Posts Tagged core

Recent Postings from core

Discovery of a new subparsec counterjet in NGC 1275: the inclination angle and the environment

We report the detection of a new feature at the centre of NGC 1275 in the Perseus cluster, hosting the radio source 3C 84. This feature emerges 2 mas (~ 0.7 pc) north of the central core in recent 15 and 43 GHz VLBA images, and seems to be the counterjet to a known radio jet expanding to the south of the core. Apparently, the two jets were born through an outburst around 2005. From the ratio of the apparent lengths of the two jets from the core, we found that the jet angle to the line of sight is \theta=39^\circ\pm 10^\circ, which is similar to the angle of the outer jets generated by an activity around 1959 and constrains theories on gamma-ray emission from jets. The new northern jet has a strongly inverted spectrum in contrast with the southern jet. This suggests that the central black hole is surrounded by a subparsec-scale accretion disk with the density of >~ 10^5 cm^-3. The brightness of the counterjet suggests that the disk is highly inhomogeneous. The ambient gas density in the direction of the jet is ~5 cm^-3 if the current jet activity is similar to the past average.

Do sound waves transport the AGN energy in the Perseus Cluster?

The level of random motions in the intracluster gas lying between 20 and 60 kpc radius in the core of the Perseus cluster has been measured by the Hitomi Soft X-ray Spectrometer at 164 +/- 10 km/s. The maximum energy density in turbulent motions on that scale is therefore low. If dissipated as heat the turbulent energy will be radiated away in less than 80 Myr and cannot spread across the core. A higher velocity is needed to prevent a cooling collapse. Gravity waves are shown to travel too slowly in a radial direction. Here we investigate propagation of energy by sound waves. The energy travels at about 1000 km/s and can cross the core in a cooling time. We show that the displacement velocity amplitude of the gas required to carry the power is consistent with the Hitomi result and that the inferred density and temperature variations are consistent with Chandra observations.

The supermassive black hole and double nucleus of the core elliptical NGC5419

We obtained adaptive-optics assisted SINFONI observations of the central regions of the giant elliptical galaxy NGC5419 with a spatial resolution of 0.2 arcsec ($\approx 55$ pc). NGC5419 has a large depleted stellar core with a radius of 1.58 arcsec (430 pc). HST and SINFONI images show a point source located at the galaxy's photocentre, which is likely associated with the low-luminosity AGN previously detected in NGC5419. Both the HST and SINFONI images also show a second nucleus, off-centred by 0.25 arcsec ($\approx 70$ pc). Outside of the central double nucleus, we measure an almost constant velocity dispersion of $\sigma \sim 350$ km/s. In the region where the double nucleus is located, the dispersion rises steeply to a peak value of $\sim 420$ km/s. In addition to the SINFONI data, we also obtained stellar kinematics at larger radii from the South African Large Telescope. While NGC5419 shows low rotation ($v < 50$ km/s), the central regions (inside $\sim 4 \, r_b$) clearly rotate in the opposite direction to the galaxy's outer parts. We use orbit-based dynamical models to measure the black hole mass of NGC5419 from the kinematical data outside of the double nuclear structure. The models imply M$_{\rm BH}=7.2^{+2.7}_{-1.9} \times 10^9$ M$_{\odot}$. The enhanced velocity dispersion in the region of the double nucleus suggests that NGC5419 possibly hosts two supermassive black holes at its centre, separated by only $\approx 70$ pc. Yet our measured M$_{\rm BH}$ is consistent with the black hole mass expected from the size of the galaxy's depleted stellar core. This suggests, that systematic uncertainties in M$_{\rm BH}$ related to the secondary nucleus are small.

Microscopic Vortex Velocity in the Inner Crust and Outer Core of Neutron Stars

Treatment of the vortex motion in the superfluids of the inner crust and the outer core of neutron stars is a key ingredient in modeling a number of pulsar phenomena, including glitches and magnetic field evolution. After recalculating the microscopic vortex velocity in the inner crust, we evaluate the velocity for the vortices in the outer core for the first time. The vortex motion between pinning sites is found to be substantially faster in the inner crust than in the outer core, $v_0^{\rm crust} \sim 10^{7}\mbox{\cms} \gg v_0^{\rm core} \sim 1\mbox{\cms}$. One immediate result is that vortex creep is always in the nonlinear regime in the outer core in contrast to the inner crust, where both nonlinear and linear regimes of vortex creep are possible. Other implications for pulsar glitches and magnetic field evolution are also presented.

Why do some cores remain starless ?

Physical conditions that could render a core starless(in the local Universe) is the subject of investigation in this work. To this end we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. The density profile of a typical core extracted from an earlier simulation developed to study core-formation in a molecular cloud was used for the purpose. We demonstrate - (i) cores contracted in quasistatic manner over a timescale on the order of $\sim 10^{5}$ years. Those that remained starless did briefly acquire a centrally concentrated density configuration that mimicked the density profile of a unstable Bonnor Ebert sphere before rebounding, (ii) three of our test cores viz. L694-2, L1689-SMM16 and L1521F remained starless despite becoming thermally super-critical. On the contrary B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other cores viz. B68, L694-2, L1517B and L1689 that previously remained starless could also be similarly induced to collapse. Our principle conclusions are : (a) acquiring the thermally super-critical state does not ensure that a core will necessarily become protostellar, (b) potentially star-forming cores (VeLLO L1521F here), could be experiencing coagulation of dust-grains that must enhance the gas-dust coupling and in turn lower the gas temperature, thereby assisting collapse. This hypothesis appears to have some observational support, and (c) depending on its dynamic state at any given epoch, a core could appear to be pressure-confined, gravitationally/virially bound, suggesting that gravitational/virial boundedness of a core is insufficient to ensure it will form stars, though it is crucial for gas in a contracting core to cool efficiently so it can collapse further to become protostellar.

Chemical differentiation in a prestellar core traces non-uniform illumination

Dense cloud cores present chemical differentiation due to the different distribution of C-bearing and N-bearing molecules, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH$_3$OH and $c$-C$_3$H$_2$, present a strikingly different (complementary) morphology while showing the same kinematics toward the prestellar core L1544. After comparing their distribution with large scale H$_2$ column density N(H$_2$) map from the Herschel satellite, we find that these two molecules trace different environmental conditions in the surrounding of L1544: the $c$-C$_3$H$_2$ distribution peaks close to the southern part of the core, where the surrounding molecular cloud has a N(H$_2$) sharp edge, while CH$_3$OH mainly traces the northern part of the core, where N(H$_2$) presents a shallower tail. We conclude that this is evidence of chemical differentiation driven by different amount of illumination from the interstellar radiation field: in the South, photochemistry maintains more C atoms in the gas phase allowing carbon chain (such as $c$-C$_3$H$_2$) production; in the North, C is mainly locked in CO and methanol traces the zone where CO starts to freeze out significantly. During the process of cloud contraction, different gas and ice compositions are thus expected to mix toward the central regions of the core, where a potential Solar-type system will form. An alternative view on carbon-chain chemistry in star-forming regions is also provided.

Detection of a hot molecular core in the Large Magellanic Cloud with ALMA

We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C17O, HCO+, H13CO+, H2CO, NO, SiO, H2CS, 33SO, 32SO2, 34SO2, and 33SO2 are detected from a compact region (0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO2 and 34SO2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH3OH, H2CO, and HNCO are remarkably lower compared with Galactic hot cores by at least 1-3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO2 and its isotopologue line detections in ST11 imply that SO2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss physical and chemical characteristics of a hot molecular core in the low metallicity environment.

Projections for measuring the size of the solar core with neutrino-electron scattering [Replacement]

We quantify the amount of data needed in order to measure the size of the solar core with future experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the initial directions of the neutrinos, however this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different sizes of the solar core, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that after approximately 10 years of data-taking an experiment the size of Hyper Kamiokande could measure the radius at which boron-8 neutrinos are produced with a precision of 2% of the total solar radius at 99% confidence, and could exclude the scenario where the neutrinos are produced at the solar radius at greater than $5 \sigma$.

Projections for measuring the size of the solar core with neutrino-electron scattering [Replacement]

We quantify the amount of data needed in order to measure the size of the solar core with future experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the initial directions of the neutrinos, however this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different sizes of the solar core, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that after approximately 10 years of data-taking an experiment the size of Hyper Kamiokande could measure the radius at which boron-8 neutrinos are produced with a precision of 2% of the total solar radius at 99% confidence, and could exclude the scenario where the neutrinos are produced at the solar radius at greater than $5 \sigma$.

Projections for measuring the size of the solar core with neutrino-electron scattering [Cross-Listing]

We quantify the amount of data needed in order to measure the size of the solar core with future experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos, however this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different sizes of the solar core, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that after approximately 5 years of data-taking an experiment the size of Hyper Kamiokande could measure the solar core radius with an uncertainty of 20% of the total solar radius at 95% confidence, and could exclude the scenario where the neutrinos are produced throughout the entire sun at 3 $\sigma$.

Projections for measuring the size of the solar core with neutrino-electron scattering

We quantify the amount of data needed in order to measure the size of the solar core with future experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos, however this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different sizes of the solar core, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that after approximately 5 years of data-taking an experiment the size of Hyper Kamiokande could measure the solar core radius with an uncertainty of 20% of the total solar radius at 95% confidence, and could exclude the scenario where the neutrinos are produced throughout the entire sun at 3 $\sigma$.

Model description of non-Maxwellian nuclear processes in the solar interior

A consistent model for the description of non-Maxwellian nuclear processes in the solar core triggered by fast reaction-produced particles is formulated. It essentially extends an approach to study suprathermal solar reactions discussed previously [Phys. Rev. C 91, 028801 (2015)] and refines its predictions. The model is applied to examine in detail the slowing-down of 8.7-MeV alpha particles produced in the 7Li(p,alpha)alpha reaction of the pp chain, and to study suprathermal processes in the solar CNO cycle induced by them. The influence of electron degeneracy and electron screening on suprathermal reactions through in-flight reaction probability and fast particle emission rate is clarified. In particular, these effects account for a 20% increase of the 14N(alpha,p)17O reaction rate at R < 0.2Rsun. This new type of correction is important for the suprathermal reaction like 14N(alpha,p)17O as it is recognized to be capable of distorting the CNO cycle in the 95% region of the solar core. In this region, normal branching 14N <-- 17O --> 18F of nuclear flow transforms to abnormal sequential flow 14N --> 17O --> 18F, and the 14N(alpha,p)17O reaction rate exceeds the rate of 17O burn up through conventional 17O(p,alpha)14N and 17O(p,gamma)18F processes. It is shown that these factors can enhance the 17O abundance in the core as compared with standard estimates. For the steady state case, the abundance enhancement is estimated to be as high as ~ 100 in the outer core region. A conjecture is made that other CNO suprathermal (alpha,p) reactions may also alter abundances of CNO elements, including those generating solar neutrinos.

Magnetar heating

We examine four candidate mechanisms that could explain the high surface temperatures of magnetars. (1) Heat flux from the liquid core heated by ambipolar diffusion. It could sustain the observed surface luminosity $L_s\approx 10^{35}$ erg s$^{-1}$ if core heating offsets neutrino cooling at a temperature $T_{\rm core}>6\times 10^8$ K. This scenario is viable if the core magnetic field exceeds $10^{16}$ G, the magnetar has mass $M<1.4 M_\odot$, and its heat-blanketing envelope has a light element composition. We find however that the lifetime of such a hot core should be shorter than the typical observed lifetime of magnetars. (2) Mechanical dissipation in the solid crust. This heating can be quasi-steady, powered by gradual (or frequent) crustal yielding to magnetic stresses. We show that it obeys a strong upper limit. As long as the crustal stresses are fostered by the field evolution in the core or Hall drift in the crust, mechanical heating is insufficient to sustain persistent $L_s\approx 10^{35}$ erg s$^{-1}$. The surface luminosity is increased in an alternative scenario of mechanical deformations triggered by external magnetospheric flares. (3) Ohmic dissipation in the crust, in volume or current sheets. This mechanism is inefficient because of the high conductivity of the crust. Only extreme magnetic configurations with crustal fields $B>10^{16}$ G varying on a 100 meter scale could provide $L_s\approx 10^{35}$ erg s$^{-1}$. (4) Bombardment of the stellar surface by particles accelerated in the magnetosphere. This mechanism produces hot spots on magnetars. Observations of transient magnetars show evidence for external heating.

Magnetar heating [Replacement]

We examine four candidate mechanisms that could explain the high surface temperatures of magnetars. (1) Heat flux from the liquid core heated by ambipolar diffusion. It could sustain the observed surface luminosity $L_s\approx 10^{35}$ erg/s if core heating offsets neutrino cooling at a temperature $T_{core}>6\times 10^8$ K. This scenario is viable if the core magnetic field exceeds $10^{16}$ G and the heat-blanketing envelope of the magnetar has a light element composition. We find however that the lifetime of such a hot core should be shorter than the typical observed lifetime of magnetars. (2) Mechanical dissipation in the solid crust. This heating can be quasi-steady, powered by gradual (or frequent) crustal yielding to magnetic stresses. We show that it obeys a strong upper limit. As long as the crustal stresses are fostered by the field evolution in the core or Hall drift in the crust, mechanical heating is insufficient to sustain persistent $L_s\approx 10^{35}$ erg/s. The surface luminosity is increased in an alternative scenario of mechanical deformations triggered by external magnetospheric flares. (3) Ohmic dissipation in the crust, in volume or current sheets. This mechanism is inefficient because of the high conductivity of the crust. Only extreme magnetic configurations with crustal fields $B>10^{16}$ G varying on a 100 meter scale could provide $L_s\approx 10^{35}$ erg/s. (4) Bombardment of the stellar surface by particles accelerated in the magnetosphere. This mechanism produces hot spots on magnetars. Observations of transient magnetars show evidence for external heating.

Kinetic AGN Feedback Effects on Cluster Cool Cores Simulated using SPH [Replacement]

We implement novel numerical models of AGN feedback in the SPH code GADGET-3, where the energy from a supermassive black hole (BH) is coupled to the surrounding gas in the kinetic form. Gas particles lying inside a bi-conical volume around the BH are imparted a one-time velocity (10,000 km/s) increment. We perform hydrodynamical simulations of isolated cluster (total mass 10^14 /h M_sun), which is initially evolved to form a dense cool core, having central T<10^6 K. A BH resides at the cluster center, and ejects energy. The feedback-driven fast wind undergoes shock with the slower-moving gas, which causes the imparted kinetic energy to be thermalized. Bipolar bubble-like outflows form propagating radially outward to a distance of a few 100 kpc. The radial profiles of median gas properties are influenced by BH feedback in the inner regions (r<20-50 kpc). BH kinetic feedback, with a large value of the feedback efficiency, depletes the inner cool gas and reduces the hot gas content, such that the initial cool core of the cluster is heated up within a time 1.9 Gyr, whereby the core median temperature rises to above 10^7 K, and the central entropy flattens. Our implementation of BH thermal feedback (using the same efficiency as kinetic), within the star-formation model, cannot do this heating, where the cool core remains. The inclusion of cold gas accretion in the simulations produces naturally a duty cycle of the AGN with a periodicity of 100 Myr.

Kinetic AGN Feedback Effects on Cluster Cool Cores Simulated using SPH

We implement novel numerical models of AGN feedback in the SPH code GADGET-3, where the energy from a supermassive black hole (BH) is coupled to the surrounding gas in the kinetic form. Gas particles lying inside a bi-conical volume around the BH are imparted a one-time velocity (10,000 km/s) increment. We perform hydrodynamical simulations of isolated cluster (total mass 10^14 /h M_sun), which is initially evolved to form a dense cool core, having central T<10^6 K. A BH resides at the cluster center, and ejects energy. The feedback-driven fast wind undergoes shock with the slower-moving gas, which causes the imparted kinetic energy to be thermalized. Bipolar bubble-like outflows form propagating radially outward to a distance of a few 100 kpc. The radial profiles of median gas properties are influenced by BH feedback in the inner regions (r<20-50 kpc). BH kinetic feedback, with a large value of the feedback efficiency, depletes the inner cool gas and reduces the hot gas content, such that the initial cool core of the cluster is heated up within a time 1.9 Gyr, whereby the core median temperature rises to above 10^7 K, and the central entropy flattens. Our implementation of BH thermal feedback (using the same efficiency as kinetic), within the star-formation model, cannot do this heating, where the cool core remains. The inclusion of cold gas accretion in the simulations produces naturally a duty cycle of the AGN with a periodicity of 100 Myr.

Dynamical estimate of post main sequence stellar masses in 47 Tucanae

We use the effects of mass segregation on the radial distribution of different stellar populations in the core of 47 Tucanae to find estimates for the masses of stars at different post main sequence evolutionary stages. We take samples of main sequence (MS) stars from the core of 47 Tucanae, at different magnitudes (i.e. different masses), and use the effects of this dynamical process to develop a relation between the radial distance (RD) at which the cumulative distribution reaches the 20th and 50th percentile, and stellar mass. From these relations we estimate the masses of different post MS populations. We find that mass remains constant for stars going through the evolutionary stages between the upper MS up to the horizontal branch (HB). By comparing RDs of the HB stars with stars of lower masses, we can exclude a mass loss greater than 0.09M during the red giant branch (RGB) stage at nearly the 3{\sigma} level. The slightly higher mass estimates for the asymptotic giant branch (AGB) are consistent with the AGB having evolved from somewhat more massive stars. The AGB also exhibits evidence of contamination by more massive stars, possibly blue stragglers (BSS), going through the RGB phase. We do not include the BSS in this paper due to the complexity of these objects, instead, the complete analysis of this population is left for a companion paper. The process to estimate the masses described in this paper are exclusive to the core of 47 Tuc.

Core and Conal Component Analysis of Pulsar B1933+16 --- Investigation of the Segregated Modes

Radio pulsar B1933+16 is brightest core-radiation dominated pulsar in the Arecibo sky, and here we carry out a comprehensive high resolution polarimetric study of its radiation at both 1.5 and 4.6 GHz. At 1.5 GHz, the polarization is largely compatible with a rotating-vector model with $\alpha$ and $\beta$ values of 125 and --1.2$^{\circ}$, such that the core and conal regions can be identified with the primary and secondary polarization modes and plausibly with the extraordinary and ordinary propagation modes. Polarization modal segregation of profiles shows that the core is comprised of two parts which we associate with later X-mode and earlier O-mode emission. Analysis of the broad microstructures under the core shows that they have similar timescales to those of the largely conal radiation of other pulsars studied earlier. Aberration/retardation analysis was here possible for both the conal and core radiation and showed average physical emission heights of about 200 km for each. Comparison with other core-cone pulsars suggests that the core and conal emission arises from similar heights. Assuming the inner vacuum gap model, we note that at these emission altitudes the frequency of the observed radiation $\nu_{obs}$ is less than the plasma frequency $\nu_p$. We then conclude that the radio emission properties are consistent with the theory of coherent curvature radiation by charged solitons where the condition $\nu_{obs} < \nu_{p}$ is satisfied. However, the differences that exist between core and conal emission in their geometric locations within a pulse, polarization and modulation properties are yet to be understood.

A giant Ly$\alpha$ nebula in the core of an X-ray cluster at $z=1.99$: implications for early energy injection

We present the discovery of a giant $\gtrsim$100 kpc Ly$\alpha$ nebula detected in the core of the X-ray emitting cluster CL J1449+0856 at $z=1.99$ through Keck/LRIS narrow-band imaging. This detection extends the known relation between Ly$\alpha$ nebulae and overdense regions of the Universe to the dense core of a $5-7\times10^{13}$ M$_{\odot}$ cluster. The most plausible candidates to power the nebula are two Chandra-detected AGN host cluster members. Given the physical conditions of the Ly$\alpha$-emitting gas and the possible interplay with the X-ray phase, we argue that the Ly$\alpha$ nebula would be short-lived ($\lesssim10$ Myr) if not continuously replenished with cold gas at a rate of $\gtrsim1000$ Myr. Cooling from the X-ray phase is disfavored as the replenishing mechanism, primarily because of the high Ly$\alpha$ to X-ray luminosity ratio ($L_{\mathrm{Ly\alpha}}/L_{\mathrm{X}} \approx0.3$), $\gtrsim10-1000\times$ higher than in local cool-core clusters. Cosmological cold flows are disfavored by current modeling. Thus, the cold gas is most plausibly supplied by cluster galaxies through massive outflows. An independent estimate of the total mass outflow rate of core members, based on the observed star formation and black hole accretion rates, matches the required replenishment to sustain the nebula. This scenario directly implies the extraction of energy from galaxies and its deposition in the surrounding intracluster medium, as required to explain the thermodynamic properties of local clusters. We estimate an energy injection of the order of $\thickapprox2$ keV per particle in the intracluster medium over a $2$ Gyr interval. AGN provide $75-85$% of the injected energy and $\approx66$% of the mass, while the rest is supplied by supernovae-driven winds.

A giant Ly$\alpha$ nebula in the core of an X-ray cluster at $z=1.99$: implications for early energy injection [Replacement]

We present the discovery of a giant $\gtrsim$100~kpc Ly$\alpha$ nebula detected in the core of the X-ray emitting cluster CL~J1449+0856 at $z=1.99$ through Keck/LRIS narrow-band imaging. This detection extends the known relation between Ly$\alpha$ nebulae and overdense regions of the Universe to the dense core of a $5-7\times10^{13}$ M$_{\odot}$ cluster. The most plausible candidates to power the nebula are two Chandra-detected AGN host cluster members, while cooling from the X-ray phase and cosmological cold flows are disfavored primarily because of the high Ly$\alpha$ to X-ray luminosity ratio ($L_{\mathrm{Ly\alpha}}/L_{\mathrm{X}} \approx0.3$, $\gtrsim10-1000\times$ higher than in local cool-core clusters) and by current modeling. Given the physical conditions of the Ly$\alpha$-emitting gas and the possible interplay with the X-ray phase, we argue that the Ly$\alpha$ nebula would be short-lived ($\lesssim10$ Myr) if not continuously replenished with cold gas at a rate of $\gtrsim1000$ M$_{\odot}$ yr$^{-1}$. We investigate the possibility that cluster galaxies supply the required gas through outflows and we show that their total mass outflow rate matches the replenishment necessary to sustain the nebula. This scenario directly implies the extraction of energy from galaxies and its deposition in the surrounding intracluster medium, as required to explain the thermodynamic properties of local clusters. We estimate an energy injection of the order of $\thickapprox2$ keV per particle in the intracluster medium over a $2$ Gyr interval. In our baseline calculation AGN provide up to $85$% of the injected energy and 2/3 of the mass, while the rest is supplied by supernovae-driven winds.

Star Formation and Feedback: A Molecular Outflow-Prestellar Core Interaction in L1689N

We present Herschel, ALMA Compact Array (ACA), and Caltech Submillimeter Observatory (CSO) observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar type protostar IRAS 16293-2422. This source is characterized by some of the highest deuteration levels seen in the interstellar medium. The change in the NH2D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas, characterized by narrow line widths is seen in the NE part of the core, while broader, more disturbed line profiles are seen in the W/SW part. Strong N2D+ and ND3 emission is detected with the ACA, extending S/SW from the peak of the single-dish NH2D emission. The ACA data also reveal the presence a compact dust continuum source, with a mean size of ~1100 au, a central density of (1-2) 10^7 cm-3, and a mass of 0.2-0.4 Msun. The dust emission peak is displaced ~5" to the south with respect to the N2D+ and ND3 emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.

ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is $\sim$\,$39^{\circ}$, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg$^2$ (0.3 Mpc$^2$) area in the core of the Virgo cluster, based on $ugriz$ data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample consists of 352 objects brighter than $M_g=-9.13$ mag, the 50% completeness limit of the survey. Using a Bayesian analysis, we find a best-fit faint end slope of $\alpha=-1.33 \pm 0.02$ for the g-band luminosity function; consistent results are found for the stellar mass function as well as the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultra compact dwarfs galaxies (UCDs) -- previously compiled by the NGVS in this region -- to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, $M_g = -9.6$ mag) increases dramatically, up to $\alpha = -1.60 \pm 0.06$ when correcting for the expected number of disrupted non-nucleated galaxies. We also calculate the total number of UCDs and globular clusters that may have been deposited in the core of Virgo due to the disruption of satellites, both nucleated and non-nucleated. We estimate that ~150 objects with $M_g\lesssim-9.6$ mag and that are currently classified as globular clusters, might, in fact, be the nuclei of disrupted galaxies. We further estimate that as many as 40% of the (mostly blue) globular clusters in the core of Virgo might once have belonged to such satellites; these same disrupted satellites might have contributed ~40% of the total luminosity in galaxies observed in the core region today. Finally, we use an updated Local Group galaxy catalog to provide a new measurement of the luminosity function of Local Group satellites, $\alpha=-1.21\pm0.05$.

A detailed mass distribution of a high-density core in Taurus with ALMA

We present the results of ALMA observations of dust continuum emission and molecular rotational lines, including the ALMA Compact Array, toward a dense core MC27 (a.k.a. L1521F) in Taurus, which is considered to be at very early stage of star formation. Detailed column density distribution with a size scale from a few tens AU to ~10000 AU scale are revealed by combining the ALMA data and the single-dish data. The high angular resolution observation at 0.87 mm reveals that a protostellar source, MMS-1, is still not spatially resolved without gas association and a starless high-density core, MMS-2, has substructures both in dust and molecular emission. The averaged radial column density distribution of the inner part (r < 3000 AU) is N_H2 ~r^-0.4, clearly flatter than that of the outer part, ~r^-1.0. We found the complex velocity/spatial structure obtained with previous ALMA observations is located inside the inner flatter region, which may reflect the dynamical status of the dense core.

Deep Chandra study of the truncated cool core of the Ophiuchus cluster

We present the results of a deep (280 ks) Chandra observation of the Ophiuchus cluster, the second-brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT~1 keV in the core to kT~9 keV at r~30 kpc. Beyond r~30 kpc the intra-cluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The sloshing is the result of the strongly perturbed gravitational potential in the cluster core, with the central brightest cluster galaxy (BCG) being displaced southward from the global center of mass. The residual image reveals a likely subcluster south of the core at the projected distance of r~280 kpc. The cluster also harbors a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ~100 km/s. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r~120 kpc to the southeast of the cluster center. We conclude that this feature is most likely due to gas dynamics associated with a merger and not a result of an extraordinary active galactic nucleus (AGN) outburst. The cooling core lacks any observable X-ray cavities and the AGN only displays weak, point-like radio emission, lacking lobes or jets, indicating that currently it may be largely dormant. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.

Magnetic field evolution of accreting neutron stars

The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\rho$, $r\propto \rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\propto \rho^{1/2}$, and reaches the value of about $10^{17}$ Gauss in the core. It destroys super conducting vortices in the core of a star in the narrow region of the size of the order of ten centimeters. Because of generated density gradient of vortices they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, $B=B_0(1+t/\tau)^{-1}$. The characteristic time of decreasing of the magnetic field $\tau$ is equal to $\tau\simeq 10^3$ years. Thus, the magnetic field of accreted neutron stars decreases to values of $10^8 - 10^9$ Gauss during $10^7-10^6$ years.

Chemical and physical characterization of collapsing low-mass prestellar dense cores

The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation, as predicted by theory. With recent and future high performance telescopes, details of these first phases become accessible, and observations may confirm theory and even bring new challenges for theoreticians. In this context, we study from a theoretical point of view the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical model with full gas-grain chemistry, using different assumptions on the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests some chemical species as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.

VLT/SPHERE deep insight of NGC 3603's core: Segregation or confusion?

We present new near-infrared photometric measurements of the core of the young massive cluster NGC 3603 obtained with extreme adaptive optics. The data were obtained with the SPHERE instrument mounted on ESO Very Large Telescope, and cover three fields in the core of this cluster. We applied a correction for the effect of extinction to our data obtained in the J and K broadband filters and estimated the mass of detected sources inside the field of view of SPHERE/IRDIS, which is 13.5"x13.5". We derived the mass function (MF) slope for each spectral band and field. The MF slope in the core is unusual compared to previous results based on Hubble space telescope (HST) and very large telescope (VLT) observations. The average slope in the core is estimated as -1.06^{+0.26}_{-0.26} for the main sequence stars with 3.5 Msun < M < 120 Msun.Thanks to the SPHERE extreme adaptive optics, 814 low-mass stars were detected to estimate the MF slope for the pre-main sequence stars with 0.6 Msun< M < 3.5 Msun , Gamma = -0.54^{+0.11}_{-0.11} in the K-band images in two fields in the core of the cluster. For the first time, we derive the mass function of the very core of the NGC 3603 young cluster for masses in the range 0.6 - 120 Msun. Previous studies were either limited by crowding, lack of dynamic range, or a combination of both.

Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disk?

Jupiter's core is generally assumed to have formed beyond the snow line. Here we consider an alternative scenario, that Jupiter's core may have accumulated in the innermost parts of the protoplanetary disk. A growing body of research suggests that small particles ("pebbles") continually drift inward through the disk. If a fraction of drifting pebbles is trapped at the inner edge of the disk a several Earth-mass core can quickly grow. Subsequently, the core may migrate outward beyond the snow line via planet-disk interactions. Of course, to reach the outer Solar System Jupiter's core must traverse the terrestrial planet-forming region. We use N-body simulations including synthetic forces from an underlying gaseous disk to study how the outward migration of Jupiter's core sculpts the terrestrial zone. If the outward migration is fast (Tmig~10^4 years), the core simply migrates past resident planetesimals and planetary embryos. However, if its migration is slower (Tmig~10^5 years) the core removes solids from the inner disk by shepherding objects in mean motion resonances. In many cases the disk interior to 0.5-1 AU is cleared of embryos and most planetesimals. By generating a mass deficit close to the Sun, the outward migration of Jupiter's core may thus explain the absence of terrestrial planets closer than Mercury. Jupiter's migrating core often stimulates the growth of another large (~Earth-mass) core -- that may provide a seed for Saturn's core -- trapped in exterior resonance. The migrating core also may transport a fraction of terrestrial planetesimals, such as the putative parent bodies of iron meteorites, to the asteroid belt.

Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disk? [Replacement]

Jupiter's core is generally assumed to have formed beyond the snow line. Here we consider an alternative scenario, that Jupiter's core may have accumulated in the innermost parts of the protoplanetary disk. A growing body of research suggests that small particles ("pebbles") continually drift inward through the disk. If a fraction of drifting pebbles is trapped at the inner edge of the disk a several Earth-mass core can quickly grow. Subsequently, the core may migrate outward beyond the snow line via planet-disk interactions. Of course, to reach the outer Solar System Jupiter's core must traverse the terrestrial planet-forming region. We use N-body simulations including synthetic forces from an underlying gaseous disk to study how the outward migration of Jupiter's core sculpts the terrestrial zone. If the outward migration is fast (Tmig~10^4 years), the core simply migrates past resident planetesimals and planetary embryos. However, if its migration is slower (Tmig~10^5 years) the core removes solids from the inner disk by shepherding objects in mean motion resonances. In many cases the disk interior to 0.5-1 AU is cleared of embryos and most planetesimals. By generating a mass deficit close to the Sun, the outward migration of Jupiter's core may thus explain the absence of terrestrial planets closer than Mercury. Jupiter's migrating core often stimulates the growth of another large (~Earth-mass) core -- that may provide a seed for Saturn's core -- trapped in exterior resonance. The migrating core also may transport a fraction of terrestrial planetesimals, such as the putative parent bodies of iron meteorites, to the asteroid belt.

Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model

We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around $1.4\, M_\odot$ would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of $1.4\, M_\odot$.

Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model [Cross-Listing]

We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around $1.4\, M_\odot$ would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of $1.4\, M_\odot$.

Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model [Cross-Listing]

We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around $1.4\, M_\odot$ would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of $1.4\, M_\odot$.

Equivalence Principles, Spacetime Structure and the Cosmic Connection

After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for the photon (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of energy and polarization verifies the Galileo Equivalence Principle [Universality of Propagation] for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. E\"otv\"os-type experiments, Hughes-Drever-type experiments, redshift experiments then constrain and tie this core metric to agree with the matter metric, and hence a unique physical metric and universality of metrology. We summarize these experiments and review how the Galileo equivalence principle constrains the Einstein Equivalence Principle (EEP) theoretically. In local physics this physical metric gives the Lorentz/Poincar\'e covariance. Understanding that the metric and EEP come from the vacuum as a medium of electrodynamics in the linear regime, efforts to actively look for potential effects beyond this linear scheme are warranted.

Extended objects in nonperturbative quantum field theory and the cosmological constant

We consider a gravitating extended object constructed from vacuum fluctuations of nonperturbatively quantized non-Abelian gauge fields. An approximate description of such an object is given by two gravitating scalar fields. The object has a core filled with a constant energy density of the vacuum fluctuations of the quantum fields. The core is located inside a cosmological event horizon. An exact analytical solution of the Einstein equations for such a core is presented. The value of the energy density of the vacuum fluctuations is connected with the cosmological constant.

Mapping the Three-Dimensional "X-Shaped Structure" in Models of the Galactic Bulge

Numerical simulations have shown that the X-shaped structure in the Milky Way bulge can naturally arise from the bar instability and buckling instability. To understand the influence of the buckling amplitude on the morphology of the X-shape, we analyze three self-consistent numerical simulations of barred galaxies with different buckling amplitudes (strong, intermediate and weak). We derive the three-dimensional density with an adaptive kernel smoothing technique. The face-on iso-density surfaces are all elliptical, while in the edge-on view, the morphology of buckled bars transitions with increasing radius, from a central boxy core to a peanut bulge and then to an extended thin bar. Based on these iso-density surfaces at different density levels, we find no clear evidence for a well-defined structure shaped like a letter X. The X-shaped structure is more peanut-like, whose visual perception is probably enhanced by the pinched inner concave iso-density contours. The peanut bulge can reproduce qualitatively the observed bimodal distributions which were used as evidence for the discovery of the X-shape. The central boxy core is shaped like an oblong tablet, extending to $\sim$ 500 pc above and below the Galactic plane ($|b| \sim 4^\circ$). From the solar perspective, lines of sight passing through the central boxy core do not show bimodal distributions. This generally agrees with the observations that the double peaks merge at $|b| \sim 4^\circ - 5^\circ$ from the Galactic plane, indicating the presence of a possibly similar structure in the Galactic bulge.

Tangled up in Spinning Cosmic Strings [Cross-Listing]

It is known for a long time that the space time around a spinning cylindrical symmetric compact object such as the cosmic string, show un-physical behavior, i.e., they would possess closed time like curves (CTC). This controversy with Hawking's chronology protection conjecture is unpleasant but can be understood if one solves the coupled scalar-gauge field equations and the matching conditions at the core of the string. A new interior numerical solution is found of a self gravitating spinning cosmic string with a U(1) scalar gauge field and the matching on the exterior space time is revealed. It is conjectured that the experience of CTC's close to the core of the string is exceedingly unlikely. It occurs when the causality breaking boundary, $r_\mu$, approaches the boundary of the cosmic string, $r_{CS}$. Then the metric components become singular and the proper time on the core of the string stops flowing. Further, we expect that the angular momentum $J$ will decrease due to the emission of gravitational energy triggered by the scalar perturbations. When a complete loop is taken around the string, the interior time jumps by a factor $2\pi J$. The proper time it takes to make a complete loop becomes infinite and will be equal to the period that $g_{\varphi\varphi}$ remains positive. In this time interval the angular momentum will be reduced to zero by emission of wave energy. The physical situation of an observer who experience $r_{\mu}\rightarrow r_{CS}$ is very unpleasant: the energy-momentum tensor components diverge.

Tangled up in Spinning Cosmic Strings

It is known for a long time that the space time around a spinning cylindrical symmetric compact object such as the cosmic string, show un-physical behavior, i.e., they would possess closed time like curves (CTC). This controversy with Hawking's chronology protection conjecture is unpleasant but can be understood if one solves the coupled scalar-gauge field equations and the matching conditions at the core of the string. A new interior numerical solution is found of a self gravitating spinning cosmic string with a U(1) scalar gauge field and the matching on the exterior space time is revealed. It is conjectured that the experience of CTC's close to the core of the string is exceedingly unlikely. It occurs when the causality breaking boundary, $r_\mu$, approaches the boundary of the cosmic string, $r_{CS}$. Then the metric components become singular and the proper time on the core of the string stops flowing. Further, we expect that the angular momentum $J$ will decrease due to the emission of gravitational energy triggered by the scalar perturbations. When a complete loop is taken around the string, the interior time jumps by a factor $2\pi J$. The proper time it takes to make a complete loop becomes infinite and will be equal to the period that $g_{\varphi\varphi}$ remains positive. In this time interval the angular momentum will be reduced to zero by emission of wave energy. The physical situation of an observer who experience $r_{\mu}\rightarrow r_{CS}$ is very unpleasant: the energy-momentum tensor components diverge.

Giant planet formation via pebble accretion

In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth masses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.

Internal rotation of the red-giant star KIC 4448777 by means of asteroseismic inversion

In this paper we study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from {\it Kepler} observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure which involves a combination of different methods to extract the rotational splittings from the power spectrum. We find not only that the core rotates faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al. 2012,2014), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of $\Delta r=0.001R$ and verify the hypothesis of a sharp discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The results show that the entire core rotates rigidly with an angular velocity of about $\langle\Omega_c/2\pi\rangle=748\pm18$~nHz and provide evidence for an angular velocity decrease through a region between the helium core and part of the hydrogen burning shell; however we do not succeed to characterize the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core and through the hydrogen burning shell, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of $\langle\Omega_s/2\pi\rangle=68\pm22$~nHz. Hence, the core in KIC~4448777 is rotating from a minimum of 8 to a maximum of 17 times faster than the envelope. We conclude that a set of data which includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.

Internal structure of Pluto and Charon with an iron core

Pluto has been observed by the New Horizons space probe to have some relatively fresh ice on the old ices covering most of the surface. Pluto was thought to consist of only a rocky core below the ice. Here I show that Pluto can have an iron core, as can also its companion Charon, which has recently been modelled to have one. The presence of an iron core means the giant impact origin calculations should be redone to include iron and thus higher temperatures. An iron core leads to the possibility of a different geology. An originally molten core becomes solid later, with contraction and a release of latent heat. The space vacated allows the upper rock layers to flow downwards at some locations at the surface of the core, and some of the ice above the rock to descend, filling the spaces left by the rock motion downwards. These phenomena can lead to the forces recently deforming the icy surface of Pluto, and in a lesser way, of Charon.

Hierarchical gravitational fragmentation. I. Collapsing cores within collapsing clouds

We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor-Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like $r^-2$ density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of $M/M_{BE}$ vs. $M$, where $M$ is the core's mass and $M_{BE}$ is the critical Bonnor-Ebert mass, spanning the range from the "stable" to the "unstable" regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

A Semi-Analytic dynamical friction model that reproduces core stalling

We present a new semi-analytic model for dynamical friction based on Chandrasekhar's formalism. The key novelty is the introduction of physically motivated, radially varying, maximum and minimum impact parameters. With these, our model gives an excellent match to full N-body simulations for isotropic background density distributions, both cuspy and shallow, without any fine-tuning of the model parameters. In particular, we are able to reproduce the dramatic core-stalling effect that occurs in shallow/constant density cores, for the first time. This gives us new physical insight into the core-stalling phenomenon. We show that core stalling occurs in the limit in which the product of the Coulomb logarithm and the local fraction of stars with velocity lower than the infalling body tends to zero. For cuspy backgrounds, this occurs when the infalling mass approaches the enclosed background mass. For cored backgrounds, it occurs at larger distances from the centre, due to a combination of a rapidly increasing minimum impact parameter and a lack of slow moving stars in the core. This demonstrates that the physics of core-stalling is likely the same for both massive infalling objects and low-mass objects moving in shallow density backgrounds. We implement our prescription for dynamical friction in the direct summation code NBODY6 as an analytic correction for stars that remain within the Roche volume of the infalling object. This approach is computationally efficient, since only stars in the inspiralling system need to be evolved with direct summation. Our method can be applied to study a variety of astrophysical systems, including young star clusters orbiting near the Galactic Centre; globular clusters moving within the Galaxy; and dwarf galaxies orbiting within dark matter halos.

Application of supersymmetric quantum mechanics to study bound state properties of exotic hypernuclei

Bound state properties of few single and double-$\Lambda$ hypernuclei is critically examined in the framework of core-$\Lambda$ and core+$\Lambda+\Lambda$ few-body model applying hyperspherical harmonics expansion method (HHEM). The $\Lambda\Lambda$ potential is chosen phenomenologically while the core-$\Lambda$ potential is obtained by folding a phenomenological $\Lambda N$ interaction into the density distribution of the core. The depth of the effective $\Lambda N$ potential is adjusted to reproduce the experimental data for the core-$\Lambda$ subsystem. The three-body Schr\"odinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. The ground state wavefunction is used to construct the supersymmetric partner potential following prescription of supersymmetric quantum mechanics (SSQM) algebra. The newly constructed supersymmetric partner potential is used to solve the three-body Schr\"odinger equation to get the energy and wavefunction for the first excited state of the original potential. The method is repeated to predict energy and wavefunction of the next higher excited states. The possible number of bound states is found to increase with the increase in mass of the core of the hypernuclei. The Root Mean Squared (RMS) matter radius and some other relevant geometrical observables are also predicted.

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core [Replacement]

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional $^3$P$_2$ condensate with $m_{j}=0$.

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core [Replacement]

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional $^3$P$_2$ condensate with $m_{j}=0$.

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional one-component $^3$P$_2$ condensate with $m_{j}=0$. The best-fit solutions are obtained for the multicomponent superfluid phases listed in Table. The $O_1$ solution yields $M=1.52M_{Sun}$ (carbon envelope with $10^{-15}M_{Sun}$). The $O_2$ solution yield $M=1.47M_{Sun}$ (carbon envelope with $5\times 10^{-15}M_{Sun}$), and the $O_{\pm 3}$ solution $M=1.49M_{Sun}$ (iron envelope).

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core [Cross-Listing]

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional one-component $^3$P$_2$ condensate with $m_{j}=0$. The best-fit solutions are obtained for the multicomponent superfluid phases listed in Table. The $O_1$ solution yields $M=1.52M_{Sun}$ (carbon envelope with $10^{-15}M_{Sun}$). The $O_2$ solution yield $M=1.47M_{Sun}$ (carbon envelope with $5\times 10^{-15}M_{Sun}$), and the $O_{\pm 3}$ solution $M=1.49M_{Sun}$ (iron envelope).

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core [Replacement]

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional one-component $^3$P$_2$ condensate with $m_{j}=0$. The best-fit solutions are obtained for the multicomponent superfluid phases listed in Table. The $O_1$ solution yields $M=1.52M_{Sun}$ (carbon envelope with $10^{-15}M_{Sun}$). The $O_2$ solution yield $M=1.47M_{Sun}$ (carbon envelope with $5\times 10^{-15}M_{Sun}$), and the $O_{\pm 3}$ solution $M=1.49M_{Sun}$ (iron envelope).

The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core [Replacement]

The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional one-component $^3$P$_2$ condensate with $m_{j}=0$. The best-fit solutions are obtained for the multicomponent superfluid phases listed in Table. The $O_1$ solution yields $M=1.52M_{Sun}$ (carbon envelope with $10^{-15}M_{Sun}$). The $O_2$ solution yield $M=1.47M_{Sun}$ (carbon envelope with $5\times 10^{-15}M_{Sun}$), and the $O_{\pm 3}$ solution $M=1.49M_{Sun}$ (iron envelope).

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^