Posts Tagged dichotomy

Recent Postings from dichotomy

A stellar population synthesis approach to the Oosterhoff dichotomy

We use color-magnitude diagram synthesis together with theoretical relations from non-linear pulsation models to approach the long-standing problem of the Oosterhoff dichotomy related to the distribution of the mean periods of fundamental RR Lyrae variables in globular clusters. By adopting the chemical composition determined from spectroscopic observations and a criterion to account for the hysteresis mechanism, we tuned age and mass-loss to simultaneously reproduce the morphology of both the turn-off and the Horizontal Branch of a sample of 17 globular clusters of the Milky Way and of nearby dwarf galaxies in the crucial metallicity range (-1.9<[Fe/H]<-1.4) where the Oostheroff transition is apparent. We find that the Oosterhoff dichotomy among Galactic globular clusters is naturally reproduced by models. The analysis of the relative impact of the various involved parameters indicates that the main responsibles of the dichotomy are the peculiar distribution of clusters in the age-metallicity plane and the hysteresis. In particular, there is a clear connection between the two main branches of the age-metallicity relation for Galactic globular clusters and the Oosterhoff groups. The properties of clusters’ RR Lyrae belonging to other Oostheroff groups (OoInt and OoIII) are instead not well reproduced. While for OoIII clusters a larger helium abundance for a fraction of the cluster’s stars can reconcile the model prediction with observations, some other parameter affecting both the Horizontal Branch morphology and the RR Lyrae periods is required to reproduce the behavior of OoInt clusters.

Constraints on the radio loud/radio quiet dichotomy from the fundamental plane

The fundamental plane for black hole activity constitutes a tight correlation between jet power, X-ray luminosity, and black hole mass. Under the assumption that a Blandford-Znajek-type mechanism, which relies on black hole spin, contributes non-negligibly to jet production, the sufficiently small scatter in the fundamental plane shows that black hole spin differences of $\mid$$\Delta$a$\mid \sim$1 are not typical among the active galactic nuclei population. If $-$ as it seems $-$ radio loud and radio quiet objects are both faithful to the fundamental plane, models of black hole accretion in which the radio loud/radio quiet dichotomy is based on a spin dichotomy of a$\sim$1/a$\sim$0, respectively, are difficult to reconcile with the observations. We show how recent theoretical work based on differences in accretion flow orientation between retrograde and prograde, accommodates a small scatter in the fundamental plane for objects that do have non-negligible differences in black hole spin values. We also show that the dichotomy in spin between the most radio loud and the most radio quiet involves $\mid$$\Delta$a$\mid \approx$0. And, finally, we show how the picture that produces compatibility with the fundamental plane, also allows one to interpret other otherwise puzzling observations of jets across the mass scale including 1) the recently observed inverse relation between radio and X-rays at higher Eddington ratios in both black hole X-ray binaries as well as active galactic nuclei and 2) the apparent contradiction between jet power and black hole spin observed in X-ray hard and transitory burst states in X-ray binaries.

Properties of unique hard X-ray dips observed from GRS 1915+105 and IGR J17091-3624 and their implications

We report a comprehensive study on spectral and timing properties of hard X-ray dips uniquely observed in some so-called variability classes of the micro-quasars GRS 1915+105 and IGR J17091-3624. These dips are characterized by a sudden decline in the 2.0-60.0 keV X-ray intensity by a factor of 4-12 simultaneous with the increase in hardness ratio by a factor of 2-4. Using 31 observations of GRS 1915+105 with RXTE/PCA, we show that different behavior are observed in different types of variability classes, and we find that a dichotomy is observed between classes with abrupt transitions vs those with smoother evolution. For example, both energy-lag spectra and frequency-lag spectra of hard X-ray dips in classes with abrupt transitions and shorter dip intervals show hard-lag (hard photons lag soft photons), while both lag spectra during hard dips in classes with smoother evolution and longer dip intervals show soft-lag. Both lag time-scales are of the order of 100-600 msec. We also show that timing and spectral properties of hard X-ray dips observed in light curves of IGR J17091-3624 during its 2011 outburst are consistent with the properties of the abrupt transitions in GRS 1915+105 rather than smooth evolution. A global correlation between the X-ray intensity cycle time and hard dip time is observed for both abrupt and smooth transition which may be due to two distinct physical processes whose time-scales are eventually correlated. We discuss implications of our results in the light of some generic models.

Revisiting the Dichotomy of Early-type Galaxies

We study the relationship among isophotal shapes, central light profiles and kinematic properties of early-type galaxies (ETGs) based on a compiled sample of 184 ETGs. These sample galaxies are included in the Data Release 8 of Sloan Digital Sky Survey (SDSS DR8) and have central light profiles and kinematic properties available from the literature, which were measured based on Hubble Space Telescope ({\it HST}) and \atlas\ integral-field spectrograph (IFS) observations, respectively. We find that there is only a weak correlation between the isophotal shape ($a_{4}/a$) and the central light profile (within $1\,\rm kpc$) of ETGs. About two-fifths of "core" galaxies have disky isophotes, while one-third of "power-law" galaxies are boxy deviated. Our statistical results also show that there are weak correlations between galaxy luminosity and dynamical mass with $a_{4}/a$, but such correlations are tighter with central light profile. Moreover, no clear link has been found between the isophotal shape and the S\’ ersic index. Comparisons show that there are similar correlations between $a_{4}/a$ and ellipticity and between $a_{4}/a$ and specific angular momentum $\lambda_{R_e/2}$ for "power-law" ETGs, but there are no such correlations for "core" ETGs. Therefore, we speculate that the bimodal classifications for ETGs are not as simple as previously thought, though we also find that the most deviated disky ETGs are "power-law", more elongated and fast rotators.

Unifying neutron stars: getting to GUNS

The variety of the observational appearance of young isolated neutron stars must find an explanation in the framework of some unifying approach. Nowadays it is believed that such scenario must include magnetic field decay, the possibility of magnetic field emergence on a time scale $\lesssim 10^4$–$10^5$ yrs, significant contribution of non-dipolar fields, and appropriate initial parameter distributions. We present our results on the initial spin period distribution, and suggest that inconsistences between distributions derived by different methods for samples with different average ages can uncover field decay or/and emerging field. We describe a new method to probe the magnetic field decay in normal pulsars. The method is a modified pulsar current approach, where we study pulsar flow along the line of increasing characteristic age for constant field. Our calculations, performed with this method, can be fitted with an exponential decay for ages in the range $8\times 10^4$–$3.5 \times 10^5$ yrs with a time scale $\sim 5 \times 10^5$ yrs. We discuss several issues related to the unifying scenario. At first, we note that the dichotomy, among local thermally emitting neutron stars, between normal pulsars and the Magnificent Seven remains unexplained. Then we discuss the role of high-mass X-ray binaries in the unification of neutron star evolution. We note, that such systems allow to check evolutionary effects on a time scale longer than what can be probed with normal pulsars alone. We conclude with a brief discussion of importance of discovering old neutron stars accreting from the interstellar medium.

The WISE properties of complete samples of radio-loud AGN

We present an analysis of four complete samples of radio-loud AGN (3CRR, 2Jy, 6CE and 7CE) using near- and mid-IR data taken by the Wide-Field Infrared Survey Explorer (WISE). The combined sample consists of 79 quasars and 273 radio galaxies, and covers a redshift range 0.003<z<3.395. The dichotomy in the mid-IR properties of low- and high-excitation radio galaxies (LERGs – HERGs) is analysed for the first time using large complete samples. Our results demonstrate that a division in the accretion modes of LERGs and HERGs clearly stands out in the mid-IR-radio plane (L_(22 \mu m) = 5×10^(43) erg s^(-1)). This means that WISE data can be effectively used to diagnose accretion modes in radio-loud AGN. The mid-IR properties of all objects were analysed to test the unification between quasars and radio galaxies, consistent with earlier work and we argue that smooth torus models best reproduce the observation. Quasars are found to have higher mid-IR luminosities than radio galaxies. We also studied all the sources in the near-IR to gain insights into evolution of AGN host galaxies. A relation found between the near-IR luminosity and redshift, well-known in the near-IR, is apparent in the two near-IR WISE bands, supporting the idea that radio sources are hosted by massive elliptical galaxies that formed their stars at high redshifts and evolved passively thereafter. Evaluation of the positions of the sample objects in WISE colour-colour diagrams shows that widely used WISE colour cuts are not completely reliable in selecting AGN.

Orientation of the cores of hybrid morphology radio sources

The FRI/FRII dichotomy is a much debated issue in the astrophysics of extragalactic radio sources. Study of the properties of HYbrid MOrphology Radio Sources (HYMORS) may bring crucial information and lead to a step forward in understanding the origin of FRI/FRII dichotomy. HYMORS are a rare class of double-lobed radio sources where each of the two lobes clearly exhibits a different FR morphology. This article describes follow-up high resolution VLBA observations of the five discovered by us HYMORS. The main aim of the observations was to answer the questions of whether the unusual radio morphology is connected to the orientation of objects towards the observer. We obtained the high resolution radio maps of five hybrid radio morphology objects with the VLBA at C-band and L-band. Two of them revealed milliarcsecond core-jet structures, the next two objects showed hints of parsec-scale jets, and the last one remained point-like at both frequencies. We compared properties of observed milliarcsecond structures of hybrid sources with the larger scale ones previously detected with the VLA. We find that on both scales the fluxes of their central components are similar, which may indicate the lack of additional emission in the proximity of the nucleus. This suggests that jets present on the 1-10 kpc scale in those objects are FRII-like. When possible, the detected core-jet structures were used for estimating the core’s spatial orientation. The result is that neither the FRI-like nor the FRII-like side is preferred, which may suggest that no specific spatial orientation of HYMORS is required to explain their radio morphology. Their estimated viewing angles indicate they are unbeamed objects. The 178 MHz luminosity of observed HYMORS exceed the traditional FRI/FRII break luminosity, indicating they have radio powers similar to FRIIs.

A Dichotomy in Satellite Quenching Around L* Galaxies

We examine the star formation properties of bright (~0.1 L*) satellites around isolated ~L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey DR7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also plays at least an indirect role in quenching star formation in their bright satellites. The previously-reported tendency for "galactic conformity" in color/morphology may be a by-product of this host-specific quenching dichotomy. The S\’ersic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter halos that are ~45% more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ~30% of ~0.1 L* galaxies that fall in from the field are quenched around passive hosts, compared with ~0% around star forming hosts.

Multi-periodic pulsations of a stripped red giant star in an eclipsing binary

Low mass white dwarfs are the remnants of disrupted red giant stars in binary millisecond pulsars and other exotic binary star systems. Some low mass white dwarfs cool rapidly, while others stay bright for millions of years due to stable fusion in thick surface hydrogen layers. This dichotomy is not well understood so their potential use as independent clocks to test the spin-down ages of pulsars or as probes of the extreme environments in which low mass white dwarfs form cannot be fully exploited. Here we present precise mass and radius measurements for the precursor to a low mass white dwarf. We find that only models in which this star has a thick hydrogen envelope can match the strong constraints provided by our new observations. Very cool low mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low mass white dwarf precursor is a new type of pulsating star. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

Period -- mass-loss rate relation of Miras with and without technetium

Aims: We report the discovery that Mira variables with and without absorption lines of the element technetium (Tc) occupy two different regions in a diagram of near- to mid-infrared colour versus pulsation period. Tc is an indicator of a recent or ongoing mixing event called the third dredge-up (3DUP), and the near- to mid-IR colour, such as the (K-[22]) colour where [22] is the the 22 micron band of the WISE space observatory, is an indicator of the dust mass-loss rate of a star. Methods: We collected data from the literature about the Tc content, pulsation period, and near- and mid-infrared magnitudes of more than 190 variable stars on the asymptotic giant branch (AGB) to which Miras belong. The sample is naturally biased towards optical AGB stars, which have low to intermediate (dust) mass-loss rates. Results: We show that a clear relation between dust mass-loss rate and pulsation period exists if a distinction is made between Tc-poor and Tc-rich Miras. Surprisingly, at a given period, Tc-poor Miras are redder in (K-[22]) than are Tc-rich Miras; i.e. they have higher mass-loss rates than the Tc-rich Miras. A few stars deviate from this trend; physical explanations are given for these exceptions, such as binarity or high mass. Conclusions: We put forward two hypotheses to explain this dichotomy and conclude that the two sequences formed by Tc-poor and Tc-rich Miras are probably due to the different masses of the two groups. The pulsation period has a strong correlation with the dust-mass loss rate, indicating that the pulsations are indeed triggering a dust-driven wind. The location in the (K-[22]) vs. period diagram can be used to distinguish between pre- and post-3DUP Miras, which we apply to a sample of Galactic bulge AGB stars. We find that 3DUP is probably not common in AGB stars in the inner bulge.

CANDELS: The correlation between galaxy morphology and star formation activity at z~2

We discuss the state of the assembly of the Hubble Sequence in the mix of bright galaxies at redshift 1.4< z \le 2.5 with a large sample of 1,671 galaxies down to H_{AB}~26, selected from the HST/ACS and WFC3 images of the GOODS–South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sersic light profile, Gini (G), M_{20}, Concentration (C), Asymmetry (A) and multiplicity parameters. Our sample clearly separates into massive, red and passive galaxies versus less massive, blue and star forming ones, and this dichotomy correlates very well with the galaxies’ morphological properties. Star–forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today’s spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z~2galaxies in a G-M_{20} plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z~2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z~2.

CANDELS: The correlation between galaxy morphology and star formation activity at z~2 [Replacement]

We discuss the state of the assembly of the Hubble Sequence in the mix of bright galaxies at redshift 1.4< z \le 2.5 with a large sample of 1,671 galaxies down to H_{AB}~26, selected from the HST/ACS and WFC3 images of the GOODS–South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sersic light profile, Gini (G), M_{20}, Concentration (C), Asymmetry (A) and multiplicity parameters. Our sample clearly separates into massive, red and passive galaxies versus less massive, blue and star forming ones, and this dichotomy correlates very well with the galaxies’ morphological properties. Star–forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today’s spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z~2galaxies in a G-M_{20} plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z~2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z~2.

Deceleration of SS433 radio jets

The mildly relativistic jets of SS\,433 are believed to inflate the surrounding supernova remnant W\,50 depositing in its expansion possibly more than 99% of their kinetic energy (\cite[1998]{Dub98}). Where and how this transformation of energy is curried out, it is not yet known. What can we learn from it that the jets decelerate and the deceleration is non-dissipative, i.e. radiatively dark. In this paper we unclose the observed deviations of the precessing radio jets of SS\,433, within a few arcseconds from a jets source, from the ballistic track, described by the kinematic model, as a signature of the deceleration which, on other hand, issues from the jets colliding with ambient medium. For that we model kinematics of these colliding jets. The ram pressure on the jets is estimated from the observed profile of brightness of synchrotron radiation along the radio jets. We have found that to fit observed locus the radio jets should be decelerated and twisted, additionally to the precession twist, mostly within the first one-fifth of precession period, and further they extend imitating ballistic jets. The fitted physical parameters of the jet model turned out to be physically reliable and characteristic for SS\,433 jets that unlikely to be occasional. This model explains naturally, and meets approval by a) the observed shock-pressed morphology of the radio jets and their brightness, b) the observed $\sim 10%$ deflections from the standard kinematic model — just a magnitude of the jet speed decrement in the model, c) regularly observed for the radio jets the precession phase deviation from the standard kinematic model prediction, d) dichotomy of distance to the object, 4.8\,kpc vs. 5.5\,kpc, determined on the basis of the radio jets kinematics on scales of a sub-arcsecond and several arcseconds.

Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc [Replacement]

We present a sample of ~5,000 RR Lyrae stars selected from the recalibrated LINEAR dataset and detected at heliocentric distances between 5 kpc and 30 kpc over ~8,000 deg^2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4. The number density distribution of halo RRab stars as a function of galactocentric distance can be described as an oblate ellipsoid with the axis ratio q=0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Using a group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters, and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters is suggestive of tidal streams possibly originating from globular clusters. Spectroscopic followup of detected halo groups is encouraged.

Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc

We present a sample of ~5,000 RR Lyrae stars selected from the recalibrated LINEAR dataset and detected at heliocentric distances between 5 kpc and 30 kpc over ~8,000 deg^2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4. The number density distribution of halo RRab stars as a function of galactocentric distance can be described as an oblate ellipsoid with the axis ratio q=0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Using a group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters, and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters is suggestive of tidal streams possibly originating from globular clusters. Spectroscopic followup of detected halo groups is encouraged.

Lithologic Mapping of HED Terrains on Vesta using Dawn Framing Camera Color Data

The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history and its relationship with Vestoids and howardite-eucrite-diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east-west and north-south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite-rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.

Lithologic Mapping of HED Terrains on Vesta using Dawn Framing Camera Color Data [Replacement]

The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history and its relationship with Vestoids and howardite-eucrite-diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east-west and north-south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite-rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.

The Role of Core Mass in Controlling Evaporation: the Kepler Radius Distribution and the Kepler-36 Density Dichotomy [Replacement]

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. (2012) can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets’ rock/iron cores and the impact that this has on mass loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune sized planets. We show that 1.8-4.0 R_earth planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow "occurrence valley" in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. (2013) that inner planets are preferentially smaller within the systems.

The Role of Core Mass in Controlling Evaporation: the Kepler Radius Distribution and the Kepler-36 Density Dichotomy

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. (2012) can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets’ rock/iron cores and the impact that this has on mass loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune sized planets. We show that 1.8-4.0 R_earth planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow gap in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. (2013) that inner planets are preferentially smaller within the systems.

The SLUGGS survey: Probing the supermassive black hole connection with bulges and haloes using red and blue globular cluster systems

Understanding whether the bulge or the halo provides the primary link to the growth of supermassive black holes has strong implications for galaxy evolution and supermassive black hole formation itself. In this paper, we approach this issue by investigating extragalactic globular cluster (GC) systems, which can be used to probe the physics of both the bulge and the halo of the host galaxy. We study the relation between the supermassive black hole masses M_BH and the globular cluster system velocity dispersions sigma_GC using an updated and improved sample of 21 galaxies. We exploit the dichotomy of globular cluster system colours, to test if the blue and red globular clusters correlate differently with black hole mass. This may be expected if they trace the potentially different formation history of the halo and of the bulge of the host galaxy respectively. We find that M_BH correlates with the total GC system velocity dispersion, although not as strongly as claimed by recent work of Sadoun & Colin. We also examine the M_BH – sigma_GC relation for barred/bar-less and core/non-core galaxies, finding no significant difference, and for the first time we quantify the impact of radial gradients in the GC system velocity dispersion profile on the M_BH – sigma_GC relation. We additionally predict M_BH in 13 galaxies, including dwarf elliptical galaxies and the cD galaxy NGC 3311. We conclude that our current results cannot discriminate between the bulge/halo scenario. Although there is a hint that the red GC velocity dispersion might correlate better with M_BH than the blue GC velocity dispersion, the number statistics are still too low to be certain.

Nonlinear Color-Metallicity Relations of Globular Clusters. V. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of M31 Globular Clusters

Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31′s GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

A hybrid model for the evolution of galaxies and Active Galactic Nuclei in the infrared

[Abridged] We present a comprehensive investigation of the cosmological evolution of the luminosity function (LF) of galaxies and active galactic nuclei (AGN) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent LFs at z \geq 1.5 using a physical model for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z<1.5 are interpreted as being mostly late-type ‘cold’ (normal) and ‘warm’ (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent LFs of stellar and AGN components separately, we have worked out the evolving LFs of these objects as a whole (stellar plus AGN component). The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z \simeq 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely steep counts at (sub-)mm wavelengths, as well as the (sub-)mm counts of strongly lensed galaxies, that are hard to account for by alternative, physical or phenomenological, approaches. The evolution of late-type galaxies and of z<1.5 AGNs is described using a parametric phenomenological approach. The modeled AGN contributions to the counts and to the cosmic infrared background (CIB) are always subdominant with maximal at mid-IR wavelengths. The model provides a good fit to the multi-wavelength (from the mid-IR to millimeter waves) data on LFs at different redshifts and on number counts (both global and per redshift slices). A prediction of the present model is a systematic variation with wavelength of the populations dominating the counts and the contributions to the CIB intensity. The implied specific trend for cross-wavelength CIB power spectra is found to be in good agreement with the data.

Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole’s accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a* (|a*| \le 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a* \approx 0 to a* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a sharp dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.

Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets [Replacement]

The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole’s accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.

Does black hole spin play a key role in the FSRQ/BL Lac dichotomy?

It is believed that jets emerging from blazars (Flat Spectrum Radio Quasars (FSRQs) and BL Lacs) are almost aligned to the line-of-sight. BL Lacs usually exhibit lower luminosity and harder power law spectra at gamma-ray energies than FSRQs. It was argued previously that the difference in accretion rates is mainly responsible for the large observed luminosity mismatch between them. However, when intrinsic luminosities are derived by correcting for beaming effects, this mismatch is significantly reduced. We show that spin plays an important role to reveal the dichotomy of luminosity distributions between BL Lacs and FSRQs, suggesting BL Lacs to be low luminous and slow rotators compared to FSRQs.

The Comparative Chemical Evolution of an Isolated Dwarf Galaxy: A VLT and Keck Spectroscopic Survey of WLM

Building on our previous spectroscopic and photometric analysis of the isolated Local Group dwarf irregular (dIrr) galaxy WLM, we present a comparison of the metallicities of its RGB stars with respect to the well studied Local Group dwarf spheroidal galaxies (dSphs) and Magellanic Clouds. We calculate a mean metallicity of [Fe/H]$ = -1.28 \pm 0.02$, and intrinsic spread in metallicity of $\sigma = 0.38 \pm 0.04$ dex, similar to the mean and spread observed in the massive dSph Fornax and the Small Magellanic Cloud. Thus, despite its isolated environment the global metallicity still follows expectations for WLM’s mass and its global chemical evolution is similar to other nearby luminous dwarf galaxies (gas-rich or gas-poor). The data also show a radial gradient in [Fe/H] of $\rm{d[Fe/H]/dr_{c}} = -0.04 \pm 0.04$ dex $\rm{r_{c}^{-1}}$, which is flatter than that seen in the unbiased and spatially extended surveys of dSphs. Comparison of the spatial distribution of [Fe/H] in WLM, the Magellanic Clouds, and a sample of Local Group dSphs, shows an apparent dichotomy in the sense that the dIrrs have statistically flatter radial [Fe/H] gradients than the low angular momentum dSphs. The correlation between angular momentum and radial metallicity gradient is further supported when considering the Local Group dEs. This chemodynamic relationship offers a new and useful constraint for environment driven dwarf galaxy evolution models in the Local Group.

Unification scheme of radio galaxies and quasars falsified by their observed size distributions

In the currently popular orientation-based unified scheme, a radio galaxy appears as a quasar when its principal radio-axis happens to be oriented within a certain cone opening angle around the observer’s line of sight. Due to geometrical projection, the observed sizes of quasars should therefore appear smaller than those of radio galaxies. We show that this simple, unambiguous prediction of the unified scheme is not borne out by the actually observed angular sizes of radio galaxies and quasars. Except in the original 3CR sample, based on which the unified scheme was proposed, in other much larger samples no statistically significant difference is apparent in the size distributions of radio galaxies and quasars. The population of low-excitation radio galaxies with apparently no hidden quasars inside, which might explain the observed excess number of radio galaxies at low redshifts, cannot still account for the absence of any foreshortening of the sizes of quasars at large redshifts. On the other hand from infrared and X-ray studies there is evidence of hidden quasar within a dusty torus in many RGs, at $z>0.5$. It seems difficult how to reconcile this with the absence of foreshortening of quasar sizes at even these redshifts, and perhaps one has to allow that the major radio axis may not have anything to do with the optical axis of the torus. Otherwise to resolve the dichotomy of radio galaxies and quasars, a scheme quite different from the present might be required.

Investigating the Potential Dilution of the Metal Content of Hot Gas in Early-Type Galaxies by Accreted Cold Gas

The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With {\it Chandra} and {\it XMM-Newton}, we studied 32 early-type galaxies (kT $\lesssim$ 1 keV) covering a span of two orders of $L_{X,\rm gas}/L_{K}$ to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ($\sim 0.1$ Z${_\odot}$), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z${_\odot}$, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content.

Does the Oosterhoff Dichotomy Exist in The Andromeda Galaxy? I. The case of G11

We present the first evidence that Oosterhoff type II globular clusters exist in the Andromeda galaxy (M31). On the basis of time-series photometry of the moderately metal-poor ([Fe/H]\sim -1.6 dex) M31 globular cluster G11, obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we detected and derived periods for 14 RR Lyrae stars, of which five are found to lie inside the cluster tidal radius. They include three fundamental-mode (RRab) and two first-overtone (RRc) pulsators, with average periods <Pab> = 0.70 d, and <Pc> = 0.40 d, respectively. These mean periods and the position of the cluster variable stars in the period-amplitude and period-metallicity diagrams, all suggest that G11 is likely to be an Oosterhoff type II globular cluster. This appears to be in agreement with the general behavior of Milky Way globular clusters with similar metallicity and horizontal branch morphology.

Does the Oosterhoff Dichotomy Exist in The Andromeda Galaxy? I. The case of G11 [Replacement]

We present the first evidence that Oosterhoff type II globular clusters exist in the Andromeda galaxy (M31). On the basis of time-series photometry of the moderately metal-poor ([Fe/H]\sim -1.6 dex) M31 globular cluster G11, obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we detected and derived periods for 14 RR Lyrae stars, of which five are found to lie inside the cluster tidal radius. They include three fundamental-mode (RRab) and two first-overtone (RRc) pulsators, with average periods <Pab> = 0.70 d, and <Pc> = 0.40 d, respectively. These mean periods and the position of the cluster variable stars in the period-amplitude and period-metallicity diagrams, all suggest that G11 is likely to be an Oosterhoff type II globular cluster. This appears to be in agreement with the general behavior of Milky Way globular clusters with similar metallicity and horizontal branch morphology.

Integral field spectroscopy of HII regions in M33

Integral field spectroscopy (IFS) is presented for star forming regions in M33. A central area of 300 x 500 pc^2 and the external HII region IC 132, at a galactocentric distance {\sim} 19arcmin (4.69 kpc) were observed with the Potsdam Multi Aperture Spectrophotometer (PMAS) instrument at the 3.5 m telescope of the Calar Alto Hispano- Alem\’an observatory (CAHA). The spectral coverage goes from 3600 A to 1{\mu}m to include from [OII]{\lambda}3727 A to the near infrared lines required for deriving sulphur electron temperature and abundance diagnostics. Local conditions within individual HII regions are presented in the form of emission line fluxes and physical conditions for each spatial resolution element (spaxel) and for segments with similar H{\alpha} surface brightness. A clear dichotomy is observed when comparing the central to outer disc HII regions. While the external HII region has higher electron temperature plus larger H{\beta} equivalent width, size and excitation, the central region has higher extinction and metal content. The dichotomy extends to the BPT diagnostic diagrams that show two orthogonal broad distributions of points. By comparing with pseudo-3D photoionization models we conclude that the bulk observed differences are probably related to a different ionization parameter and metallicity. Wolf-Rayet features are detected in IC 132, and resolved into two concentrations whose integrated spectra were used to estimate the characteristic number of WR stars. No WR features were detected in the central HII regions despite their higher metallicity.

Fanaroff-Riley dichotomy of radio galaxies and the Malmquist bias [Replacement]

We investigate the dependence of the Fanaroff-Riley (FR) 1/2 dichotomy of radio galaxies on their luminosities and redshifts. Because of a very strong redshift-luminosity correlation (Malmquist bias) in a flux-limited sample, any redshift-dependent effect could appear as a luminosity related effect and vice versa. First we want to ascertain the customary prevalent view in the literature that the systematic differences in the two broad morphology types of FR1 and 2 radio galaxies are indeed due to the differences in their luminosities, and not due to a change in redshift. We investigate this by using three samples at different flux-density levels which lets us compare sources with similar luminosities but at different redshifts as well as examine sources at similar redshifts but with different luminosities, thereby allowing us a successful separation of the otherwise two intricately entangled effects. We find that the morphology type is not directly related to redshift and the break between the two types of morphologies seems to depend only upon the radio luminosity. Then we also examine the possibility that a claimed correlation between the FR 1/2 break-radio luminosity and the absolute magnitude of the optical host galaxy could be due to the Malmquist bias and may not be representing an intrinsic property of the radio sample. It is further discussed that similar effects of the Malmquist bias could also be present elsewhere in other correlations claimed in the literature between radio luminosity and other observed properties of FR1 and FR2 sources.

Dependence of Fanaroff-Riley dichotomy of radio galaxies on luminosity and redshift

We investigate the dependence of the Fanaroff-Riley (FR) I/II dichotomy of radio galaxies on their luminosities and redshifts. Because of a very strong redshift-luminosity correlation (Malmquist bias) in a flux-limited sample, any redshift-dependent effect could appear as a luminosity related effect and vice versa. A question could then arise – do all the morphological differences seen in the two classes (FR I and II types) of sources, usually attributed to the differences in their luminosities, could these all as well be a result of mainly a cosmological evolutionary effect (e.g., due to the changing ambient density) with cosmic epoch? Even a sharp break in luminosity, seen among the two classes, could after all reflect a rather critical ambient density value. A doubt on these lines does not seem to have been raised in past and things have never been examined keeping this particular aspect in mind. We want to ascertain the customary prevalent view in the literature that the systematic differences in the two broad morphology types of FR I and II radio galaxies are indeed due to the differences in their luminosities, and not a manifestation of an evolutionary effect of the cosmic epoch. Here we investigate the dependence of FR I and II dichotomy of radio galaxies on luminosity and redshift by using the 3CR sample, where the FR I and II dichotomy was first seen, supplemented by data from two additional samples (MRC and B3-VLA), which go about a factor of 5 or more deeper in flux-density than the original 3CR sample. This lets us compare sources with similar luminosities but at different redshifts as well as examine sources at similar redshifts but with different luminosities, thereby allowing us a successful separation of the otherwise two intricately entangled effects.

Dependence of Fanaroff--Riley break of radio galaxies on luminosity and redshift [Replacement]

We investigate the dependence of the Fanaroff-Riley (FR) 1/2 dichotomy of radio galaxies on their luminosities and redshifts. Because of a very strong redshift-luminosity correlation (Malmquist bias) in a flux-limited sample, any redshift-dependent effect could appear as a luminosity related effect and vice versa. A question could then arise – do all the morphological differences seen in the two classes (FR 1 and 2 types) of sources, usually attributed to the differences in their luminosities, could as well be primarily a redshift-dependent effect? A sharp break in luminosity, seen among the two classes, could after all reflect a sharp redshift-dependence due to a rather critical ambient density value at some cosmic epoch. A doubt on these lines does not seem to have been raised in past and things have never been examined with this particular aspect in mind. We want to ascertain the customary prevalent view in the literature that the systematic differences in the two broad morphology types of FR 1 and 2 radio galaxies are indeed due to the differences in their luminosities, and not due to a change in redshift. Here we investigate the dependence of FR 1/2 dichotomy of radio galaxies on luminosity and redshift by using the 3CR sample, where the FR 1/2 dichotomy was first seen, supplemented by data from an additional sample (MRC), that goes about a factor of 5 or more deeper in flux-density than the original 3CR sample. This lets us compare sources with similar luminosities but at different redshifts as well as examine sources at similar redshifts but with different luminosities, thereby allowing us a successful separation of the otherwise two intricately entangled effects. We find that the morphology type is not directly related to redshift and the break between the two types of morphologies seems to depend only upon the radio luminosity.

Polarization transfer in relativistic magnetized plasmas

The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency, or quasi resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle s population. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two variable integrals that can be conveniently computed for any set of parameters by using Olver s expansion of high order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or powerlaw, with different multipolar anisotropies of low order, or strongly beamed. For isotropic distributions, the Faraday coefficients are expressed in the form of a one variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. A similar reduction to a one-variable quadrature over energy is derived at high frequency for a large class of anisotropic distribution functions that may form a basis on which any smoothly anisotropic distribution could be expanded.

Polarization transfer in relativistic magnetized plasmas [Replacement]

The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency, or quasi resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle s population. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two variable integrals that can be conveniently computed for any set of parameters by using Olver s expansion of high order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or powerlaw, with different multipolar anisotropies of low order, or strongly beamed. For isotropic distributions, the Faraday coefficients are expressed in the form of a one variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. A similar reduction to a one-variable quadrature over energy is derived at high frequency for a large class of anisotropic distribution functions that may form a basis on which any smoothly anisotropic distribution could be expanded.

Two Types of Ergospheric Jets from Accreting Black Holes: The Dichotomy of Fanaroff-Riley Galaxies

We investigate the extraction of the rotational energy of a black hole under different accreting environment. When the accretion rate is moderate, the accretion disk consists of an outer thin disk and an inner advection-dominated accretion flow. In such a combined disk, the outer thin disk can sustain a magnetic field with moderate strength at the event horizon, leading to the formation of relativistic jets with moderate luminosity and speed via the magnetohrodynamic Penrose process. When the accretion rate increases enough, on the other hand, the disk becomes geometrically thin near the horizon. In this slim disk, the denser plasmas can sustain a stronger magnetic field than that in a combined disk, leading to the formation of jets with greater luminosity and speed via the Blandford-Znajek processs. It is discussed that the former jets are associated with the Fanaroff-Riley (FR) I galaxies and the latter with FR II galaxies.

Suzaku observations of 'bare' active galactic nuclei

We present a X-ray spectral analysis of a large sample of 25 ‘bare’ active galactic nuclei, sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection, and examining the implications of this interpretation for the intrinsic spectral complexities frequently displayed by AGN in the X-ray bandpass. During the analysis, we take the unique approach of attempting to simultaneously undertake a systematic analysis of the whole sample, as well as a detailed treatment of each individual source, and find that disc reflection has the required flexibility to successfully reproduce the broadband spectrum observed for all of the sources considered. Where possible, we use the reflected emission to place constraints on the black hole spin for this sample of sources. Our analysis suggests a general preference for rapidly rotating black holes, which if taken at face value is most consistent with the scenario in which SMBH growth is dominated by prolonged, ordered accretion. However, there may be observational biases towards AGN with high spin in the compiled sample, limiting our ability to draw strong conclusions for the general population at this stage. Finally, contrary to popular belief, our analysis also implies that the dichotomy between radio loud/radio quiet AGN is not solely related to black hole spin.

The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations [Replacement]

The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using STIS, ACS and WFC3. We provide a new tabulation of the transmission spectrum across the entire visible and IR range. The radius ratio in each wavelength band was rederived to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models: it is dominated by Rayleigh scattering over the whole visible and near infrared range, the only detected features being narrow Na and K lines. We interpret this as the signature of a haze of condensate grains extending over at least 5 scale heights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6um, the small hot-spot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.

The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations

The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together the results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using the STIS, ACS and WFC3 instruments. We provide a new transmission spectrum across the entire visible and infrared range. The radius ratio in each wavelength band was re-derived, where necessary, to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for both occulted and unocculted star spots, and derive realistic uncertainties. The combined spectrum is very different from the predictions of cloud-free models; it is dominated by Rayleigh scattering over the whole visible and NIR range, the only detected features being narrow Na and K lines. We interpret this as the signature of a haze of condensate grains extending over at least five scale heights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6um, the small hot-spot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.

UV and optical polarization modeling of thermal active galactic nuclei : impact of the narrow line region

In this research note, we start exploring the influence of the narrow line region (NLR) on the optical/UV continuum polarization of active galactic nuclei (AGN). We have upgraded our previous 3-component model of a thermal Seyfert nucleus that was composed of an equatorial, optically thin electron disc, a circumnuclear dusty torus, and a pair of collimated, optically thin electron winds (Marin et al.2012b). We have added a dusty extension with low optical depth to the outflows to account for continuum scattering and absorption inside the NLR. A spectropolarimetric comparison between our AGN models with and without NLR reprocessing is carried out. It turns out that the NLR can alter and even suppress the observed polarization dichotomy between type-1 and type-2 AGN. For type-2 AGN, it also significantly decreases the expected percentage of polarization and alters its spectral shape. While the NLR makes it more difficult to reproduce the observed polarization in type-1 objects, it helps to explain spectropolarimetry observations of type-2 objects. Further studies including clumpy media need to be carried out.

Constraints on off-axis jets from stellar tidal disruption flares [Replacement]

Many decades of observations of active galactic nuclei and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a massive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs), which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. And since the existing follow-up observation are mostly within ~10 months of the discovery, the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of seven known TDFs. To avoid missing delayed jet emission, our observations probe 1-8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57, the first and best-sampled relativistic TDF. We thus obtain evidence for a dichotomy in the stellar tidal disruption population, implying that the jet launching mechanism is sensitive to the parameters of the disruption.

Constraints on off-axis jets from stellar tidal disruption flares

Many decades of observations of active galactic nuclei and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a massive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs), which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. And since the existing followup observation are mostly within ~10 months of the discovery, the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of seven known TDFs. To avoid missing delayed jet emission, our observations probe 1-8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57, the first and best-sampled relativistic TDF. We thus obtain evidence for a dichotomy in the stellar tidal disruption population, implying that the jet launching mechanism is sensitive to the parameters of the disruption.

Modeling optical and UV polarization of AGNs II. Polarization imaging and complex reprocessing

We model the spectropolarimetric signature resulting from the radiative coupling between the innermost parts of active galactic nuclei (AGNs). We use a new public version of STOKES, a Monte Carlo radiative transfer code presented in the first paper of this series. The code has been significantly improved for computational speed and polarization imaging has been implemented. We couple continuum sources with equatorial scattering regions, polar outflows, and toroidal obscuring dust and we study the resulting polarization. We compute a grid of thermal AGN models for different half-opening angles of the torus and polar winds. We also consider a range of optical depths for equatorial and polar electron scattering and investigate how the model geometry influences the type-1/type-2 polarization dichotomy for thermal AGNs. We put new constrains on the inflowing medium within the inner walls of the torus. The inflow should be confined to the common equatorial plane of the torus and the accretion disc and have a radial optical depth of 1 < tau < 3. Our modeling of type-1 AGNs also indicates that the torus is more likely to have a large (~ 60{\deg}) half-opening angle. Polarization perpendicular to the axis of the torus may arise at a type-1 viewing angle for a torus half-opening angle of 30{\deg}- 45{\deg} or polar outflows with an optical depth near unity. Our modeling suggests that most Seyfert-2 AGN must have a half-opening angle > 60{\deg} to match the level of perpendicular polarization expected. If outflows are collimated by the torus inner walls, they must not be optically thick (tau < 1) in order to preserve the polarization dichotomy. The wind’s optical depth is found not to play a critical role for the degree of polarization of type-2 thermal AGNs but it has a significant impact on the type-1/type-2 polarization dichotomy when the optical depth exceeds tau = 0.3.

Disclosing the Radio Loudness Distribution Dichotomy in Quasars: An Unbiased Monte Carlo Approach Applied to the SDSS-FIRST Quasar Sample

We investigate the dichotomy in the radio loudness distribution of quasars by modelling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8,300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with 12+/-1 % of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average "louder", and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

Analysis of a selected sample of RR Lyrae stars in LMC from OGLE III

A systematic study of RR Lyrae stars is performed based on a selected sample of 655 objects in the Large Magellanic Cloud with observation of long span and numerous measurements by the Optical Gravitational Lensing Experiment III project. The Phase Dispersion Method and linear superposition of the harmonic oscillations are used to derive the pulsation frequency and variation properties. It is found that there exists an Oo I and Oo II dichotomy in the LMC RR Lyrae stars. Due to our strict criteria to identify a frequency, a lower limit of the incidence rate of Blazhko modulation in LMC is estimated in various subclasses of RR Lyrae stars. For fundamental-mode RR Lyrae stars, the rate 7.5% is smaller than previous result. In the case of the first-overtone RR Lyr variables, the rate 9.1% is relatively high. In addition to the Blazhko variables, fifteen objects are identified to pulsate in the fundamental/first-overtone double mode. Furthermore, four objects show a period ratio around 0.6 which makes them very likely the rare pulsators in the fundamental/second-overtone double-mode.

Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3

X-ray emission from AGN is dominated by the accretion disk around a SMBH. The radio luminosity, however, has not such a clear origin except in the most powerful sources where jets are evident. The origin (and even the very existence) of the local bi-modal distribution in radioloudness is also a debated issue. By analysing X-ray, optical and radio properties of a large sample of type 1 AGN up to z>2, where the bulk of this population resides, we aim to explore the interplay between radio and X-ray emission in AGN, in order to further our knowledge on the origin of radio emission, and its relation to accretion. We analyse a large (~800 sources) sample of type 1 AGN and QSOs selected from the 2XMMi X-ray source catalogue, cross-correlated with the SDSS DR7 spectroscopic catalogue, covering a redshift range from z~0.3 to z~2.3. SMBH masses are estimated from the Mg II emission line, bolometric luminosities from the X-ray data, and radio emission or upper limits from the FIRST catalogue. Most of the sources accrete close to the Eddington limit and the distribution in radioloudness does not appear to have a bi-modal behaviour. We confirm that radioloud AGN are also X-ray loud, with an X-ray-to-optical ratio up to twice that of radioquiet objects, even excluding the most extreme strongly jetted sources. By analysing complementary radio-selected control samples, we find evidence that these conclusions are not an effect of the X-ray selection, but are likely a property of the dominant QSO population. Our findings are best interpreted in a context where radio emission in AGN, with the exception of a minority of beamed sources, arises from very close to the accretion disk and is therefore heavily linked to X-ray emission. We also speculate that the RL/RQ dichotomy might either be an evolutionary effect that developed well after the QSO peak epoch, or an effect of incompleteness in small samples.

High-Frequency Quasi-Periodic Oscillations in black-hole binaries

We present the results of the analysis of a large database of X-ray observations of 22 galactic black-hole transients with the Rossi X-Ray timing explorer throughout its operative life for a total exposure time of ~12 Ms. We excluded persistent systems and the peculiar source GRS 1915+105, as well as the most recently discovered sources. The semi-automatic homogeneous analysis was aimed at the detection of high-frequency (100-1000 Hz) quasi-periodic oscillations (QPO), of which several cases were previously reported in the literature. After taking into account the number of independent trials, we obtained 11 detections from two sources only: XTE J1550-564 and GRO J1655-40. For the former, the detected frequencies are clustered around 180 Hz and 280 Hz, as previously found. For the latter, the previously-reported dichotomy 300-450 Hz is found to be less sharp. We discuss our results in comparison with kHz QPO in neutron-star X-ray binaries and the prospects for future timing X-ray missions.

Can planetary instability explain the Kepler dichotomy? [Replacement]

The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16-months data as templates for physical triple-planet systems and perform synthetic transit observations. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around five degrees. Our analysis shows that the Kepler data contains a population of planets larger than four Earth radii in single-transit systems that can not arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N-body simulations of mass-boosted triple-planet systems and observe how the systems heat up and lose planets, most frequently by planet-planet collisions, yielding transits in agreement with the large planets in the Kepler single-transit systems. The resulting population of massive double-planet systems can nevertheless not explain the additional excess of low-mass planets among the observed single-transit systems and the lack of gas-giant planets in double-transit and triple-transit systems. Planetary instability of systems of triple gas-giant planets can be behind part of the dichotomy between systems hosting one or more small planets and those hosting a single giant planet. The main part of the dichotomy, however, is more likely to have arisen already during planet formation when the formation, migration or scattering of a massive planet, triggered above a threshold metallicity, suppressed the formation of other planets in sub-AU orbits.

Can planetary instability explain the Kepler dichotomy?

The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16-months data as templates for physical triple-planet systems and perform synthetic transit observations. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around five degrees. Our analysis shows that the Kepler data contains a population of planets larger than four Earth radii in single-transit systems that can not arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N-body simulations of mass-boosted triple-planet systems and observe how the systems heat up and lose planets, most frequently by planet-planet collisions, yielding transits in agreement with the large planets in the Kepler single-transit systems. The resulting population of massive double-planet systems can nevertheless not explain the additional excess of low-mass planets among the observed single-transit systems and the lack of gas-giant planets in double-transit and triple-transit systems. While planetary instability of systems of triple gas-giant planets can be behind part of the dichotomy in the Kepler data between systems showing one transit and systems showing two or more transits, the main part of the dichotomy is more likely to have arisen already during planet formation when the formation, migration or scattering of a massive planet, triggered above a threshold metallicity, suppressed the formation of other planets in sub-AU orbits.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^