Posts Tagged angular momentum transport

Recent Postings from angular momentum transport

The angular momentum transport by unstable toroidal magnetic fields

We demonstrate with a nonlinear MHD code that angular momentum can be transported due to the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. The fields are assumed strong enough and the density stratification weak enough that the influence of the ‘negative’ buoyancy in the radiative zones can be neglected. Only permanent current-free fields and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity are considered. We find that the dimensionless ratio of the turbulent over molecular viscosity, \nu_T/\nu, linearly grows with growing magnetic Reynolds number of the rotating fluid multiplied by the square root of the magnetic Prandtl number – which is of order unity for the considered red subgiant KIC 7341231, in contrast to the smaller values of the solar radiative interior. The outward angular momentum transport is thus stronger for hot and fast rotators than for solar-type stars. For the considered interval of magnetic Reynolds numbers – which is restricted by numerical constraints of the nonlinear MHD code – there is a remarkable influence of the magnetic Prandtl number on the relative importance of the contributions of the Reynolds stress and the Maxwell stress to the total viscosity, which is magnetically dominated only for Pm > 0.5. We also find that the magnetized plasma behaves as a non-Newtonian fluid, i.e. the resulting effective viscosity depends on the shear in the rotation law. The decay time of the differential rotation thus depends on its shear and becomes longer and longer during the spin-down of a stellar core, as the viscosity is reduced when the rotation law becomes flat.

Magnetic diffusivity and angular momentum transport in magnetized and differentially rotating stellar radiation zones

With a linear theory the instability of a toroidal background field system with dipolar parity for inner stellar radiative zones under the presence of density stratification, differential rotation and for realistically small Prandtl numbers is analyzed. The physical parameters are the normalized latitudinal shear $a$ and the normalized field amplitude $b \simeq \Omega_A/\Omega$. Only the solutions for the wavelengths with the maximal growth rates are considered. If these scales are combined to the radial values of velocity one finds that for $b \gsim 0.1$ the (very small) radial velocity does only slightly depend on $a$ and $b$ so that it can be used as the free parameter of the eigenvalue system. The resulting instability-generated tensors of magnetic diffusivity and eddy viscosity are highly anisotropic. The eddy diffusivity in latitudinal direction exceeds the eddy diffusivity in radial direction by orders of magnitude. Its latitudinal profile shows a strong concentration to the poles and (for rigid rotation) a numerical value of $10^{12}$ cm$^2$/s. On the other hand, the instability pattern transports angular momentum equatorward even for rigid rotation producing a slightly faster rotation of the equator of the radiative zone. The resulting effective magnetic Prandtl number reaches values of $O(10^3)$ so that differential rotation decays much faster than the toroidal background field which is {\em the} necessary condition to explain the observed slow rotation of the early red-giant and subgiant cores by means of magnetic instabilities.

Global simulations of magnetorotational turbulence III: influence of field configuration and mass injection

The stresses produced by magnetorotational turbulence can provide effective angular momentum transport in accretion disks. However, questions remain about the ability of simulated disks to reproduce observationally inferred stress-to-gas-pressure ratios. In this paper we present a set of high resolution global magnetohydrodynamic disk simulations which are initialised with different field configurations: purely toroidal, vertical field lines, and nested poloidal loops. A mass source term is included which allows the total disk mass to equilibrate in simulations with long run times, and also enables the impact of rapid mass injection to be explored. Notably different levels of angular momentum transport are observed during the early-time transient disk evolution. However, given sufficient time to relax, the different models evolve to a statistically similar quasi-steady state with a stress-to-gas-pressure ratio, $\alpha \sim 0.032-0.036$. The indication from our results is that {\it steady, isolated} disks may be unable to maintain a large-scale magnetic field or produce values for the stress-to-gas-pressure ratio implied by some observations. Supplementary simulations exploring the influence of trapping magnetic field, injecting vertical field, and rapidly injecting additional mass into the disk show that large stresses ($\alpha \sim 0.1-0.25$) can be induced by these mechanisms. The simulations highlight the common late-time evolution and characteristics of turbulent disks for which the magnetic field is allowed to evolve freely. If the boundaries of the disk, the rate of injection of magnetic field, or the rate of mass replenishment are modified to mimic astrophysical disks, markedly different disk evolution occurs.

On characterizing nonlocality and anisotropy for the magnetorotational instability [Replacement]

The extent to which angular momentum transport in accretion discs is primarily local or non-local and what determines this is an important avenue of study for understanding accretion engines. Taking a step along this path, we analyze simulations of the magnetorotational instability (MRI) by calculating energy and stress power spectra in stratified isothermal shearing box simulations in several new ways. We divide our boxes in two regions, disc and corona where the disc is the MRI unstable region and corona is the magnetically dominated region. We calculate the fractional power in different quantities, including magnetic energy and Maxwell stresses and find that they are dominated by contributions from the lowest wave numbers. This is even more dramatic for the corona than the disc, suggesting that transport in the corona region is dominated by larger structures than the disc. By calculating averaged power spectra in one direction of $k$ space at a time, we also show that the MRI turbulence is strongly anisotropic on large scales when analyzed by this method, but isotropic on small scales. Although the shearing box itself is meant to represent a local section of an accretion disc, the fact that the stress and energy are dominated by the largest scales highlights that the locality is not captured within the box. This helps to quantify the intuitive importance of global simulations for addressing the question of locality of transport, for which similar analyses can be performed.

On characterizing nonlocality and anisotropy in magnetorotational instability

The extent to which angular momentum transport in accretion discs is primarily local or non-local and what determines this is an important avenue of study for understanding accretion engines. Taking a step along this path, we analyze simulations of the magnetorotational instability (MRI) by calculating energy and stress power spectra in stratified isothermal shearing box simulations in several new ways. We divide our boxes in two regions, disc and corona where the disc is the MRI unstable region and corona is the magnetically dominated region. We calculate the fractional power in different quantities, including magnetic energy and Maxwell stresses and find that they are dominated by contributions from the lowest wave numbers. This is even more dramatic for the corona than the disc, suggesting that transport in the corona region is dominated by larger structures than the disc. By calculating averaged power spectra in one direction of $k$ space at a time, we also show that the MRI turbulence is strongly anisotropic on large scales when analyzed by this method, but isotropic on small scales. Although the shearing box itself is meant to represent a local section of an accretion disc, the fact that the stress and energy are dominated by the largest scales highlights that the locality is not captured within the box. This helps to quantify the intuitive importance of global simulations for addressing the question of locality of transport, for which similar analyses can be performed.

Theoretical seismology in 3D : nonlinear simulations of internal gravity waves in solar-like stars

Internal gravity waves (hereafter IGWs) are studied for their impact on the angular momentum transport in stellar radiation zones and the information they provide about the structure and dynamics of deep stellar interiors. We here present the first 3D nonlinear numerical simulations of IGWs excitation and propagation in a solar-like star. The aim is to study the behavior of waves in a realistic 3D nonlinear time dependent model of the Sun and to characterize their properties. We compare our results with theoretical and 1D predictions. It allows us to point out the complementarity between theory and simulation and to highlight the convenience but also the limits of the asymptotic and linear theories. We show that a rich spectrum of IGWs is excited by the convection, representing about 0.4\% of the total solar luminosity. We study the spatial and temporal properties of this spectrum, the effect of thermal damping and nonlinear interactions between waves. We give quantitative results about the modes frequencies, evolution with time and rotational splitting and we discuss the amplitude of IGWs considering different regimes of parameters. This work points out the importance of high performance simulation for its complementarity with observation and theory. It opens a large field of investigation concerning IGWs propagating nonlinearly in 3D spherical structures. The extension of this work to other types of stars, with different masses, structures and rotation rates will lead to a deeper and more accurate comprehension of IGWs in stars.

Theoretical seismology in 3D : nonlinear simulations of internal gravity waves in solar-like stars [Replacement]

Internal gravity waves (hereafter IGWs) are studied for their impact on the angular momentum transport in stellar radiation zones and the information they provide about the structure and dynamics of deep stellar interiors. We here present the first 3D nonlinear numerical simulations of IGWs excitation and propagation in a solar-like star. The aim is to study the behavior of waves in a realistic 3D nonlinear time dependent model of the Sun and to characterize their properties. We compare our results with theoretical and 1D predictions. It allows us to point out the complementarity between theory and simulation and to highlight the convenience but also the limits of the asymptotic and linear theories. We show that a rich spectrum of IGWs is excited by the convection, representing about 0.4% of the total solar luminosity. We study the spatial and temporal properties of this spectrum, the effect of thermal damping and nonlinear interactions between waves. We give quantitative results about the modes frequencies, evolution with time and rotational splitting and we discuss the amplitude of IGWs considering different regimes of parameters. This work points out the importance of high performance simulation for its complementarity with observation and theory. It opens a large field of investigation concerning IGWs propagating nonlinearly in 3D spherical structures. The extension of this work to other types of stars, with different masses, structures and rotation rates will lead to a deeper and more accurate comprehension of IGWs in stars.

On the Viability of the Magnetorotational Instability in Circumplanetary Disks

We examine whether the magnetorotational instability (MRI) can serve as a mechanism of angular momentum transport in circumplanetary disks. For the MRI to operate the ionization degree must be sufficiently high and the magnetic pressure must be sufficiently lower than the gas pressure. We calculate the spatial distribution of the ionization degree and search for the MRI-active region where the two criteria are met. We find that there can be thin active layers at the disk surface depending on the model parameters, however, we find hardly any region which can sustain well-developed MRI turbulence; when the magnetic field is enhanced by MRI turbulence at the disk surface layer, a magnetically dominated atmosphere encroaches on a lower altitude and a region of well-developed MRI turbulence becomes smaller. We conclude that if there are no angular momentum transfer mechanisms other than MRI in gravitationally stable circumplanetary disks, gas is likely to pile up until disks become gravitationally unstable, and massive disks may survive for a long time.

On the Viability of the Magnetorotational Instability in Circumplanetary Disks [Replacement]

We examine whether the magnetorotational instability (MRI) can serve as a mechanism of angular momentum transport in circumplanetary disks. For the MRI to operate the ionization degree must be sufficiently high and the magnetic pressure must be sufficiently lower than the gas pressure. We calculate the spatial distribution of the ionization degree and search for the MRI-active region where the two criteria are met. We find that there can be thin active layers at the disk surface depending on the model parameters, however, we find hardly any region which can sustain well-developed MRI turbulence; when the magnetic field is enhanced by MRI turbulence at the disk surface layer, a magnetically dominated atmosphere encroaches on a lower altitude and a region of well-developed MRI turbulence becomes smaller. We conclude that if there are no angular momentum transfer mechanisms other than MRI in gravitationally stable circumplanetary disks, gas is likely to pile up until disks become gravitationally unstable, and massive disks may survive for a long time.

The fate of fallback matter around newly born compact objects

The presence of fallback disks around young neutron stars has been invoked over the years to explain a large variety of phenomena. Here we perform a numerical investigation of the formation of such disks during a supernova explosion, considering both neutron star (NS) and black hole (BH) remnants. Using the public code MESA, we compute the angular momentum distribution of the pre-supernova material, for stars with initial masses M in the range 13 – 40 Msun, initial surface rotational velocities vsurf between 25% and 75% of the critical velocity, and for metallicities Z of 1%, 10% and 100% of the solar value. These pre SN models are exploded with energies E varying between 10^{50} – 3×10^{52} ergs, and the amount of fallback material is computed. We find that, if magnetic torques play an important role in angular momentum transport, then fallback disks around NSs, even for low-metallicity main sequence stars, are not an outcome of SN explosions. Formation of such disks around young NSs can only happen under the condition of negligible magnetic torques and a fine-tuned explosion energy. For those stars which leave behind BH remnants, disk formation is ubiquitous if magnetic fields do not play a strong role; however, unlike the NS case, even with strong magnetic coupling in the interior, a disk can form in a large region of the {Z,M,vsurf,E} parameter space. Together with the compact, hyperaccreting fallback disks widely discussed in the literature, we identify regions in the above parameter space which lead to extended, long-lived disks around BHs. We find that the physical conditions in these disks may be conducive to planet formation, hence leading to the possible existence of planets orbiting black holes.

Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory

This chapter aims at providing the most complete review of both the emerging concepts and the latest observational results regarding the angular momentum evolution of young low-mass stars and brown dwarfs. In the time since Protostars & Planets V, there have been major developments in the availability of rotation period measurements at multiple ages and in different star-forming environments that are essential for testing theory. In parallel, substantial theoretical developments have been carried out in the last few years, including the physics of the star-disk interaction, numerical simulations of stellar winds, and the investigation of angular momentum transport processes in stellar interiors. This chapter reviews both the recent observational and theoretical advances that prompted the development of renewed angular momentum evolution models for cool stars and brown dwarfs. While the main observational trends of the rotational history of low mass objects seem to be accounted for by these new models, a number of critical open issues remain that are outlined in this review.

Star formation and accretion in the circumnuclear disks of active galaxies

We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. A system of equations describing star formation, black hole accretion and angular momentum transport was solved for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu et al. (2008) by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk. We find that current data provide no strong constraint on the star formation recipe, and can in particular not distinguish between models entirely regulated by the surface density, and models including a dependence on the turbulent velocity. The evolution of the black hole mass, on the other hand, strongly depends on the applied star formation law, as well as the mass supply from the host galaxy. We suggest to explore the star formation process in local AGN with high-resolution ALMA observations to break the degeneracy between different star formation models.

MHD Simulation of a Disk Subjected to Lense-Thirring Precession

When matter orbits around a central mass obliquely with respect to the mass’s spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen & Petterson (1975), it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass’s spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological "viscosity" isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Lastly, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.

Multidimensional Simulations of Rotating Pair Instability Supernovae

We study the effects of rotation on the dynamics, energetics and Ni-56 production of Pair Instability Supernova explosions by performing rotating two-dimensional ("2.5-D") hydrodynamics simulations. We calculate the evolution of eight low metallicity (Z = 10^-3, 10^-4 Zsun) massive (135-245 Msun) PISN progenitors with initial surface rotational velocities 50% that of the critical Keplerian value using the stellar evolution code MESA. We allow for both the inclusion and the omission of the effects of magnetic fields in the angular momentum transport and in chemical mixing, resulting in slowly-rotating and rapidly-rotating final carbon-oxygen cores, respectively. Increased rotation for carbon-oxygen cores of the same mass and chemical stratification leads to less energetic PISN explosions that produce smaller amounts of Ni-56 due to the effect of the angular momentum barrier that develops and slows the dynamical collapse. We find a non-monotonic dependence of Ni-56 production on rotational velocity in situations when smoother composition gradients form at the outer edge of the rotating cores. In these cases, the PISN energetics are determined by the competition of two factors: the extent of chemical mixing in the outer layers of the core due to the effects of rotation in the progenitor evolution and the development of angular momentum support against collapse. Our 2.5-D PISN simulations with rotation are the first presented in the literature. They reveal hydrodynamic instabilities in several regions of the exploding star and increased explosion asymmetries with higher core rotational velocity.

Dynamics of warped accretion discs

Accretion discs are present around both stellar-mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei. A wide variety of circumstantial evidence implies that many of these discs are warped. The standard Bardeen–Petterson model attributes the shape of the warp to the competition between Lense–Thirring torque from the central black hole and viscous angular-momentum transport within the disc. We show that this description is incomplete, and that torques from the companion star (for X-ray binaries) or the self-gravity of the disc (for active galactic nuclei) can play a major role in determining the properties of the warped disc. Including these effects leads to a rich set of new phenomena. For example, (i) when a companion star is present and the warp arises from a misalignment between the companion’s orbital axis and the black hole’s spin axis, there is no steady-state solution of the Pringle–Ogilvie equations for a thin warped disc when the viscosity falls below a critical value; (ii) in AGN accretion discs, the warp can excite short-wavelength bending waves that propagate inward with growing amplitude until they are damped by the disc viscosity. We show that both phenomena can occur for plausible values of the black hole and disc parameters, and briefly discuss their observational implications.

Non-axisymmetric vertical shear and convective instabilities as a mechanism of angular momentum transport

Discs with a rotation profile depending on radius and height are subject to an axisymmetric linear instability, the vertical shear instability. Here we show that non-axisymmetric perturbations, while eventually stabilized, can sustain huge exponential amplifications with growth rate close to the axisymmetric one. Transient growths are therefore to all effects genuine instabilities. The ensuing angular momentum transport is positive. These growths occur when the product of the radial times the vertical wavenumbers (both evolving with time) is positive for a positive local vertical shear, or negative for a negative local vertical shear. We studied, as well, the interaction of these vertical shear induced growths with a convective instability. The asymptotic behaviour depends on the relative strength of the axisymmetric vertical shear (s_v) and convective (s_c) growth rates. For s_v > s_c we observed the same type of behaviour described above – large growths occur with asymptotic stabilization. When s_c > s_v the system is asymptotically unstable, with a growth rate which can be slightly enhanced with respect to s_c. The most interesting feature is the sign of the angular momentum transport. This is always positive in the phase in which the vertical shear driven transients growths occur, even in the case s_c > s_v . Thermal diffusion has a stabilizing influence on the convective instability, specially for short wavelengths.

Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars

Core rotation rates have been measured for red giant stars using asteroseismology. This data, along with helioseismic measurements and open cluster spin down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal poor red giant KIC 7341231 ("Otto") and intermediate mass core helium burning stars. For both we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23 to 33 times the surface value expected from standard spin down models. The minimum coupling time scale (.17 to .45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and .0052 days depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

Internal Gravity Waves in Massive Stars: Angular Momentum Transport

We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in the Earth’s atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars and the non-synchronous orbits of interacting binaries.

Global simulations of magnetorotational turbulence I: convergence and the quasi-steady state

Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion disks. We present global, three dimensional (3D), MHD accretion disk simulations that investigate the dependence of the turbulent stresses on resolution. Convergence in the time-and-volume-averaged stress-to-gas-pressure ratio, at a value of $\sim0.04$, is found for a model with radial, vertical, and azimuthal resolution of 12-51, 27, and 12.5 cells per scale-height (the simulation mesh is such that cells per scale-height varies in the radial direction). A control volume analysis is performed on the main body of the disk (|z|<2H) to examine the production and removal of magnetic energy. Maxwell stresses in combination with the mean disk rotation are mainly responsible for magnetic energy production, whereas turbulent dissipation (facilitated by numerical resistivity) predominantly removes magnetic energy from the disk. Re-casting the magnetic energy equation in terms of the power injected by Maxwell stresses on the boundaries of, and by Lorentz forces within, the control volume highlights the importance of the boundary conditions (of the control volume). The different convergence properties of shearing-box and global accretion disk simulations can be readily understood on the basis of choice of boundary conditions, the magnetic field configuration, and the value of resistivity. Periodic boundary conditions restrict the establishment of large-scale gradients in the magnetic field, limiting the power that can be delivered to the disk by Lorentz forces and by stresses at the surfaces. The factor of three lower resolution required for convergence in turbulent stresses for our global disk models compared to stratified shearing-boxes is explained by this finding. (Abridged)

Global simulations of magnetorotational turbulence I: convergence and the quasi-steady state [Replacement]

Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion disks. We present global, three dimensional (3D), MHD accretion disk simulations that investigate the dependence of the turbulent stresses on resolution. Convergence in the time-and-volume-averaged stress-to-gas-pressure ratio, at a value of $\sim0.04$, is found for a model with radial, vertical, and azimuthal resolution of 12-51, 27, and 12.5 cells per scale-height (the simulation mesh is such that cells per scale-height varies in the radial direction). A control volume analysis is performed on the main body of the disk (|z|<2H) to examine the production and removal of magnetic energy. Maxwell stresses in combination with the mean disk rotation are mainly responsible for magnetic energy production, whereas turbulent dissipation (facilitated by numerical resistivity) predominantly removes magnetic energy from the disk. Re-casting the magnetic energy equation in terms of the power injected by Maxwell stresses on the boundaries of, and by Lorentz forces within, the control volume highlights the importance of the boundary conditions (of the control volume). The different convergence properties of shearing-box and global accretion disk simulations can be readily understood on the basis of choice of boundary conditions, the magnetic field configuration, and the value of resistivity. Periodic boundary conditions restrict the establishment of large-scale gradients in the magnetic field, limiting the power that can be delivered to the disk by Lorentz forces and by stresses at the surfaces. The factor of three lower resolution required for convergence in turbulent stresses for our global disk models compared to stratified shearing-boxes is explained by this finding. (Abridged)

Global simulations of magnetorotational turbulence I: convergence and the quasi-steady state [Replacement]

Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion disks. We present global, three dimensional (3D), MHD accretion disk simulations that investigate the dependence of the turbulent stresses on resolution. Convergence in the time-and-volume-averaged stress-to-gas-pressure ratio, at a value of $\sim0.04$, is found for a model with radial, vertical, and azimuthal resolution of 12-51, 27, and 12.5 cells per scale-height (the simulation mesh is such that cells per scale-height varies in the radial direction). A control volume analysis is performed on the main body of the disk (|z|<2H) to examine the production and removal of magnetic energy. Maxwell stresses in combination with the mean disk rotation are mainly responsible for magnetic energy production, whereas turbulent dissipation (facilitated by numerical resistivity) predominantly removes magnetic energy from the disk. Re-casting the magnetic energy equation in terms of the power injected by Maxwell stresses on the boundaries of, and by Lorentz forces within, the control volume highlights the importance of the boundary conditions (of the control volume). The different convergence properties of shearing-box and global accretion disk simulations can be readily understood on the basis of choice of boundary conditions and the magnetic field configuration. Periodic boundary conditions restrict the establishment of large-scale gradients in the magnetic field, limiting the power that can be delivered to the disk by Lorentz forces and by stresses at the surfaces. The factor of three lower resolution required for convergence in turbulent stresses for our global disk models compared to stratified shearing-boxes is explained by this finding. (Abridged)

Wind-driven Accretion in Protoplanetary Disks --- II: Radial Dependence and Global Picture

Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both Ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. Scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M_dot~0.91×10^(-8)R_AU^(1.21)(B_z/10mG)^(0.93)M_Sun/yr, where B_z is the strength of the large-scale vertical magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: 1). Ohmic resistivity dominated midplane region; 2). AD dominated disk upper layer; 3). Presence of (not too weak) net vertical magnetic flux. 4). Sufficiently well ionized gas beyond disk surface. All these criteria are likely to be met in the inner region of the disk from ~0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

Understanding angular momentum transport in red giants: the case of KIC 7341231

Context. Thanks to recent asteroseismic observations, it has been possible to infer the radial differential rotation profile of subgiants and red giants. Aims. We want to reproduce through modeling the observed rotation profile of the early red giant KIC 7341231 and constrain the physical mechanisms responsible for angular momentum transport in stellar interiors. Methods. We compute models of KIC 7341231 including a treatment of shellular rotation and we compare the rotation profiles obtained with the one derived by Deheuvels et al. (2012). We then modify some modeling parameters in order to quantify their effect on the obtained rotation profile. Moreover, we mimic a powerful angular momentum transport during the Main Sequence and study its effect on the evolution of the rotation profile during the subgiant and red giant phases. Results. We show that meridional circulation and shear mixing alone produce a rotation profile for KIC 7341231 too steep compared to the observed one. An additional mechanism is then needed to increase the internal transport of angular momentum. We find that this undetermined mechanism has to be efficient not only during the Main Sequence but also during the much quicker subgiant phase. Moreover, we point out the importance of studying the whole rotational history of a star in order to explain its rotation profile during the red giant evolution.

Growth of a Protostar and a Young Circumstellar Disk with High Mass Accretion Rate onto the Disk

The growing process of both a young protostar and a circumstellar disk is investigated. Viscous evolution of a disk around a single star is considered with a model where a disk increases its mass by dynamically accreting envelope and simultaneously loses its mass via viscous accretion onto the central star. We focus on the circumstellar disk with high mass accretion rate onto the disk $\dot{M}=8.512c_{\rm s}^3/G$ as a result of dynamical collapse of rotating molecular cloud core. We study the origin of the surface density distribution and the origin of the disk-to-star mass ratio by means of numerical calculations of unsteady viscous accretion disk in one-dimensional axisymmetric model. It is shown that the radial profiles of the surface density $\Sigma$, azimuthal velocity $v_{\phi}$, and mass accretion rate $\dot{M}$ in the inner region approach to the quasi-steady state. Profile of the surface density distribution in the quasi-steady state is determined as a result of angular momentum transport rather than its original distribution of angular momentum in the cloud core. It is also shown that the disk mass becomes larger than the central star in the long time limit as long as temporary constant mass flux onto the disk is assumed. After the mass infall rate onto the disk declines owing to the depletion of the parent cloud core, the disk-to-star mass ratio $M_{\rm disk}/M_*$ decreases. The disk-to-star mass ratio becomes smaller than unity after $t> 10^5 \rm yr$ and $t>10^6 \rm yr$ from the beginning of the accretion phase in the case with $\alpha_0 =1 {\rm and} 0.1$, respectively, where $\alpha_0 $ is the constant part of viscous parameter. In the case with $\alpha_0 \leq 10^{-2}$, $M_{\rm disk}/M_*$ is still larger than unity at $2 \rm Myr$ from the beginning of the accretion phase.

On the Offset of Barred Galaxies From the Black Hole M_BH-sigma Relationship

We use collisionless N-body simulations to determine how the growth of a supermassive black hole (SMBH) influences the nuclear kinematics in both barred and unbarred galaxies. In the presence of a bar, the increase in the velocity dispersion sigma (within the effective radius) due to the growth of an SMBH is on average <= 10%, whereas the increase is only ~4% in an unbarred galaxy. In a barred galaxy, the increase results from a combination of three separate factors (a) orientation and inclination effects; (b) angular momentum transport by the bar that results in an increase in the central mass density; (c) an increase in the vertical and radial velocity anisotropy of stars in the vicinity of the SMBH. In contrast the growth of the SMBH in an unbarred galaxy causes the velocity distribution in the inner part of the nucleus to become less radially anisotropic. We argue that using an axisymmetric stellar dynamical modeling code to measure SMBH masses in barred galaxies could result in a slight overestimate of the derived M_BH. We conclude that the growth of a black hole in the presence of a bar could result in an offset in sigma, perhaps partially accounting for the claimed offset of barred galaxies and pseudo-bulges from the M_BH-sigma relation for unbarred galaxies. If the black hole grows significantly in a pre-existing barred galaxy, the resultant secular evolution would alter both the mass and velocity dispersion of the host bulge.

MRI-driven angular momentum transport in protoplanetary disks

Angular momentum transport in accretion disk has been the focus of intense research in theoretical astrophysics for many decades. In the past twenty years, MHD turbulence driven by the magnetorotational instability has emerged as an efficient mechanism to achieve that goal. Yet, many questions and uncertainties remain, among which the saturation level of the turbulence. The consequences of the magnetorotational instability for planet formation models are still being investigated. This lecture, given in September 2012 at the school "Role and mechanisms of angular momentum transport in the formation and early evolution of stars" in Aussois (France), aims at introducing the historical developments, current status and outstanding questions related to the magnetorotational instability that are currently at the forefront of academic research.

A Self-Gravitating Disc Around L1527 IRS?

Recent observations of the Class 0 protostar L1527 IRS have revealed a rotationally supported disc with an outer radius of at least 100 au. Measurements of the integrated flux at 870 microns suggest a disc mass that is too low for gravitational instability to govern angular momentum transport. However, if parts of the disc are optically thick at sub-mm wavelengths, the sub-mm fluxes will underestimate the disc mass, and the disc’s actual mass may be substantially larger, potentially sufficient to be self-gravitating. We investigate this possibility using simple self-gravitating disc models. To match the observed mass accretion rates requires a disc-to-star mass ratio of at least ~0.5, which produces sub-mm fluxes that are similar to those observed for L1527 IRS in the absence of irradiation from the envelope or central star. If irradiation is significant, then the predicted fluxes exceed the observed fluxes by around an order of magnitude. Our model also indicates that the stresses produced by the gravitational instability are low enough to prevent disc fragmentation. As such, we conclude that observations do not rule out the possibility that the disc around L1527 IRS is self-gravitating, but it is more likely that despite being a very young system, this disc may already have left the self-gravitating phase.

Rotational suppression of the Tayler instability in stellar radiation zones

The study of the magnetic field in stellar radiation zones is an important topic in modern astrophysics because the magnetic field can play an important role in several transport phenomena such as mixing and angular momentum transport. We consider the influence of rotation on stability of a predominantly toroidal magnetic field in the radiation zone. We find that the effect of rotation on the stability depends on the magnetic configuration of the basic state. If the toroidal field increases sufficiently rapidly with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation although the strength of the instability can be significantly reduced. On the other hand, if the field increases slowly enough with the radius or decreases, the instability has a threshold and can be completely suppressed in rapidly rotating stars. We find that in the regions where the instability is entirely suppressed a particular type of magnetohydrodynamic waves may exist which are marginally stable.

Extending the range of the inductionless magnetorotational instability [Replacement]

The magnetorotational instability (MRI) can destabilize hydrodynamically stable rotational flows, thereby allowing angular momentum transport in accretion disks. A notorious problem for MRI is its questionable applicability in regions with low magnetic Prandtl number, as they are typical for protoplanetary disks and the outer parts of accretion disks around black holes. Using the WKB method, we extend the range of applicability of MRI by showing that the inductionless versions of MRI, such as the helical MRI and the azimuthal MRI, can easily destabilize Keplerian profiles ~ 1/r^(3/2) if the radial profile of the azimuthal magnetic field is only slightly modified from the current-free profile ~ 1/r. This way we further show how the formerly known lower Liu limit of the critical Rossby number, Ro=-0.828, connects naturally with the upper Liu limit, Ro=+4.828.

Extending the range of magnetorotational instability

The magnetorotational instability (MRI) can destabilize hydrodynamically stable rotational flows, thereby allowing angular momentum transport in accretion disks. A notorious problem for MRI is its questionable applicability in regions with low magnetic Prandtl number, as they are typical for protoplanetary disks and the outer parts of accretion disks around black holes. Using the WKB method, we extend the range of applicability of MRI by showing that the inductionless versions of MRI, such as the helical MRI and the azimuthal MRI, can easily destabilize Keplerian profiles if the radial profile of the azimuthal magnetic field is only slightly modified. This way we further show how the formerly known lower Liu limit of the critical Rossby number, Ro=-0.828, connects naturally with the corresponding upper Liu limit, Ro=+4.828.

Extending the range of magnetorotational instability [Replacement]

The magnetorotational instability (MRI) can destabilize hydrodynamically stable rotational flows, thereby allowing angular momentum transport in accretion disks. A notorious problem for MRI is its questionable applicability in regions with low magnetic Prandtl number, as they are typical for protoplanetary disks and the outer parts of accretion disks around black holes. Using the WKB method, we extend the range of applicability of MRI by showing that the inductionless versions of MRI, such as the helical MRI and the azimuthal MRI, can easily destabilize Keplerian profiles if the radial profile of the azimuthal magnetic field is only slightly modified. This way we further show how the formerly known lower Liu limit of the critical Rossby number, Ro=-0.828, connects naturally with the corresponding upper Liu limit, Ro=+4.828.

The coupling between internal waves and shear-induced turbulence in stellar radiation zones: the critical layer

Internal gravity waves (hereafter IGWs) are known as one of the candidates for explaining the angular velocity profile in the Sun and in solar-type main-sequence and evolved stars, due to their role in the transport of angular momentum. Our bringing concerns critical layers, a process poorly explored in stellar physics, defined as the location where the local relative frequency of a given wave to the rotational frequency of the fluid tends to zero (i.e that corresponds to co-rotation resonances). IGW propagate through stably-stratified radiative regions, where they extract or deposit angular momentum through two processes: radiative and viscous dampings and critical layers. Our goal is to obtain a complete picture of the effects of this latters. First, we expose a mathematical resolution of the equation of propagation for IGWs in adiabatic and non-adiabatic cases near critical layers. Then, the use of a dynamical stellar evolution code, which treats the secular transport of angular momentum, allows us to apply these results to the case of a solar-like star.The analysis reveals two cases depending on the value of the Richardson number at critical layers: a stable one, where IGWs are attenuated as they pass through a critical level, and an unstable turbulent case where they can be reflected/transmitted by the critical level with a coefficient larger than one. Such over-reflection/transmission can have strong implications on our vision of angular momentum transport in stellar interiors. This paper highlights the existence of two regimes defining the interaction between an IGW and a critical layer. An application exposes the effect of the first regime, showing a strengthening of the damping of the wave. Moreover, this work opens new ways concerning the coupling between IGWs and shear instabilities in stellar interiors.

Stability of the toroidal magnetic field in rotating stars

The magnetic field in stellar radiation zones can play an important role in phenomena such as mixing, angular momentum transport, etc. We study the effect of rotation on the stability of a predominantly toroidal magnetic field in the radiation zone. In particular we considered the stability in spherical geometry by means of a linear analysis in the Boussinesq approximation. It is found that the effect of rotation on the stability depends on a magnetic configuration. If the toroidal field increases with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation. Rotation can only decrease the growth rate of instability. If the field decreases with the radius, the instability has a threshold and can be completey suppressed.

Evolution of rotational velocities of A-type stars

It was found that the equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outwards. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope lead to that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 $\lesssim\mathrm{t/t_{MS}}\lesssim$ 0.5, the equatorial velocity remains almost constant for the stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for the stars whose central density decreases with age in the early stage of the MS phase.

Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites

The D/H ratios of carbonaceous chondrites, believed to reflect that of water in the inner early solar system, are intermediate between the protosolar value and that of most comets. The isotopic composition of cometary water has been accounted for by several models where the isotopic composition of water vapor evolved by isotopic exchange with hydrogen gas in the protoplanetary disk. However, the position and the wide variations of the distribution of D/H ratios in carbonaceous chondrites have yet to be explained. In this paper, we assume that the D/H composition of cometary ice was achieved in the disk building phase and model the further isotopic evolution of water in the inner disk in the classical T Tauri stage. Reaction kinetics compel isotopic exchange between water and hydrogen gas to stop at $\sim$500 K, but equilibrated water can be transported to the snow line (and beyond) via turbulent diffusion and consequently mix with isotopically comet-like water. Under certain simplifying assumptions, we calculate analytically this mixing and the resulting probability distribution function of the D/H ratio of ice accreted in planetesimals and compare it with observational data. The distribution essentially depends on two parameters: the radial Schmidt number Sc$_R$, which ratios the efficiencies of angular momentum transport and turbulent diffusion, and the range of heliocentric distances of accretion sampled by chondrites. The minimum D/H ratio of the distribution corresponds to the composition of water condensed at the snow line, which is primarily set by Sc$_R$. Observations constrain the latter to low values (0.1-0.3), which suggests that turbulence in the planet-forming region was hydrodynamical in nature, as would be expected in a dead zone. Such efficient outward diffusion would also account for the presence of high-temperature minerals in comets.

Angular Momentum Transport by Acoustic Modes Generated in the Boundary Layer II: MHD Simulations

We perform global unstratified 3D magnetohydrodynamic simulations of an astrophysical boundary layer (BL) — an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf — with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few and remains subthermal.

A Parameter Study for Baroclinic Vortex Amplification

Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation time-scales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as $\beta=-{d\ln s}/{d\ln r}={1}/{2}$, which corresponds to values observed in protoplanetary accretion disks. The amplification-rate of the perturbations, $\Gamma$, appears to be proportional to $\beta^2$ and thus proportional to the square of the \BV ($\Gamma \propto \beta^2 \propto N^2$). The saturation level of Reynolds stresses on the other hand seems to be proportional to $\beta^{1/2}$. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.

A Parameter Study for Baroclinic Vortex Amplification [Replacement]

Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation time-scales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as $\beta=-{d\ln s}/{d\ln r}={1}/{2}$, which corresponds to values observed in protoplanetary accretion disks. The amplification-rate of the perturbations, $\Gamma$, appears to be proportional to $\beta^2$ and thus proportional to the square of the \BV ($\Gamma \propto \beta^2 \propto N^2$). The saturation level of Reynolds stresses on the other hand seems to be proportional to $\beta^{1/2}$. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.

Rossby Wave Instability in Accretion Discs with Large-Scale Poloidal Magnetic Fields

We study the effect of large-scale magnetic fields on the non-axisymmetric Rossby wave instability (RWI) in accretion discs. The instability develops around a density bump, which is likely present in the transition region between the active zone and dead zone of protoplanetary discs. Previous works suggest that the vortices resulting from the RWI may facilitate planetesimal formation and angular momentum transport. We consider discs threaded by a large-scale poloidal magnetic field, with a radial field component at the disc surface. Such field configurations may lead to the production of magnetic winds or jets. In general, the magnetic field can affect the RWI even when it is sub-thermal (plasma $\beta\sim 10$). For infinitely thin discs, the instability can be enhanced by about 10 percent. For discs with finite thickness, with a radial gradient of the magnetic field strength, the RWI growth rate can increase significantly (by a factor of $\sim 2$) as the field approaches equipartition ($\beta \sim 1$). Our result suggests that the RWI can continue to operate in discs that produce magnetic winds.

Angular Momentum Transport by Acoustic Modes Generated in the Boundary Layer I: Hydrodynamical Theory and Simulations

The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with 3D hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

A solution to the radiation pressure problem in the formation of massive stars

We review our recent studies demonstrating that the radiation pressure problem in the formation of massive stars can be circumvented via an anisotropy of the thermal radiation field. Such an anisotropy naturally establishes with the formation of a circumstellar disk. The required angular momentum transport within the disk can be provided by developing gravitational torques. Radiative Rayleigh-Taylor instabilities in the cavity regions – as previously suggested in the literature – are not required and are shown to be not occurring in the context of massive star formation.

MHD Turbulence in Accretion Disk Boundary Layers

The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations and suggests that the detailed structure of turbulent MHD boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.

Theory of differential rotation and meridional circulation

Meridional flow results from slight deviations from the thermal wind balance. The deviations are relatively large in the boundary layers near the top and bottom of the convection zone. Accordingly, the meridional flow attains its largest velocities at the boundaries and decreases inside the convection zone. The thickness of the boundary layers, where meridional flow is concentrated, decreases with rotation rate, so that an advection-dominated regime of dynamos is not probable in rapidly rotating stars. Angular momentum transport by convection and by the meridional flow produce differential rotation. The convective fluxes of angular momentum point radially inward in the case of slow rotation but change their direction to equatorward and parallel to the rotation axis as the rotation rate increases. The differential rotation of main-sequence dwarfs is predicted to vary mildly with rotation rate but increase strongly with stellar surface temperature. The significance of differential rotation for dynamos has the opposite tendency to increase with spectral type.

Local outflows from turbulent accretion disks [Replacement]

The aim of this paper is to investigate the properties of accretion disks threaded by a weak vertical magnetic field, with a particular focus on the interplay between MHD turbulence driven by the magnetorotational instability (MRI) and outflows that might be launched from the disk. For that purpose, we use a set of numerical simulations performed with the MHD code RAMSES in the framework of the shearing box model. We concentrate on the case of a rather weak vertical magnetic field such that the initial ratio beta0 of the thermal and magnetic pressures in the disk midplane equals 10^4. As reported recently, we find that MHD turbulence drives an efficient outflow out of the computational box. We demonstrate a strong sensitivity of that result to the box size: enlargements in the radial and vertical directions lead to a reduction of up to an order of magnitude in the mass-loss rate. Such a dependence prevents any realistic estimates of disk mass-loss rates being derived using shearing-box simulations. We find however that the flow morphology is robust and independent of the numerical details of the simulations. Its properties display some features and approximate invariants that are reminiscent of the Blandford & Payne launching mechanism, but differences exist. For the magnetic field strength considered in this paper, we also find that angular momentum transport is most likely dominated by MHD turbulence, the saturation of which scales with the magnetic Prandtl number, the ratio of viscosity and resistivity, in a way that is in good agreement with expectations based on unstratified simulations. This paper thus demonstrates for the first time that accretion disks can simultaneously exhibit MRI-driven MHD turbulence along with magneto-centrifugally accelerated outflows.

Local outflows from turbulent accretion disks

The aim of this paper is to investigate the properties of accretion disks threaded by a weak vertical magnetic field, with a particular focus on the interplay between MHD turbulence driven by the magnetorotational instability (MRI) and outflows that might be launched from the disk. For that purpose, we use a set of numerical simulations performed with the MHD code RAMSES in the framework of the shearing box model. We concentrate on the case of a rather weak vertical magnetic field such that the initial ratio beta0 of the thermal and magnetic pressures in the disk midplane equals 10^4. As reported recently, we find that MHD turbulence drives an efficient outflow out of the computational box. We demonstrate a strong sensitivity of that result to the box size: enlargements in the radial and vertical directions lead to a reduction of up to an order of magnitude in the mass-loss rate. Such a dependence prevents any realistic estimates of disk mass-loss rates being derived using shearing-box simulations. We find however that the flow morphology is robust and independent of the numerical details of the simulations. Its properties display some features and approximate invariants that are reminiscent of the Blandford & Payne launching mechanism, but differences exist. For the magnetic field strength considered in this paper, we also find that angular momentum transport is most likely dominated by MHD turbulence, the saturation of which scales with the magnetic Prandtl number, the ratio of viscosity and resistivity, in a way that is in good agreement with expectations based on unstratified simulations. This paper thus demonstrates for the first time that accretion disks can simultaneously exhibit MRI-driven MHD turbulence along with magneto-centrifugally accelerated outflows.

Local Study of Accretion Disks with a Strong Vertical Magnetic Field: Magnetorotational Instability and Disk Outflow [Replacement]

We perform 3D vertically-stratified local shearing-box ideal MHD simulations of the magnetorotational instability (MRI) that include a net vertical magnetic flux, which is characterized by beta_0 (ratio of gas pressure to magnetic pressure of the net vertical field at midplane). We have considered beta_0=10^2, 10^3 and 10^4 and in the first two cases the most unstable linear MRI modes are well resolved in the simulations. We find that the behavior of the MRI turbulence strongly depends on beta_0: The radial transport of angular momentum increases with net vertical flux, achieving alpha=0.08 for beta_0=10^4 and alpha>1.0 for beta_0=100, where alpha is the Shakura-Sunyaev parameter. A critical value lies at beta_0=10^3: For beta_0>10^3, the disk consists of a gas pressure dominated midplane and a magnetically dominated corona. The turbulent strength increases with net flux, and angular momentum transport is dominated by turbulent fluctuations. The magnetic dynamo that leads to cyclic flips of large-scale fields still exists, but becomes more sporadic as net flux increases. For beta_0<10^3, the entire disk becomes magnetic dominated. The turbulent strength saturates, and the magnetic dynamo is quenched. Stronger large-scale fields are generated with increasing net flux, which dominates angular momentum transport. A strong outflow is launched from the disk by the magnetocentrifugal mechanism, and the mass flux increases linearly with net vertical flux and shows sign of saturation at beta_0=10^2. However, the outflow is unlikely to be directly connected to a global wind: for beta_0>10^3, the large-scale field has no permanent bending direction due to dynamo activities, while for beta_0<10^3, the outflows from the top and bottom sides of the disk bend towards opposite directions, inconsistent with a physical disk wind geometry. Global simulations are needed to address the fate of the outflow.

Local Study of Accretion Disks with a Strong Vertical Magnetic Field: Magnetorotational Instability and Disk Outflow

We perform 3D vertically-stratified local shearing-box ideal MHD simulations of the magnetorotational instability (MRI) that include a net vertical magnetic flux, which is characterized by beta_0 (ratio of gas pressure to magnetic pressure of the net vertical field at midplane). We have considered beta_0=10^2, 10^3 and 10^4 and in the first two cases the most unstable linear MRI modes are well resolved in the simulations. We find that the behavior of the MRI turbulence strongly depends on beta_0: The radial transport of angular momentum increases with net vertical flux, achieving alpha=0.08 for beta_0=10^4 and alpha>1.0 for beta_0=100, where alpha is the Shakura-Sunyaev parameter. A critical value lies at beta_0=10^3: For beta_0>10^3, the disk consists of a gas pressure dominated midplane and a magnetically dominated corona. The turbulent strength increases with net flux, and angular momentum transport is dominated by turbulent fluctuations. The magnetic dynamo that leads to cyclic flips of large-scale fields still exists, but becomes more sporadic as net flux increases. For beta_0<10^3, the entire disk becomes magnetic dominated. The turbulent strength saturates, and the magnetic dynamo is quenched. Stronger large-scale fields are generated with increasing net flux, which dominates angular momentum transport. A strong outflow is launched from the disk by the magnetocentrifugal mechanism, and the mass flux increases linearly with net vertical flux and shows sign of saturation at beta_0=10^2. However, the outflow is unlikely to be directly connected to a global wind: for beta_0>10^3, the large-scale field has no permanent bending direction due to dynamo activities, while for beta_0<10^3, the outflows from the top and bottom sides of the disk bend towards opposite directions, inconsistent with a physical disk wind geometry. Global simulations are needed to address the fate of the outflow.

Outflow from Hot Accretion Flows

Numerical simulations of hot accretion flows have shown that the mass accretion rate decreases with decreasing radius. Two models have been proposed to explain this result. In the adiabatic inflow-outflow solution (ADIOS), it is thought to be due to the loss of gas in outflows. In the convection-dominated accretion flow (CDAF) model, it is explained as because that the gas is locked in convective eddies. In this paper we use hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations to investigate which one is physical. We calculate and compare various properties of inflow (gas with an inward velocity) and outflow (gas with an outward velocity). Systematic and significant differences are found. For example, for HD flows, the temperature of outflow is higher than inflow; while for MHD flows, the specific angular momentum of outflow is much higher than inflow. We have also analyzed the convective stability of MHD accretion flow and found that they are stable. These results suggest that systematic inward and outward motion must exist, i.e., the ADIOS model is favored. The different properties of inflow and outflow also suggest that the mechanisms of producing outflow in HD and MHD flows are buoyancy associated with the convection and the centrifugal force associated with the angular momentum transport mediated by the magnetic field, respectively. The latter mechanism is similar to the Blandford & Payne mechanism but no large-scale open magnetic field is required here. Possible observational applications are briefly discussed.

Attempts to reproduce the rotation profile of the red giant KIC 7341231 observed by Kepler

Thanks to the asteroseimic study of the red giant star KIC 7341231 observed by Kepler, it has been possible to infer its radial differential rotation profile (Deheuvels et al. 2012). This opens new ways to constrain the physical mechanisms responsible of the angular momentum transport in stellar interiors by directly comparing this radial rotation profile with the ones computed using stellar evolution codes including dynamical processes. In this preliminary work, we computed different models of KIC 7341231 with the Geneva stellar evolution code that includes transport mechanisms due to a shellular rotation and the associated large-scale meridional circulation and shear-induced turbulence. Once the global parameters of the star had been established, we modified some of the model’s input parameters in order to understand their effects on the predicted rotation profile of the modeled star. As a result, we find a discrepancy between the rotation profile deduced from asteroseismic measurements and the profiles predicted from models including shellular rotation and related meridional flows and turbulence. This indicates that a most powerful mechanism is in action to extract angular momentum from the core of this star.

Torsional Oscillations in a Global Solar Dynamo

We characterize and analyze rotational torsional oscillations developing in a large-eddy magnetohydrodynamical simulation of solar convection (Ghizaru, Charbonneau, and Smolarkiewicz, Astrophys. J. Lett., 715, L133 (2010); Racine et al., Astrophys. J., 735, 46 (2011)) producing an axisymmetric large-scale magnetic field undergoing periodic polarity reversals. Motivated by the many solar-like features exhibited by these oscillations, we carry out an analysis of the large-scale zonal dynamics. We demonstrate that simulated torsional oscillations are not driven primarily by the periodically-varying large-scale magnetic torque, as one might have expected, but rather via the magnetic modulation of angular-momentum transport by the large-scale meridional flow. This result is confirmed by a straightforward energy analysis. We also detect a fairly sharp transition in rotational dynamics taking place as one moves from the base of the convecting layers to the base of the thin tachocline-like shear layer formed in the stably stratified fluid layers immediately below. We conclude by discussing the implications of our analyses with regards to the mechanism of amplitude saturation in the global dynamo operating in the simulation, and speculate on the possible precursor value of torsional oscillations for the forecast of solar cycle characteristics.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^