inputs to a spinning dust model, we predict the expected level of emission at a wavelength of 1cm for four different very small dust grain abundances, which we constrain by comparing to 1cm CARMA observations. For all of our cores we find a depletion of very small grains, which we suggest is due to the process of grain growth. This work represents the first time that spinning dust emission has been used to constrain the physical properties of interstellar dust grains.

Molecules and dust in Cassiopeia A: II - Dust sputtering and diagnosis for dust survival in supernova remnants

We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains formed in the Type II-b supernova by modelling the sputtering of grains located in dense ejecta clumps crossed by the reverse shock. Further sputtering in the inter-clump medium once the clumps are disrupted by the reverse shock is investigated. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also studied. We study oxygen-rich clumps that describe the ejecta oxygen core, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the dust components formed in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive dust grain size distributions and masses as a function of time. We find that non-thermal sputtering in clumps is important and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density and the grain type and size. A Type II-b SN forms small grains that are sputtered within clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium. Our derived masses of currently processed silicate, alumina and carbon grains in Cas A agree well with values derived from observations. Grains in Type II-P are better survive the remnant phase. For dense ejecta clumps, dust survival efficiencies range between 42% and 98% in mass. For the SN1987A model, the derived surviving dust mass is in the range ~ 0.06-0.14 Msolar. This type of dense SNe may then be efficient dust providers to galaxies. Specifically, silicate grains over 0.1 micron and other grains over 0,05 micron survive thermal sputtering in the remnant. Therefore, pre-solar grains of SN origin possibly form in the dense ejecta clumps of Type II-P supernovae.

Magnetic grain trapping and the hot excesses around early-type stars

A significant fraction of main sequence stars observed interferometrically in the near infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (< 200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at about 2 sigma) than those for stars without such excesses.

Magnetic grain trapping and the hot excesses around early-type stars [Replacement]

A significant fraction of main sequence stars observed interferometrically in the near infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (< 200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at about 2 sigma) than those for stars without such excesses.

A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myrs within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1$M_{\rm{Jup}}$), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.

A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap [Replacement]

We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myrs within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1$M_{\rm{Jup}}$), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.

Grain Alignment: Role of Radiative Torques and Paramagnetic Relaxation

Polarization arising from aligned dust grains presents a unique opportunity to study magnetic fields in the diffuse interstellar medium and molecular clouds. Polarization from circumstellar regions, accretion disks and comet atmospheres can also be related to aligned dust.To reliably trace magnetic fields quantitative theory of grain alignment is required. Formulating the theory that would correspond to observations was one of the longstanding problems in astrophysics. Lately this problem has been successfully addressed and in this review we summarize some of the most important theoretical advances in the theory of grain alignment by radiative torques (RATs) that act on realistic irregular dust grains. We discuss an analytical model of RATs and the ways to make RAT alignment more efficient, e.g. through paramagnetic relaxation when grains have inclusions with strong magnetic response. For very small grains for which RAT alignment is inefficient, we also discuss paramagnetic relaxation and a process termed resonance relaxation. We provide an extensive analysis of the observational tests of grain alignment theory.

Gas and dust hydrodynamical simulations of massive lopsided transition discs - II. Dust concentration

We investigate the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust. Our simulations adopt a ring-like gas density profile that becomes unstable against the Rossby-wave instability and forms a large crescent-shaped vortex. When gas self-gravity is discarded, but the indirect force from the displacement of the star by the vortex is included, we confirm that dust grains with stopping times of order the orbital time, which should be typically a few centimetres in size, are trapped ahead of the vortex in the azimuthal direction, while the smallest and largest grains concentrate towards the vortex centre. We obtain maximum shift angles of about 25 degrees. Gas self-gravity accentuates the concentration differences between small and large grains. At low to moderate disc masses, the larger the grains, the farther they are trapped ahead of the vortex. Shift angles up to 90 degrees are reached for 10 cm-sized grains, and we show that such large offsets can produce a double-peaked continuum emission observable at mm/cm wavelengths. This behaviour comes about because the large grains undergo horseshoe U-turns relative to the vortex due to the vortex's gravity. At large disc masses, since the vortex's pattern frequency becomes increasingly slower than Keplerian, small grains concentrate slightly beyond the vortex and large grains form generally non-axisymmetric ring-like structures around the vortex's radial location. Gas self-gravity therefore imparts distinct trapping locations for small and large dust grains which may be probed by current and future observations, and which suggest that the formation of planetesimals in vortices might be more difficult than previously thought.

Infrared Observational Manifestations of Young Dusty Super Star Clusters

The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed into a hot plasma. Here we address the stochastic injection of dust by supernovae and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which results on the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions which are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind and a time-dependent grain size distribution.

Dust as interstellar catalyst - II. How chemical desorption impacts the gas

Context. Interstellar dust particles, which represent 1% of the total mass, are recognized to be very powerful interstellar catalysts in star-forming regions. The presence of dust can have a strong impact on the chemical composition of molecular clouds. While observations show that many species that formed onto dust grains populate the gas phase, the process that transforms solid state into gas phase remains unclear. Aims. The aim of this paper is to consider the chemical desorption process, i.e. the process that releases solid species into the gas phase, in astrochemical models. These models allow determining the chemical composition of star-forming environments with an accurate treatment of the solid-phase chemistry. Methods. In paper I we derived a formula based on experimental studies with which we quantified the efficiencies of the chemical desorption process. Here we extend these results to astrophysical conditions. Results. The simulations of astrophysical environments show that the abundances of gas-phase methanol and H2O2 increase by four orders of magnitude, whereas gas-phase H2CO and HO2 increase by one order of magnitude when the chemical desorption process is taken into account. The composition of the ices strongly varies when the chemical desorption is considered or neglected. Conclusions. We show that the chemical desorption process, which directly transforms solid species into gas-phase species, is very efficient for many reactions. Applied to astrophysical environments such as Rho Oph A, we show that the chemical desorption efficiencies derived in this study reproduce the abundances of observed gas-phase methanol, HO2, and H2O2, and that the presence of these molecules in the gas shows the last signs of the evolution of a cloud before the frost.

The X-ray dust scattered rings of the black hole low mass binary V404 Cyg

We report on the first detection of X-ray dust scattered rings from the Galactic low mass X-ray binary V404 Cyg. The observation of the system with Swift/XRT on June 30 2015 revealed the presence of five concentric ring-like structures centred at the position of V404 Cyg. Follow-up Swift/XRT observations allowed a time-dependent study of the X-ray rings. Assuming that these are the result of small-angle, single X-ray scattering by dust grains along the line of sight, we find that their angular size scales as $\theta \propto\sqrt{t}$ in agreement with theoretical predictions. The dust grains are concentrated in five dust layers located at about 2.12, 2.05, 1.63, 1.50 and 1.18 kpc from the observer. These coincide roughly with locations of enhanced extinction as determined by infrared photometry. Assuming that the grain size distribution is described by a generalized Mathis-Rumpl-Nordsieck model, we find that the power-law index of the most distant cloud is $q\sim 4.4$, while $q \sim 3.5-3.7$ in all other clouds. We constrain at a $3\sigma$ level the maximum grain size of the intermediate dust layers in the range $0.16-0.20\,\mu$m and set a lower limit of $\sim 0.2\,\mu$m in the other clouds. Hints of an exponential cutoff at the angular intensity profile of the outermost X-ray ring suggest that the smallest grains have sizes $0.01 \mu{\rm m}\le \alpha_{\min} \lesssim 0.03\,\mu$m. Based on the relative ratios of dust column densities we find the highest dust concentration at $\sim 1.6$ kpc. Our results indicate a gradient in the dust properties within 1 kpc from V404 Cyg.

Effects of turbulent dust grain motion on interstellar chemistry [Replacement]

Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon molecular cloud chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

Effects of turbulent dust grain motion to interstellar chemistry [Replacement]

Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

Effects of turbulent dust grain motion to interstellar chemistry

Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon molecular cloud chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

Pits formation from volatile outgassing on 67P/Churyumov-Gerasimenko

We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko's subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko's lifetime in the comet's activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of an increasing gas pressure in the pores, while a high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of 100-200~m.

Simulating the Formation of Carbon-rich Molecules on an idealised Graphitic Surface

There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass-spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100K - 500K) and smaller fullerene-like molecules form at higher temperatures (2000K - 3000K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.

Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks

Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps". The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed "gap" features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths ($\sim$1 mm), although the behavior can be more complex; unlike for disk-planet interactions, a "gap" should not be present at these longer wavelengths.

Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks [Replacement]

Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps." The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed "gap" features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths ($\sim$1 mm), although the behavior can be more complex; unlike for disk-planet interactions, a "gap" should not be present at these longer wavelengths.

UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes

Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. We present UV-irradiation experiments of a pure CO2 ice analog. Calibration of the QMS allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the FTIR on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Photolysis of CO2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO3 ,O2 , and O3 . During irradiation, photon-induced desorption of CO and, to a lesser extent, O2 and CO2 took place through a process called indirect desorption induced by electronic transitions (DIET), with maximum photodesorption yields (Ypd) of 1.2 x 10-2 molecules/incident photon , 9.3 x 10-4 molecules/incident photon , and 1.1 x 10-4 molecules/incident photon , respectively. Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles.

Evolution of the dust in V4332 Sagittarii

An eruptive nova-like event took place in 1994 in the stellar-merger candidate V4332 Sgr. Following the eruption, dust consisting of refractory silicate rich dust grains containing a significant component of AlO bonding was formed sometime between 1998 and 2003. Observations using Spitzer between 2005 and 2009 show significant changes in the 10 micron silicate stretch feature. There is a deepening of the 10 micron silicate stretch as well as the development of a feature between about 13 and 20 microns consistent with a blend of the MgO and FeO stretching features and the O-Si-O bending mode of increasingly ordered silicate dust. Near-infrared observations show the presence of AlO and water vapor in the outflow in 2003, 2004 and 2005: the AlO has significantly decreased in spectra obtained in 2014 while the water vapor remains largely unchanged. An attempt is made to correlate these observations and understand the significance of these changes using DUSTY modeling. The observations appear consistent with the kinetically-controlled, condensation of highly under-oxidized SiO/AlO/Fe/Mg dust grains in the outflow followed by the continuous evolution of the initial condensate due to thermal annealing and oxidation of the dust via reaction with ambient O, OH and H2O in the expanding, cooling shell. Periodic monitoring of this dust shell over the mid-infrared spectral range could yield useful information on the evolution of under-oxidized silicate condensates exposed to hot water vapor in more conventional circumstellar environments.

The Fundamentally Different Dynamics of Dust and Gas in Molecular Clouds [Replacement]

We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a >0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust growth/coagulation/shattering) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*(100 cm^-3/n_gas), and is 'averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.

The Fundamentally Different Dynamics of Dust and Gas in Molecular Clouds

We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a>0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust evolution) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*(100cm^-3/n_gas) and is 'averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.

Properties and alignment of interstellar dust grains toward Type Ia Supernovae with anomalous polarization curves

Recent photometric and polarimetric observations of type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratio ($R_{V}<2$) and wavelength of maximum polarization ($\lambda_{max}<0.4\mu m$) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use inversion technique to infer best-fit grain size distribution and alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SNe 1986G, 2006X, 2008fp, and 2014J). We find that to reproduce low values of $R_{V}$, a significant enhancement in the mass of small grains of radius $a< 0.1\mu m$ is required. For SN 2014J, a simultaneous fit to observed extinction and polarization data is unsuccessful if the entire data is attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our fitting results for model 1 show that, to reproduce an extreme value of $\lambda_{\max}\sim 0.15\mu m$, very small silicate grains must be aligned as efficiently as big grains. We suggest that tiny grains in the intervening molecular cloud can be aligned efficiently by radiative torques (RATs) from the SNe Ia. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths. Our results are in favor of the existence of CS dust in SN 2014J, but its presence in SN 2008fp remains uncertain.

A Far-Infrared Observational Test of the Directional Dependence in Radiative Grain Alignment

The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regions of the Orion molecular cloud (OMC-1) at 100, 350, and $850\,\mu$m to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcminutes centered on the BNKL object in OMC-1. The probabilities that these signals would occur due to random noise are low ($\lesssim$1\%), and are lowest towards BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15 degrees at $100\,\mu$m and 4 degrees at $350\,\mu$m.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^