Array ( [0] => tag/core/ ) core « Vox Charta

Posts Tagged core

Recent Postings from core

G305.136+0.068: A massive and dense cold core in an early stage of evolution

We report molecular line observations, made with ASTE and SEST, and dust continuum observations at 0.87 mm, made with APEX, towards the cold dust core G305.136+0.068. The molecular observations show that the core is isolated and roughly circularly symmetric and imply that it has a mass of $1.1\times10^3~M_\odot$. A simultaneous model fitting of the spectra observed in four transitions of CS, using a non-LTE radiative transfer code, indicates that the core is centrally condensed, with the density decreasing with radius as $r^{-1.8}$, and that the turbulent velocity increases towards the center. The dust observations also indicate that the core is highly centrally condensed and that the average column density is 1.1 g cm$^{-2}$, value slightly above the theoretical threshold required for the formation of high mass stars. A fit to the spectral energy distribution of the emission from the core indicates a dust temperature of $17\pm2$ K, confirming that the core is cold. Spitzer images show that the core is seen in silhouette from 3.6 to 24.0 $\mu$m and that is surrounded by an envelope of emission, presumably tracing an externally excited photo-dissociated region. We found two embedded sources within a region of 20" centered at the peak of the core, one of which is young, has a luminosity of $66~L_\odot$ and is accreting mass with a high accretion rate, of $\sim1\times10^{-4}~M_\odot$ yr$^{-1}$. We suggest that this object corresponds to the seed of a high mass protostar still in the process of formation. The present observations support the hypothesis that G305.136+0.068 is a massive and dense cold core in an early stage of evolution, in which the formation of a high mass star has just started.

Vacuum currents induced by a magnetic flux around a cosmic string with finite core [Cross-Listing]

We evaluate the Hadamard function and the vacuum expectation value of the current density for a massive complex scalar field in the generalized geometry of a straight cosmic string with a finite core enclosing an arbitrary distributed magnetic flux along the string axis. For the interior geometry, a general cylindrically symmetric static metric tensor is used with finite support. In the region outside the core, both the Hadamard function and the current density are decomposed into the idealized zero-thickness cosmic string and core-induced contributions. The only nonzero component corresponds to the azimuthal current. The zero-thickness part of the latter is a periodic function of the magnetic flux inside the core, with the period equal to the quantum flux. As a consequence of the direct interaction of the quantum field with the magnetic field inside the penetrable core, the core-induced contribution, in general, is not a periodic function of the flux. In addition, the vacuum current, in general, is not a monotonic function of the distance from the string and may change the sign. For a general model of the core interior, we also evaluate the magnetic fields generated by the vacuum current. As applications of the general results, we have considered an impenetrable core modeled by Robin boundary condition, a core with the Minkowski-like interior and a core with a constant positive curvature space. Various exactly solvable distributions of the magnetic flux are discussed.

Vacuum currents induced by a magnetic flux around a cosmic string with finite core [Cross-Listing]

We evaluate the Hadamard function and the vacuum expectation value of the current density for a massive complex scalar field in the generalized geometry of a straight cosmic string with a finite core enclosing an arbitrary distributed magnetic flux along the string axis. For the interior geometry, a general cylindrically symmetric static metric tensor is used with finite support. In the region outside the core, both the Hadamard function and the current density are decomposed into the idealized zero-thickness cosmic string and core-induced contributions. The only nonzero component corresponds to the azimuthal current. The zero-thickness part of the latter is a periodic function of the magnetic flux inside the core, with the period equal to the quantum flux. As a consequence of the direct interaction of the quantum field with the magnetic field inside the penetrable core, the core-induced contribution, in general, is not a periodic function of the flux. In addition, the vacuum current, in general, is not a monotonic function of the distance from the string and may change the sign. For a general model of the core interior, we also evaluate the magnetic fields generated by the vacuum current. As applications of the general results, we have considered an impenetrable core modeled by Robin boundary condition, a core with the Minkowski-like interior and a core with a constant positive curvature space. Various exactly solvable distributions of the magnetic flux are discussed.

Vacuum currents induced by a magnetic flux around a cosmic string with finite core

We evaluate the Hadamard function and the vacuum expectation value of the current density for a massive complex scalar field in the generalized geometry of a straight cosmic string with a finite core enclosing an arbitrary distributed magnetic flux along the string axis. For the interior geometry, a general cylindrically symmetric static metric tensor is used with finite support. In the region outside the core, both the Hadamard function and the current density are decomposed into the idealized zero-thickness cosmic string and core-induced contributions. The only nonzero component corresponds to the azimuthal current. The zero-thickness part of the latter is a periodic function of the magnetic flux inside the core, with the period equal to the quantum flux. As a consequence of the direct interaction of the quantum field with the magnetic field inside the penetrable core, the core-induced contribution, in general, is not a periodic function of the flux. In addition, the vacuum current, in general, is not a monotonic function of the distance from the string and may change the sign. For a general model of the core interior, we also evaluate the magnetic fields generated by the vacuum current. As applications of the general results, we have considered an impenetrable core modeled by Robin boundary condition, a core with the Minkowski-like interior and a core with a constant positive curvature space. Various exactly solvable distributions of the magnetic flux are discussed.

Colliding Filaments and a Massive Dense Core in the Cygnus OB 7 Molecular Cloud

We report results of molecular line observations carried out toward a massive dense core in the Cyg OB 7 molecular cloud. The core has an extraordinarily large mass ($\sim1.1 \times 10^4$ $M_\odot$) and size ($\sim2 \times 5$ pc$^2$), but there is no massive young star forming therein. We observed this core in various molecular lines such as C$^{18}$O($J=1-0$) using the 45m telescope at Nobeyama Radio Observatory. We find that the core has an elongated morphology consisting of several filaments and core-like structures. The filaments are massive ($10^2-10^3$ $M_\odot$), and they are apparently colliding against each other. Some candidates of YSOs are distributed around their intersection, suggesting that the collisions of the filaments may have influenced on their formation. To understand the formation and evolution of such colliding filaments, we performed numerical simulations using the adaptive mesh refinement (AMR) technique adopting the observed core parameters (e.g., the mass and size) as the initial conditions. Results indicate that the filaments are formed as seen in other earlier simulations for small cores in literature, but we could not reproduce the collisions of the filaments simply by assuming the large initial mass and size. We find that the collisions of the filaments occur only when there is a large velocity gradient in the initial core in a sense to compress it. We suggest that the observed core was actually compressed by an external effect, e.g., shocks of nearby supernova remnants including HB21 which has been suggested to be interacting with the Cyg OB 7 molecular cloud.

A Radio and X-ray Study of the Merging Cluster A2319

A2319 is a massive, merging galaxy cluster with a previously detected radio halo that roughly follows the X-ray emitting gas. We present the results from recent observations of A2319 at 20 cm with the Jansky Very Large Array (VLA) and a re-analysis of the X-ray observations from XMM-Newton, to investigate the interactions between the thermal and nonthermal components of the ICM . We confirm previous reports of an X-ray cold front, and report on the discovery of a distinct core to the radio halo, 800 kpc in extent, that is strikingly similar in morphology to the X-ray emission, and drops sharply in brightness at the cold front. We detect additional radio emission trailing off from the core, which blends smoothly into the 2 Mpc halo detected with the Green Bank Telescope (GBT; Farnsworth et al., 2013). We speculate on the possible mechanisms for such a two-component radio halo, with sloshing playing a dominant role in the core. By directly comparing the X-ray and radio emission, we find that a hadronic origin for the cosmic ray electrons responsible for the radio halo would require a magnetic field and/or cosmic ray proton distribution that increases with radial distance from the cluster center, and is therefore disfavored.

An elongated iron-rich structure in the core of the group NGC4325

We used X-ray 2D spectrally resolved maps to resolve structure in temperature and metal abundance. To perform stellar population analysis we applied the spectral fitting technique with STARLIGHT to the optical spectrum of the central galaxy. To simulate the chemical evolution of the central galaxy we adopted the codes of Lanfranchi & Matteucci (2003,2004) While the temperature, pseudo-pressure and pseudo-entropy maps showed no inhomogeneities, the iron spatial distribution shows a filamentary structure in the core of this group, which is spatially correlated with the central galaxy, suggesting a connection between the two. The analysis of the optical spectrum of the central galaxy showed no contribution of any recent AGN activity. Using the star formation history as an input to chemical evolution models, we predicted the iron and oxygen mass released by supernovae (SNe) winds in the central galaxy up to the present time. Comparing the predicted amount of mass released by the NGC4325 galaxy to the ones derived through X-ray analysis we conclude that the winds from the central galaxy alone play a minor role in the IGM metal enrichment of this group inside r2500. The SNe winds are responsible for not more than 3% and of the iron mass and 21% of the oxygen mass enclosed within r2500. Our results suggest that oxygen has been produced in the early stages of the group formation, becoming well mixed and leading to an almost flat profile. Instead, the iron distribution is centrally peaked indicating that this element is still being added to the IGM specifically in the core by the SNIa. A possible scenario to explain the elongated iron-rich structure in the core of the NGC4325 is a past AGN activity, in which our results suggest an episode older than ~10^7-10^8 yrs and younger than 5×10^8.

A metal-rich elongated structure in the core of the group NGC4325 [Replacement]

We used X-ray 2D spectrally resolved maps to resolve structure in temperature and metal abundance. To perform stellar population analysis we applied the spectral fitting technique with STARLIGHT to the optical spectrum of the central galaxy. We simulated the chemical evolution of the central galaxy. While the temperature, pseudo-pressure, and pseudo-entropy maps showed no inhomogeneities, the iron spatial distribution shows a filamentary structure in the core of this group, which is spatially correlated with the central galaxy, suggesting a connection between the two. The analysis of the optical spectrum of the central galaxy showed no contribution by any recent AGN activity. Using the star formation history as input to chemical evolution models, we predicted the iron and oxygen mass released by supernovae (SNe) winds in the central galaxy up to the present time. Comparing the predicted amount of mass released by the NGC4325 galaxy to the ones derived through X-ray analysis we conclude that the winds from the central galaxy alone play a minor role in the IGM metal enrichment of this group inside r2500. The SNe winds are responsible for no more than 3% of it and of the iron mass and 21% of the oxygen mass enclosed within r2500. Our results suggest that oxygen has been produced in the early stages of the group formation, becoming well mixed and leading to an almost flat profile. Instead, the iron distribution is centrally peaked, indicating that this element is still being added to the IGM specifically in the core by the SNIa. A possible scenario to explain the elongated iron-rich structure in the core of the NGC4325 is a past AGN activity, in which our results suggest an episode older than ~10^7-10^8 yrs and younger than 5×10^8.

The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping

We present the results of deep Chandra, XMM-Newton and Suzaku observations of the nearby galaxy cluster Abell 85, which is currently undergoing at least two mergers, and in addition shows evidence for gas sloshing which extends out to r~600 kpc. One of the two infalling subclusters, to the south of the main cluster center, has a dense, X-ray bright cool core and a tail extending to the southeast. The northern edge of this tail is strikingly smooth and sharp (narrower than the Coulomb mean free path of the ambient gas) over a length of 200 kpc, while toward the southwest the boundary of the tail is blurred and bent, indicating a difference in the plasma transport properties between these two edges. The thermodynamic structure of the tail strongly supports an overall northwestward motion, with a sloshing-induced tangential ambient gas bulk flow bending the tail eastward. The brightest galaxy of this subcluster is at the leading edge of the dense core, and is trailed by the tail of stripped gas, suggesting that the cool core of the subcluster has been almost completely destroyed by the time it reached its current radius of r~500 kpc. The tail of the subcluster is visibly clumpy, and we see a clumpy surface-brightness excess extending toward the southeast out to at least r_500 of the main cluster. Thus, it appears that gas stripping from infalling subclusters can efficiently seed clumping in the intracluster medium. The second merging subcluster appears to be a diffuse non-cool core system. Its merger is supersonic with a Mach number of ~1.4.

Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV=4×10^60 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central AGN inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the BCG, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.

Dynamics of the envelope of a rapidly rotating star or giant planet in gravitational contraction

We wish to understand the processes that control the fluid flows of a gravitationally contracting and rotating star or giant planet. We consider a spherical shell containing an incompressible fluid that is slowly absorbed by the core so as to mimick gravitational contraction. We also consider the effects of a stable stratification that may also modify the dynamics of a pre-main sequence star of intermediate mass. This simple model reveals the importance of both the Stewartson layer attached to the core and the boundary conditions met by the fluid at the surface of the object. In the case of a pre-main sequence star of intermediate mass where the envelope is stably stratified, shortly after the birth line, the spin-up flow driven by contraction overwhelms the baroclinic flow that would take place otherwise.This model also shows that for a contracting envelope, a self-similar flow of growing amplitude controls the dynamics. It suggests that initial conditions on the birth line are most probably forgotten. Finally, the model shows that the near (Stewartson) layer that lies on the tangent cylinder of the core is likely a key feature of the dynamics that is missing in 1D models.This layer can explain the core and envelope rotational coupling that is required to explain the slow rotation of cores in giant and subgiants stars.

Unveiling the near-infrared structure of the massive-young stellar object NGC3603 IRS 9A with sparse aperture masking and spectroastrometry

According to the current theories, massive stars gather mass during their initial phases via accreting disk-like structures. However, those disks have remained elusive for massive young objects. This is mainly because of the observational challenges due to the large distances at which they are located, their rareness, and the high interstellar extinction. Therefore, the study of each young massive stellar object matters. NGC 3603 IRS 9A is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work studies the IRS 9A physics and morphology at near-infrared wavelengths. This study analyzed new sparse aperture masking data taken with NACO/VLT at K s and Lp filters in addition to archive CRIRES spectra of the H2 and Br_gamma lines. The calibrated visibilities trends of the Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, and the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas), while the Br_gamma line appears to be formed at the core of the object (20 mas). Our best model supports the existence of the aforementioned compact disk, and the presence of an outer envelope with a polar cavity. This model also reproduces the MIR morphology previously derived in the literature. Furthermore, it also describes consistently the SED of the source. Moreover, the Br_gamma spectroastrometric signal suggests that the core of IRS 9A is more complex and that asymmetries in the disk and/or binary should be consider. New high-resolution observations are thus required to confirm the aforementioned hypothesis and to complement the physical scenario of IRS 9A.

Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry [Replacement]

Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A physics at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NaCo/VLT at Ks and Lp filters were obtained and analyzed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). Our best model supports the existence of a compact disk together with an outer envelope exhibiting a polar cavity with an opening angle of 30 deg. This model reproduces the MIR morphology previously derived in the literature and also matches the SED of the source. On the other hand, the spectroastrometric signal of the BrG line shows that some component, but not all, of the ionized gas shares the disk’s orbital plane. This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales.

Detecting gravity modes in the solar $^8B$ neutrino flux

The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the $^{8}B$ neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order $2$, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun’s core is smaller than $5.8\times 10^{-4}$. This study clearly shows that due to their high sensitivity to the temperature, the $^8B$ neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the $^{8}B$ neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

Detecting gravity modes in the solar $^8B$ neutrino flux [Cross-Listing]

The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the $^{8}B$ neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order $2$, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun’s core is smaller than $5.8\times 10^{-4}$. This study clearly shows that due to their high sensitivity to the temperature, the $^8B$ neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the $^{8}B$ neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

Feedback, scatter and structure in the core of the PKS 0745-191 galaxy cluster

We present Chandra X-ray Observatory observations of the core of the galaxy cluster PKS 0745-191. Its centre shows X-ray cavities caused by AGN feedback and cold fronts with an associated spiral structure. The cavity energetics imply they are powerful enough to compensate for cooling. Despite the evidence for AGN feedback, the Chandra and XMM-RGS X-ray spectra are consistent with a few hundred solar masses per year cooling out of the X-ray phase, sufficient to power the emission line nebula. The coolest X-ray emitting gas and brightest nebula emission is offset by around 5 kpc from the radio and X-ray nucleus. Although the cluster has a regular appearance, its core shows density, temperature and pressure deviations over the inner 100 kpc, likely associated with the cold fronts. After correcting for ellipticity and projection effects, we estimate density fluctuations of ~4 per cent, while temperature, pressure and entropy have variations of 10-12 per cent. We describe a new code, MBPROJ, able to accurately obtain thermodynamical cluster profiles, under the assumptions of hydrostatic equilibrium and spherical symmetry. The forward-fitting code compares model to observed profiles using Markov Chain Monte Carlo and is applicable to surveys, operating on 1000 or fewer counts. In PKS0745 a very low gravitational acceleration is preferred within 40 kpc radius from the core, indicating a lack of hydrostatic equilibrium, deviations from spherical symmetry or non-thermal sources of pressure.

Thermal conductivity due to phonons in the core of superfluid neutron stars

We compute the contribution of phonons to the thermal conductivity in the core of superfluid neutron stars. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. We also calculate the phonon dispersion law beyond linear order, which depends on the gap of superfluid neutron matter. With all these ingredients, we solve the Boltzmann equation numerically using a variational approach. We find that the thermal conductivity $\kappa$ is dominated by combined small and large angle binary collisions. As in the color-flavor-locked superfluid, we find that our result can be well approximated by $\kappa \propto 1/ \Delta^6$, where $\Delta$ is the neutron gap, the constant of proportionality depending on the density. We further comment on the possible relevance of electron and superfluid phonon collisions in obtaining the total contribution to the thermal conductivity in the core of superfluid neutron stars.

Thermal conductivity due to phonons in the core of superfluid neutron stars [Replacement]

We compute the contribution of phonons to the thermal conductivity in the core of superfluid neutron stars. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. We also calculate the phonon dispersion law beyond linear order, which depends on the gap of superfluid neutron matter. With all these ingredients, we solve the Boltzmann equation numerically using a variational approach. We find that the thermal conductivity $\kappa$ is dominated by combined small and large angle binary collisions. As in the color-flavor-locked superfluid, we find that our result can be well approximated by $\kappa \propto 1/ \Delta^6$, where $\Delta$ is the neutron gap, the constant of proportionality depending on the density. We further comment on the possible relevance of electron and superfluid phonon collisions in obtaining the total contribution to the thermal conductivity in the core of superfluid neutron stars.

Thermal conductivity due to phonons in the core of superfluid neutron stars [Cross-Listing]

We compute the contribution of phonons to the thermal conductivity in the core of superfluid neutron stars. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. We also calculate the phonon dispersion law beyond linear order, which depends on the gap of superfluid neutron matter. With all these ingredients, we solve the Boltzmann equation numerically using a variational approach. We find that the thermal conductivity $\kappa$ is dominated by combined small and large angle binary collisions. As in the color-flavor-locked superfluid, we find that our result can be well approximated by $\kappa \propto 1/ \Delta^6$, where $\Delta$ is the neutron gap, the constant of proportionality depending on the density. We further comment on the possible relevance of electron and superfluid phonon collisions in obtaining the total contribution to the thermal conductivity in the core of superfluid neutron stars.

Thermal conductivity due to phonons in the core of superfluid neutron stars [Replacement]

We compute the contribution of phonons to the thermal conductivity in the core of superfluid neutron stars. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. We also calculate the phonon dispersion law beyond linear order, which depends on the gap of superfluid neutron matter. With all these ingredients, we solve the Boltzmann equation numerically using a variational approach. We find that the thermal conductivity $\kappa$ is dominated by combined small and large angle binary collisions. As in the color-flavor-locked superfluid, we find that our result can be well approximated by $\kappa \propto 1/ \Delta^6$, where $\Delta$ is the neutron gap, the constant of proportionality depending on the density. We further comment on the possible relevance of electron and superfluid phonon collisions in obtaining the total contribution to the thermal conductivity in the core of superfluid neutron stars.

Thermal conductivity due to phonons in the core of superfluid neutron stars [Replacement]

We compute the contribution of phonons to the thermal conductivity in the core of superfluid neutron stars. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. We also calculate the phonon dispersion law beyond linear order, which depends on the gap of superfluid neutron matter. With all these ingredients, we solve the Boltzmann equation numerically using a variational approach. We find that the thermal conductivity $\kappa$ is dominated by combined small and large angle binary collisions. As in the color-flavor-locked superfluid, we find that our result can be well approximated by $\kappa \propto 1/ \Delta^6$, where $\Delta$ is the neutron gap, the constant of proportionality depending on the density. We further comment on the possible relevance of electron and superfluid phonon collisions in obtaining the total contribution to the thermal conductivity in the core of superfluid neutron stars.

Constraints on Core Collapse from the Black Hole Mass Function

We model the observed black hole mass function under the assumption that black hole formation is controlled by the compactness of the stellar core at the time of collapse. Low compactness stars are more likely to explode as supernovae and produce neutron stars, while high compactness stars are more likely to be failed supernovae that produce black holes with the mass of the helium core of the star. Using three sequences of stellar models and marginalizing over a model for the completeness of the black hole mass function, we find that the compactness xi(2.5) above which 50% of core collapses produce black holes is xi(2.5)=0.24 (0.15 < xi(2.5) < 0.37) at 90% confidence). While models with a sharp transition between successful and failed explosions are always the most likely, the width of the transition between the minimum compactness for black hole formation and the compactness above which all core collapses produce black holes is not well constrained. The models also predict that f=0.18 (0.09 < f < 0.39) of core collapses fail assuming a minimum mass for core collapse of 8Msun. We tested four other criteria for black hole formation based on xi(2.0) and xi(3.0), the compactnesses at enclosed masses of 2.0 or 3.0 rather than 2.5Msun, the mass of the iron core, and the mass inside the oxygen burning shell. We found that xi(2.0) works as well as xi(2.5), while the compactness xi(3.0) works significantly worse, as does using the iron core mass or the mass enclosed by the oxygen burning shell. As expected from the high compactness of 20-25Msun stars, black hole formation in this mass range provides a natural explanation of the red supergiant problem.

A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake

We present a new analysis of very deep \cha \ observations of the galaxy cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the Intracluster Medium (ICM) on length scales of $\sim 1 \kpc$ near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the BCG that appears to arise from the bulk motion of Abell 1795′s cool core. To the south of the cool core, we find low temperature ($ \sim 3 \keV$), diffuse ICM gas extending for distances of $\sim 50 \kpc$ spatially coincident with previously identified filaments of H$\alpha$ emission. Gas at similar temperatures is also detected in adjacent regions without any H$\alpha$ emission. The X-ray gas coincident with the H$\alpha$ filament has been measured to be cooling spectroscopically at a rate of $\sim 1 \msolar \yr^{-1}$, consistent with measurements of the star formation rate in this region as inferred from UV observations, suggesting that the star formation in this filament as inferred by its H$\alpha$ and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The H$\alpha$ filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with H$\alpha$ emission is observed just to the west of the H$\alpha$ filament, suggesting that it may have been uplifted by Abell 1795′s central active galaxy. Further simulations of cool core sloshing and AGN feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the H$\alpha$ emission is so localized with respect to the cool X-ray gas despite the evidence for a catastrophic cooling flow.

A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake [Replacement]

We present a new analysis of very deep Chandra observations of the galaxy cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the Intracluster Medium (ICM) on length scales of ~ 1 kpc near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the BCG that appears to arise from the bulk motion of Abell 1795′s cool core. To the south of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending for distances of ~ 50 kpc spatially coincident with previously identified filaments of H-alpha emission. Gas at similar temperatures is also detected in adjacent regions without any H-alpha emission. The X-ray gas coincident with the H-alpha filament has been measured to be cooling spectroscopically at a rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star formation rate in this region as inferred from UV observations, suggesting that the star formation in this filament as inferred by its H$\alpha$ and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with H$\alpha$ emission is observed just to the west of the H-alpha filament, suggesting that it may have been uplifted by Abell 1795′s central active galaxy. Further simulations of cool core sloshing and AGN feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the H-alpha emission is so localized with respect to the cool X-ray gas despite the evidence for a catastrophic cooling flow.

Thermal emission of neutron stars with internal heaters

Using 1D and 2D cooling codes we study thermal emission from neutron stars with steady state internal heaters of various intensities and geometries (blobs or spherical layers) located at different depths in the crust. The generated heat tends to propagate radially, from the heater down to the stellar core and up to the surface; it is also emitted by neutrinos. In local regions near the heater the results are well described with the 1D code. The heater’s region projects onto the stellar surface forming a hot spot. There are two heat propagation regimes. In the first, conduction outflow regime (realized at heat rates $H_0 \lesssim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or temperatures $T_\mathrm{h} \lesssim 10^9$ K in the heater) the thermal surface emission of the star depends on the heater’s power and neutrino emission in the stellar core. In the second, neutrino outflow regime ($H_0 \gtrsim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or $T_\mathrm{h} \gtrsim 10^9$ K) the surface thermal emission becomes independent of heater’s power and the physics of the core. The largest (a few per cent) fraction of heat power is carried to the surface if the heater is in the outer crust and the heat regime is intermediate. The results can be used for modeling young cooling neutron stars (prior to the end of internal thermal relaxation), neutron stars in X-ray transients, magnetars and high-$B$ pulsars, as well as merging neutron stars.

Growth of Jupiter: Enhancement of Core Accretion by a Voluminous Low-Mass Envelope

We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 50 kilometers. The evolution of the swarm accounts for growth and fragmentation, viscous and gravitational stirring, and for drag-assisted migration and velocity damping. During this evolution, less than 9% of the mass is in planetesimals smaller than 1 kilometer in radius; < ~25% is in planetesimals with radii between 1 and 10 kilometers; and < ~7% is in bodies with radii larger than 100 kilometers. Gas capture by the core substantially enhances the size-dependent cross-section of the planet for accretion of planetesimals. The calculation of dust opacity in the planet’s envelope accounts for coagulation and sedimentation of dust particles released as planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and the initial solids’ surface density is 10 g/cm^2 at that distance. The results give a core mass of nearly 7.3 Earth masses (Mearth) and an envelope mass of approximately 0.15 Mearth after about 4e5 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope yields a core of only about 4.4 Mearth.

Growth of Jupiter: Enhancement of Core Accretion by a Voluminous Low-Mass Envelope [Replacement]

We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 50 kilometers. The evolution of the swarm accounts for growth and fragmentation, viscous and gravitational stirring, and for drag-assisted migration and velocity damping. During this evolution, less than 9% of the mass is in planetesimals smaller than 1 kilometer in radius; < ~25% is in planetesimals with radii between 1 and 10 kilometers; and < ~7% is in bodies with radii larger than 100 kilometers. Gas capture by the core substantially enhances the size-dependent cross-section of the planet for accretion of planetesimals. The calculation of dust opacity in the planet’s envelope accounts for coagulation and sedimentation of dust particles released as planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and the initial solids’ surface density is 10 g/cm^2 at that distance. The results give a core mass of nearly 7.3 Earth masses (Mearth) and an envelope mass of approximately 0.15 Mearth after about 4e5 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope yields a core of only about 4.4 Mearth.

Sterile neutrino oscillations in core-collapse supernovae [Replacement]

We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.

Sterile neutrino oscillations in core-collapse supernova simulations

We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that an interesting oscillation in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.

Sterile neutrino oscillations in core-collapse supernovae [Replacement]

We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.

The hot core towards the intermediate mass protostar NGC7129 FIRS 2: Chemical similarities with Orion KL

NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8 Msun) protostar located at a distance of 1250 pc. High spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218200 MHz to 221800 MHz carried out with the IRAM Plateau de Bure Interferometer. These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30m telescope. We used a Local Thermodynamic Equilibrium (LTE) single temperature code to model the whole dataset. The interferometric spectrum is crowded with a total of ~300 lines from which a few dozens remain unidentified yet. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN) and the aGg’ conformer of ethylene glycol (aGg’-(CH2OH)_2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N and CH3CHO proves the existence of gas and dust at high temperatures. In fact, the gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS~2 and the Orion hot core. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse phase in the case of Orion) and/or different crossing time of the gas in the hot core can explain this behavior.

Asteroseismic measurement of surface-to-core rotation in a main sequence A star, KIC 11145123 [Replacement]

We have discovered rotationally split core g-mode triplets and surface p-mode triplets and quintuplets in a terminal age main sequence A star, KIC 11145123, that shows both $\delta$ Sct p-mode pulsations and $\gamma$ Dor g-mode pulsations. This gives the first robust determination of the rotation of the deep core and surface of a main sequence star, essentially model-independently. We find its rotation to be nearly uniform with a period near 100 d, but we show with high confidence that the surface rotates slightly faster than the core. A strong angular momentum transfer mechanism must be operating to produce the nearly rigid rotation, and a mechanism other than viscosity must be operating to produce a more rapidly rotating surface than core. Our asteroseismic result, along with previous asteroseismic constraints on internal rotation in some B stars, and measurements of internal rotation in some subgiant, giant and white dwarf stars, has made angular momentum transport in stars throughout their lifetimes an observational science.

Mapping the particle acceleration in the cool core of the galaxy cluster RX J1720.1+2638

We present new deep, high-resolution radio images of the diffuse minihalo in the cool core of the galaxy cluster RX ,J1720.1+2638. The images have been obtained with the Giant Metrewave Radio Telescope at 317, 617 and 1280 MHz and with the Very Large Array at 1.5, 4.9 and 8.4 GHz, with angular resolutions ranging from 1" to 10". This represents the best radio spectral and imaging dataset for any minihalo. Most of the radio flux of the minihalo arises from a bright central component with a maximum radius of ~80 kpc. A fainter tail of emission extends out from the central component to form a spiral-shaped structure with a length of ~230 kpc, seen at frequencies 1.5 GHz and below. We observe steepening of the total radio spectrum of the minihalo at high frequencies. Furthermore, a spectral index image shows that the spectrum of the diffuse emission steepens with the increasing distance along the tail. A striking spatial correlation is observed between the minihalo emission and two cold fronts visible in the Chandra X-ray image of this cool core. These cold fronts confine the minihalo, as also seen in numerical simulations of minihalo formation by sloshing-induced turbulence. All these observations provide support to the hypothesis that the radio emitting electrons in cluster cool cores are produced by turbulent reacceleration.

Mapping the particle acceleration in the cool core of the galaxy cluster RX J1720.1+2638 [Replacement]

We present new deep, high-resolution radio images of the diffuse minihalo in the cool core of the galaxy cluster RX J1720.1+2638. The images have been obtained with the Giant Metrewave Radio Telescope at 317, 617 and 1280 MHz and with the Very Large Array at 1.5, 4.9 and 8.4 GHz, with angular resolutions ranging from 1" to 10". This represents the best radio spectral and imaging dataset for any minihalo. Most of the radio flux of the minihalo arises from a bright central component with a maximum radius of ~80 kpc. A fainter tail of emission extends out from the central component to form a spiral-shaped structure with a length of ~230 kpc, seen at frequencies 1.5 GHz and below. We find indication of a possible steepening of the total radio spectrum of the minihalo at high frequencies. Furthermore, a spectral index image shows that the spectrum of the diffuse emission steepens with the increasing distance along the tail. A striking spatial correlation is observed between the minihalo emission and two cold fronts visible in the Chandra X-ray image of this cool core. These cold fronts confine the minihalo, as also seen in numerical simulations of minihalo formation by sloshing-induced turbulence. All these observations favor the hypothesis that the radio emitting electrons in cluster cool cores are produced by turbulent reacceleration.

Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable discs

Giant planet formation in the core accretion (CA) paradigm is predicated by the formation of a core, assembled by the coagulation of grains and later by planetesimals within a protoplanetary disc. In contrast, in the disc instability paradigm, giant planet formation is believed to be independent of core formation: massive self-gravitating gas fragments cool radiatively and collapse as a whole. We show that giant planet formation in the disc instability model may be also enhanced by core formation for reasons physically very similar to the CA paradigm. In the model explored here, efficient grain sedimentation within an initial fragment (rather than the disc) leads to the formation of a core composed of heavy elements. We find that massive atmospheres form around cores and undergo collapse as a critical core mass is exceeded, analogous to CA theory. The critical mass of the core to initiate such a collapse depends on the fragment mass and metallicity, as well as core luminosity, but ranges from less than 1 to as much as $\sim80$ Earth masses. We therefore suggest that there are two channels for the collapse of a gaseous fragment to planetary scales within the disc instability model: (i) H$_2$ dissociative collapse of the entire gaseous clump, and (ii) core-assisted gas capture, as presented here. We suggest that the first of these two is favoured in metal-poor environments and for fragments more massive than $\sim 5-10$ Jupiter masses, whereas the second is favored in metal-rich environments and fragments of lower mass. [Abridged]

Detecting scattered light from low-mass molecular cores at 3.6 $\mu$m - Impact of global effects on the observation of coreshine

Recently discovered scattered light at 3-5 $\mu$m from low-mass cores (so-called "coreshine") reveals the presence of grains around 1 $\mu$m, which is larger than the grains found in the low-density interstellar medium. But only about half of the 100+ cores investigated so far show the effect. This prompts further studies on the origin of this detection rate. From the 3D continuum radiative transfer equation, we derive the expected scattered light intensity from a core placed in an arbitrary direction seen from Earth. We use the approximation of single scattering, consider extinction up to 2nd-order Taylor approximation, and neglect spatial gradients in the dust size distribution. The impact of the directional characteristics of the scattering on the detection of scattered light from cores is calculated for a given grain size distribution, and local effects like additional radiation field components are discussed. The surface brightness profiles of a core with a 1D density profile are calculated for various Galactic locations, and the results are compared to the approximate detection limits. We find that for optically thin radiation and a constant size distribution, a simple limit for detecting scattered light from a low-mass core can be derived that holds for grains with sizes smaller than 0.5 $\mu$m. The extinction by the core prohibits detection in bright parts of the Galactic plane, especially near the Galactic center. For scattered light received from low-mass cores with grain sizes beyond 0.5 $\mu$m, the directional characteristics of the scattering favors the detection of scattered light above and below the Galactic center, and to some extent near the Galactic anti-center. We identify the local incident radiation field as the major unknown causing deviations from this simple scheme.

Effect of core--mantle and tidal torques on Mercury's spin axis orientation

The rotational evolution of Mercury’s mantle and its core under conservative and dissipative torques is important for understanding the planet’s spin state. Dissipation results from tides and viscous, magnetic and topographic core–mantle interactions. The dissipative core–mantle torques take the system to an equilibrium state wherein both spins are fixed in the frame precessing with the orbit, and in which the mantle and core are differentially rotating. This equilibrium exhibits a mantle spin axis that is offset from the Cassini state by larger amounts for weaker core–mantle coupling for all three dissipative core–mantle coupling mechanisms, and the spin axis of the core is separated farther from that of the mantle, leading to larger differential rotation. The relatively strong core–mantle coupling necessary to bring the mantle spin axis to its observed position close to the Cassini state is not obtained by any of the three dissipative core–mantle coupling mechanisms. For a hydrostatic ellipsoidal core–mantle boundary, pressure coupling dominates the dissipative effects on the mantle and core positions, and dissipation together with pressure coupling brings the mantle spin solidly to the Cassini state. The core spin goes to a position displaced from that of the mantle by about 3.55 arcmin nearly in the plane containing the Cassini state. With the maximum viscosity considered of $\nu\sim 15.0\,{\rm cm^2/s}$ if the coupling is by the circulation through an Ekman boundary layer or $\nu\sim 8.75\times 10^5\,{\rm cm^2/s}$ for purely viscous coupling, the core spin lags the precessing Cassini plane by 23 arcsec, whereas the mantle spin lags by only 0.055 arcsec. Larger, non hydrostatic values of the CMB ellipticity also result in the mantle spin at the Cassini state, but the core spin is moved closer to the mantle spin.

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

Context : We still do not know which mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this issue. Aims: Our aim is to probe the radial dependance of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extract the rotational splittings and frequencies of the modes for six young Kepler red giants. We then perform a seismic modeling of these stars using the evolutionary codes CESAM2k and ASTEC. By using the observed splittings and the rotational kernels of the optimal models, we perform inversions of the internal rotation profiles of the six stars. Results: We obtain estimates of the mean rotation rate in the core and in the convective envelope of these stars. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, contrary to the RGB stars whose core has been shown to spin down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. These results will bring observational constraints to the scenarios of angular momentum transport in stars.

Limits on core driven ILOT outbursts of asymptotic giant branch stars [Replacement]

We find that single-star mechanisms for Intermediate Luminosity Optical Transients (ILOTs; Red Transients; Red Novae) which are powered by energy release in the core of asymptotic giant branch (AGB) stars are likely to eject the entire envelope, and hence cannot explain ILOTs in AGB and similar stars. There are single-star and binary models for the powering of ILOTs, which are eruptive stars with peak luminosities between those of novae and supernovae. In single-star models the ejection of gas at velocities of ~500-1000 km/s and a possible bright ionizing flash, require a shock to propagate from the core outward. Using a self similar solution to follow the propagation of the shock through the envelope of two evolved stellar models, a 6Mo AGB star and an 11Mo yellow supergiant (YSG) star, we find that the shock that is required to explain the observed mass loss also ejects most of the envelope. We also show that for the event to have a strong ionizing flash the required energy expels most of the envelope. The removal of most of the envelope is in contradiction with observations. We conclude that single-star models for ILOTs of evolved giant stars encounter severe difficulties.

Limits on core driven ILOT outbursts of asymptotic giant branch stars

We find that single-star mechanisms for Intermediate Luminosity Optical Transients (ILOTs; Red Transients; Red Novae) which are powered by energy release in the core of asymptotic giant branch (AGB) stars are likely to eject the entire envelope, and hence cannot explain ILOTs in AGB and similar stars. There are singe-star and binary models for the powering of ILOTs, which are eruptive stars with peak luminosities between those of novae and supernovae. In single-star models the ejection of gas at velocities of ~500-1000 km/s and a possible bright ionizing flash, require a shock to propagate from the core outward. Using a self similar solution to follow the propagation of the shock through the envelope of two evolved stellar models, 6Mo AGB star and 11Mo yellow supergiant (YSG) star, we find that the shock that is required to explain the observed mass loss also ejects most of the envelope. We also show that for the event to have a strong ionizing flash the required energy also removes most of the envelope. The removal of most of the envelope is in contradiction with observations. We conclude that single-star models for ILOTs of evolved giant stars encounter severe difficulties.

Photo-Disintegration of Heavy Nuclei at the Core of Cen A [Replacement]

Fermi LAT has detected gamma ray emissions from the core of Cen A. More recently, a new component in the gamma ray spectrum from the core has been reported in the energy range of 4 GeV to tens of GeV. We show that the new component and the HESS detected spectrum of gamma rays from the core at higher energy have possibly a common origin in photo-disintegration of heavy nuclei. Assuming the cosmic rays are mostly Fe nuclei inside the core and their spectrum has a low energy cut-off at 52 TeV in the wind frame moving with a Doppler factor 0.25 with respect to the observer on earth, the cosmic ray luminosity required to explain the observed gamma ray flux above 1 GeV is found to be $1.5\times 10^{43}$ erg/sec.

Photo-Disintegration of Heavy Nuclei at the Core of Cen A [Replacement]

Fermi LAT has detected gamma ray emissions from the core of Cen A. More recently, a new component in the gamma ray spectrum from the core has been reported in the energy range of 4 GeV to tens of GeV. We show that the new component and the HESS detected spectrum of gamma rays from the core at higher energy have possibly a common origin in photo-disintegration of heavy nuclei. Assuming the cosmic rays are mostly Fe nuclei inside the core and their spectrum has a low energy cut-off at 52 TeV in the wind frame moving with a Doppler factor 0.25 with respect to the observer on earth, the cosmic ray luminosity required to explain the observed gamma ray flux above 1 GeV is found to be $1.5\times 10^{43}$ erg/sec.

Photo-Disintegration of Heavy Nuclei at the Core of Cen A

Fermi LAT has detected gamma ray emissions from the core of Cen A. More recently, a new component in the gamma ray spectrum from the core has been reported in the energy range of 4 GeV to tens of GeV. We show that the new component and the HESS detected spectrum of gamma rays from the core at higher energy have possibly a common origin in photo-disintegration of heavy nuclei. This gives an indirect evidence of ultrahigh energy cosmic ray composition at the core of Cen A.

Constraining the Origin of Magnetar Flares [Replacement]

Sudden relaxation of the magnetic field in the core of a magnetar produces mechanical energy primarily in the form of shear waves which propagate to the surface and enter the magnetosphere as relativistic Alfv\’en waves. Due to a strong impedance mismatch, shear waves excited in the star suffer many reflections before exiting the star. If mechanical energy is deposited in the core and is converted {\em directly} to radiation upon propagation to the surface, the rise time of the emission is at least seconds to minutes, and probably minutes to hours for a realistic magnetic field geometry, at odds with observed rise times of $\lap 10$ ms for both and giant flares. Mechanisms for both small and giant flares that rely on the sudden relaxation of the magnetic field of the core are rendered unviable by the impedance mismatch, requiring the energy that drives these events to be stored in the magnetosphere just before the flare. ends, unless the waves are quickly damped.

Constraining the Origin of Magnetar Flares [Replacement]

Sudden relaxation of the magnetic field in the core of a magnetar produces mechanical energy primarily in the form of shear waves which propagate to the surface and enter the magnetosphere as relativistic Alfv\’en waves. Due to a strong impedance mismatch, shear waves excited in the star suffer many reflections before exiting the star. If mechanical energy is deposited in the core and is converted {\em directly} to radiation upon propagation to the surface, the rise time of the emission is at least seconds to minutes, and probably minutes to hours for a realistic magnetic field geometry, at odds with observed rise times of $\lap 10$ ms for both small bursts and for giant flares. Mechanisms for both small and giant flares that rely on the sudden relaxation of the magnetic field of the core are rendered unviable by the impedance mismatch, requiring the energy that drives these events to be stored in the magnetosphere just before the flare. A corollary to this conclusion is that if the quasi-periodic oscillations (QPOs) seen in giant flares represent stellar oscillations, they must be excited {\em by the magnetosphere}, not by mechanical energy released inside the star. Excitation of stellar oscillations by relativistic Alfv\’en waves in the magnetosphere could be quick enough to excite stellar modes well before a giant flare ends, unless the waves are quickly damped.

Prospects of Turbulence Studies in High-Energy Density Laser-Generated Plasma: Numerical Investigations in Two Dimensions [Cross-Listing]

We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_t\approx 0.2$. We observe an isotropic, turbulent velocity field with an inertial range power spectra of $P(k)\propto k^{-2.3}$. We account for the effects of self-magnetization and find that the resulting magnetic field has characteristic strength $\approx 3\times 10^{4}$ G. The corresponding plasma beta is $\approx 1\times 10^{4}$–$1\times 10^{5}$, indicating that the magnetic field does not play an important role in the dynamical evolution of the system. The natural extension of this work is to study the system evolution in three-dimensions, with various laser drive configurations, and targets with shells and cores of different masses. The latter modification may help to increase the turbulent intensity and possibly create transonic turbulence. One of the key challenges is to obtain transonic turbulent conditions in a quasi-steady state environment.

Measuring the Angular Momentum Distribution in Core-Collapse Supernova Progenitors with Gravitational Waves

The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Our simulations include a microphysical finite-temperature EOS, an approximate electron capture treatment during collapse, and a neutrino leakage scheme for the postbounce evolution. We find that the precise distribution of angular momentum is relevant only for very rapidly rotating cores with T/|W|>~8% at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out additional simulations to generate trial waveforms for injection into simulated advanced LIGO noise at a fiducial galactic distance of 10 kpc. Using matched filtering, we show that for an optimally-oriented source and Gaussian noise, advanced Advanced LIGO could measure the total angular momentum to within ~20%, for rapidly rotating cores. For most waveforms, the nearest known degree of precollapse differential rotation is correctly inferred by both our matched filtering analysis and an alternative Bayesian model selection approach. We test our results for robustness against systematic uncertainties by injecting waveforms from simulations using a different EOS and and variations in the electron fraction in the inner core. The results of these tests show that these uncertainties significantly reduce the accuracy with which the total angular momentum and its precollapse distribution can be inferred from observations.

Measuring the Angular Momentum Distribution in Core-Collapse Supernova Progenitors with Gravitational Waves [Cross-Listing]

The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Our simulations include a microphysical finite-temperature EOS, an approximate electron capture treatment during collapse, and a neutrino leakage scheme for the postbounce evolution. We find that the precise distribution of angular momentum is relevant only for very rapidly rotating cores with T/|W|>~8% at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out additional simulations to generate trial waveforms for injection into simulated advanced LIGO noise at a fiducial galactic distance of 10 kpc. Using matched filtering, we show that for an optimally-oriented source and Gaussian noise, advanced Advanced LIGO could measure the total angular momentum to within ~20%, for rapidly rotating cores. For most waveforms, the nearest known degree of precollapse differential rotation is correctly inferred by both our matched filtering analysis and an alternative Bayesian model selection approach. We test our results for robustness against systematic uncertainties by injecting waveforms from simulations using a different EOS and and variations in the electron fraction in the inner core. The results of these tests show that these uncertainties significantly reduce the accuracy with which the total angular momentum and its precollapse distribution can be inferred from observations.

Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

We use the formalism of Gould and Raffelt [1] to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\alpha$ and $\kappa$ for cross-sections that go as $v_{\rm rel}^2$, $v_{\rm rel}^4$, $v_{\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\rm rel}^{-2}$ dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any $q$-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art Solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.

Thermal conduction by dark matter with velocity and momentum-dependent cross-sections [Replacement]

We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\alpha$ and $\kappa$ for cross-sections that go as $v_{\rm rel}^2$, $v_{\rm rel}^4$, $v_{\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\rm rel}^{-2}$ dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any $q$-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art Solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^