Recent Postings from Solar and Stellar

Pulsar lensing geometry

Our analysis of archival VLBI data of PSR 0834+06 revealed that its scintillation properties can be precisely modelled using the inclined sheet model (Pen & Levin 2014), resulting in two distinct lens planes. These data strongly favour the grazing sheet model over turbulence as the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized ISM screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the fist time) a direct measurement of the distance of the pulsar. For targets where independent distance measurements are not available, which are the cases for most of the recycled millisecond pulsars that are the targets of precision timing observations, the degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

Coronal rain in magnetic arcades: Rebound shocks, Limit cycles, and Shear flows

We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer ($>6$ hour) timespan. We quantify how in-situ forming blob-like condensations grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona-transition-region like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy and temperature while blobs descend, impact and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s$^{-1}$ in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.

Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

Context. Oxygen sequence Wolf-Rayet (WO) stars represent a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the (post-)helium burning evolution of massive stars, as well as their remaining lifetime and the expected properties of their supernovae. Aims. We aim to homogeneously analyse the currently known presumed-single WO stars to obtain the key stellar and outflow properties and to constrain their evolutionary state. Methods. We use the line-blanketed non-local thermal equilibrium atmosphere code cmfgen to model the X-Shooter spectra of the WO stars and deduce the atmospheric parameters. We calculate dedicated evolutionary models to determine the evolutionary state of the stars. Results. The WO stars have extremely high temperatures that range from 150 kK to 210 kK, and very low surface helium mass fractions that range from 44% down to 14%. Their properties can be reproduced by evolutionary models with helium zero-age main sequence masses of $M_{\mathrm{He, ini}} = 15-25 M_{\odot}$ that exhibit a fairly strong (on the order of a few times $10^{-5} M_{\odot} \mathrm{yr}^{-1}$), homogeneous ($f_\mathrm{c} > 0.3$) stellar wind. Conclusions. WO stars represent the final evolutionary stage of stars with estimated initial masses of $M_{\mathrm{ini}} = 40-60 M_{\odot}$. They are post core-helium burning and predicted to explode as type Ic supernovae within a few thousand years.

Diversities in the properties of neutron stars at a fixed neutron-skin thickness in $^{208}$Pb nucleus [Cross-Listing]

We study the diversities in the properties of the neutron stars arising due to the different choices for the cross-coupling between various mesons which governs the density dependence of the nuclear symmetry energy in the extended relativistic mean-field(RMF) model. For this purpose, we obtain two different families of the extended RMF model corresponding to different non-linear cross-coupling term in the isovector part of the effective Lagrangian density. The lowest order contributions for the $\delta$ mesons are also included. The different models within the same family are so obtained that they yield wide variation in the value of neutron-skin thickness in the $^{208}$Pb nucleus. These models are employed to compute the neutron star properties such as, core-crust transition density, radius and red shift at canonical mass ($1.4M_{\odot}$), tidal polarizability parameter, and threshold mass required for the enhanced cooling through direct Urca process. Most of the neutron star properties considered are significantly different(10\%-40\%) for the different families of models at a smaller neutron-skin thickness ($\sim 0.15$ fm) in the $^{208}$Pb nucleus.

The peculiar abundance pattern of the new Hg-Mn star HD 30085

Using high-dispersion, high-quality spectra of HD 30085 obtained with the echelle spectrograph SOPHIE at Observatoire de Haute Provence, we show that this star contains strong lines of the s-process elements Sr II, Y II and Zr II. Line syntheses of the lines yield large overabundances of Sr, Y, Zr which are characteristic of HgMn stars. The Sr-Y-Zr triad of abundances is inverted in HD 30085 compared to that in our solar system. The violation of the odd-even rule suggests that physical processes such as radiative diffusion, chemical fractionation and others must be at work in the atmosphere of HD 30085, and that the atmosphere is stable enough to sustain them.

A novel and sensitive method for measuring very weak magnetic fields of DA white dwarfs: A search for a magnetic field at the 250 G level in 40 Eri B

Searches for magnetic fields in white dwarfs have clarified both the frequency of occurrence and the global structure of the fields found down to field strengths of the order of 500 kG. Below this level, the situation is still very unclear. We are studying the weakest fields found in white dwarfs to determine the frequency of such fields and their structure. We describe a very sensitive new method of measuring such fields in DA (H-rich) white dwarfs, and search for a field in the brightest such star, 40 Eri B. Our new method makes use of the strongly enhanced polarisation signal in the sharp core of Halpha. We find that with one-hour integrations with the high-resolution spectropolarimeter ESPaDOnS on the 3.6-m CFHT, we can reach a standard error fo the longitudinal field of about 85 G, the smallest error ever achieved for any white dwarf. Nevertheless, we do not detect a magnetic field in this star. Observations with ISIS at the WHT, and the Main Stellar Spectrograph at the SAO, support the absence of a field at somewhat lower precision. The new method is very efficient; it is shown that for suitable DA stars the integration time, with ESPaDOnS on a 3.6-m telescope, to reach a 500 G standard error on a white dwarf of V = 12.5, is about half an hour, about the same as the time required on an ESO 8-m telescope with FORS using conventional low-resolution spectropolarimetry.

Astrophysical Sources of Statistical Uncertainty in Precision Radial Velocities and Their Approximations

We investigate astrophysical contributions to the statistical uncertainty of precision radial velocity measurements of stellar spectra. We analytically determine the uncertainty in centroiding isolated spectral lines broadened by Gaussian, Lorentzian, Voigt, and rotational profiles, finding that for all cases and assuming weak lines, the uncertainty is the line centroid is $\sigma_V\approx C\,\Theta^{3/2}/(W I_0^{1/2})$, where $\Theta$ is the full-width at half-maximum of the line, $W$ is the equivalent width, and $I_0$ is the continuum signal-to-noise ratio, with $C$ a constant of order unity that depends on the specific line profile. We use this result to motivate approximate analytic expressions to the total radial velocity uncertainty for a stellar spectrum with a given photon noise, resolution, wavelength, effective temperature, surface gravity, metallicity, macroturbulence, and stellar rotation. We use these relations to determine the dominant contributions to the statistical uncertainties in precision radial velocity measurements as a function of effective temperature and mass for main-sequence stars. For stars more than $\sim1.1\,M_\odot$ we find that stellar rotation dominates the velocity uncertainties for moderate and high resolution spectra ($R\gtrsim30,000$). For less massive stars, a variety of sources contribute depending on the spectral resolution and wavelength, with photon noise due to decreasing bolometric luminosity generally becoming increasingly important for low-mass stars at fixed exposure time and distance. In most cases, resolutions greater than 60,000 provide little benefit in terms of statistical precision. We determine the optimal wavelength range for stars of various spectral types, finding that the optimal region depends on the stellar effective temperature, but for mid M-dwarfs and earlier the most efficient wavelength region is from 6000A to 9000A.

Study of X-ray emission from the old open cluster, M67

We present an X-ray analysis of a 4 Gyr old open cluster, M67, using archival XMM-Newton data. The aim of this study was to find new X-ray members of M67, and to use the updated member list for studying X-ray variability, and derive the X-ray luminosity functions (XLFs) of different stellar types and compare them with other star clusters of similar age. We report the detection of X-ray emission from 25 members of M67, with membership based primarily on their proper motion, of which one X-ray source is a new member. Supplementing this study with previous ROSAT and Chandra studies of M67, and using the most recent proper motion study by Vereshchagin et al., we have compiled a revised list of X-ray emitting members of M67 consisting of 43 stars. Sixteen of these are known RS CVn type binaries having orbital periods $<$ 10 days, and near-circular orbits, 5 are contact binaries with orbital periods $<$ 6 hours, 5 are yellow and blue stragglers, 2 are Algol-type binaries, and one source is a cataclysmic variable. Fourteen members do not have any orbital information and cannot be classified. Fourteen of the X-ray sources detected do not have any optical counterpart down to a magnitude of $V\simeq22$, and their membership is uncertain. Finally, we report the X-ray luminosity functions of RS CVn type and other types of stars in M67 and compare them with other open clusters of intermediate-to-old age.

A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)

A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These "anomalous" clusters, which we refer to as "iron-complex" clusters, are differentiated from normal clusters by exhibiting large (>0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s^-1 (sigma=9.64 km s^-1) and an extended metallicity distribution ([Fe/H]=-1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [alpha/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as omega centauri, M 2, M 22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories.

Evolution and nucleosynthesis of helium-rich asymptotic giant branch models

There is now strong evidence that some stars have been born with He mass fractions as high as $Y \approx 0.40$ (e.g., in $\omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_\odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $\approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_\odot$ to $\sim$ 4-5 M$_\odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_\odot$, $Y=0.40$). An exception occurs for 3 M$_\odot$, where the near-doubling in the number of thermal pulses with $Y=0.40$ leads to $\sim$ 50% higher yields of Ba-peak elements and Pb if the $^{13}$C neutron source is included. However, the thinner intershell and increased temperatures at the base of the convective envelope with $Y=0.40$ probably inhibit the $^{13}$C neutron source at this mass. Future chemical evolution models with our yields might explain the evolution of s-process elements among He-rich stars in $\omega$ Centauri.

On Infrared Excesses Associated With Li-Rich K Giants

Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using IRAS data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from WISE. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. We have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ~20 um (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, 12C/13C. IR excesses by 20 um, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the Li-enrichment mechanism may only occasionally produce dust, and an additional parameter (e.g., rotation) may control whether or not a shell is ejected.

Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays

The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\mathrm{H_2})$ between $\sim10^4$ cm$^{-3}$ and $\sim10^6$ cm$^{-3}$. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.

Confined Flares in Solar Active Region 12192 from 2014 October 18 to 29

Using the observations from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), we investigate six X-class and twenty-nine M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, thirty (including six X- and twenty-four M-class) flares originated from the AR core and the other five M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with analogous triggering mechanism. The possible scenario is: photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40-105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

Quantifying the Difference Between the Flux-Tube Expansion Factor at the Source Surface and at the Alfv\'en Surface Using A Global MHD Model for the Solar Wind

The potential field approximation has been providing a fast, and computationally inexpensive estimation for the solar corona’s global magnetic field geometry for several decades. In contrast, more physics-based global magnetohydrodynamic (MHD) models have been used for a similar purpose, while being much more computationally expensive. Here, we investigate the difference in the field geometry between a global MHD model and the potential field source surface model (PFSSM) by tracing individual magnetic field lines in the MHD model from the Alfven surface (AS), through the source surface (SS), all the way to the field line footpoint, and then back to the source surface in the PFSSM. We also compare the flux-tube expansion at two points at the SS and the AS along the same radial line. We study the effect of solar cycle variations, the order of the potential field harmonic expansion, and different magnetogram sources. We find that the flux-tube expansion factor is consistently smaller at the AS than at the SS for solar minimum and the fast solar wind, but it is consistently larger for solar maximum and the slow solar wind. We use the Wang–Sheeley–Arge (WSA) model to calculate the associated wind speed for each field line, and propagate these solar-wind speeds to 1AU. We find a more than five hours deviation in the arrival time between the two models for 20% of the field lines in the solar minimum case, and for 40% of the field lines in the solar maximum case.

Heliosphere for a wide range of interstellar magnetic field strengths as a source of energetic neutral atoms

Observations of the energetic neutral atoms (ENAs) of heliospheric origin by IBEX differ from expectations based on heliospheric models. It was proposed that the structure of the heliosphere may be similar to the "two-stream" model derived in 1961 by Parker for the case of strong interstellar magnetic field. Using MHD simulations, we examine possible structure of the heliosphere for a wide range of interstellar magnetic field strengths, with different choices of interstellar medium and solar wind parameters. For the model heliospheres, we calculate the fluxes of ENAs created in the inner heliosheath, and compare with IBEX observations. We find that the plasma flow in the model heliospheres for strong interstellar field ($\sim$20 $\mu$G) has a "two-stream" structure, which remains visible down to $\sim$5 $\mu$G. The obtained ENA flux distribution show the features similar to the "split tail" effect observed by IBEX. In our model, the main cause of this effect is the two component (fast and slow) solar wind structure.

Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 micron data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with HII regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and HII regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes.

Solar and Heliospheric Physics with the Square Kilometre Array

The fields of solar radiophysics and solar system radio physics, or radio heliophysics, will benefit immensely from an instrument with the capabilities projected for SKA. Potential applications include interplanetary scintillation (IPS), radio-burst tracking, and solar spectral radio imaging with a superior sensitivity. These will provide breakthrough new insights and results in topics of fundamental importance, such as the physics of impulsive energy releases, magnetohydrodynamic oscillations and turbulence, the dynamics of post-eruptive processes, energetic particle acceleration, the structure of the solar wind and the development and evolution of solar wind transients at distances up to and beyond the orbit of the Earth. The combination of the high spectral, time and spatial resolution and the unprecedented sensitivity of the SKA will radically advance our understanding of basic physical processes operating in solar and heliospheric plasmas and provide a solid foundation for the forecasting of space weather events.

Detailed photospheric abundances of 28 Peg and HD 202240

The atmospheric parameters and chemical abundances of two neglected A-type stars, 28 Peg and HD 202240, were derived using high resolution spectra obtained at the TUBITAK National Observatory. We determined the photospheric abundances of eleven elements for 28 Peg and twenty for HD 202240, using equivalent-width measurement and spectral synthesis methods. Their abundance patterns are in good agreement with those of chemically normal A-type stars having similar atmospheric parameters. We pinpoint the position of these stars on the H-R diagram and estimate their masses and ages as; $2.60\pm0.10\ M_\odot$ and $650\pm50\ Myr$ for 28 Peg and $4.50\pm0.09\ M_\odot$ and $150\pm10\ Myr$ for HD 202240. To compare our abundance determinations with those of stars having similar ages and atmospheric parameters, we select members of open clusters. We notice that our target stars exhibit similar abundance patterns with these members.

Ellerman bombs at high resolution III. Simultaneous observations with IRIS and SST

Ellerman bombs are transient brightenings of the extended wings of the solar Balmer lines in emerging active regions. We describe their properties in the ultraviolet lines sampled by the Interface Region Imaging Spectrograph (IRIS), using simultaneous imaging spectroscopy in H$\alpha$ with the Swedish 1-m Solar Telescope (SST) and ultraviolet images from the Solar Dynamics Observatory for Ellerman bomb detection and identification. We select multiple co-observed Ellerman bombs for detailed analysis. The IRIS spectra strengthen the view that Ellerman bombs mark reconnection between bipolar kilogauss fluxtubes with the reconnection and the resulting bi-directional jet located within the solar photosphere and shielded by overlying chromospheric fibrils in the cores of strong lines. The spectra suggest that the reconnecting photospheric gas underneath is heated sufficiently to momentarily reach stages of ionization normally assigned to the transition region and the corona. We also analyze similar outburst phenomena that we classify as small flaring arch filaments and ascribe to higher-located reconnection. They have different morphology and produce hot arches in million-Kelvin diagnostics.

Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields

We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index $n=1$ and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to $B_{\rm S}$, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.

Hu1-2: a metal-poor bipolar planetary nebula with fast collimated outflows

We present narrow-band optical and near-IR imaging and optical long-slit spectroscopic observations of Hu1-2, a Galactic planetary nebula (PN) with a pair of [N II]-bright, fast-moving (> 340 km/s) bipolar knots. Intermediate-dispersion spectra are used to derive physical conditions and abundances across the nebula, and high-dispersion spectra to study the spatio-kinematical structure. Generally Hu1-2 has high He/H (~0.14) and N/O ratios (~0.9), typical of Type I PNe. On the other hand, its abundances of O, Ne, S, and Ar are low as compared with the average abundances of Galactic bulge and disc PNe. The position-velocity maps can be generally described as an hour-glass shaped nebula with bipolar expansion, although the morphology and kinematics of the innermost regions cannot be satisfactorily explained with a simple, tilted equatorial torus. The spatio-kinematical study confines the inclination angle of its major axis to be within 10 degrees of the plane of sky. As in the irradiated bow-shocks of IC4634 and NGC7009, there is a clear stratification in the emission peaks of [O III], H_alpha, and [N II] in the northwest (NW) knot of Hu1-2. Fast collimated outflows in PNe exhibit higher excitation than other low-ionization structures. This is particularly the case for the bipolar knots of Hu1-2, with He II emission levels above those of collimated outflows in other Galactic PNe. The excitation of the knots in Hu1-2 is consistent with the combined effects of shocks and UV radiation from the central star. The mechanical energy and luminosity of the knots are similar to those observed in the PNe known to harbor a post-common envelope (post-CE) close binary central star.

Evolution of the T Tauri star population in the Lupus association

Aims: In a recent study, we derived individual distances for 109 pre-main sequence stars that define the Lupus kinematic association of young stars. Here, we use these new distances to derive the masses and ages of Lupus T Tauri stars with the aim of better constraining the lifetime of their circumstellar disks. Methods: Using the photometric and spectroscopic information available in the literature, we computed the photospheric luminosity of 92 T Tauri stars in the Lupus association. Then, we estimated their masses and ages from theoretical evolutionary models. Based on Monte Carlo simulations and statistical tests, we compare the mass and age distribution of the classical T Tauri stars (CTTS) and weak-line T Tauri (WTTS) in our sample. Results: We show that the CTTSs are on average younger than the WTTSs and that the probability that both T~Tauri subclasses are drawn from the same mass and age parental distribution is very low. Our results favor the scenario proposed earlier for the Taurus-Auriga association, where the CTTSs evolve into WTTSs when their disks are fully accreted by the star. Based on an empirical disk model, we find that the average disk lifetime for the T Tauri stars in the Lupus association is $\tau_{d}=3\times10^{6}\,(M_*/M_{\odot})^{0.55}$ yr. Conclusions: We find evidence that the average lifetime of the circumstellar disks in the Lupus association is shorter than in the Taurus-Auriga association and discuss the implications of this result.

Coronal heating in multiple magnetic threads

Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability.

Period change of massive binaries from combined photometric and spectroscopic data in Cygnus OB2

Context. Mass loss is an important property in evolution models of massive stars. As up to 90% of the massive stars have a visual or spectroscopic companion and many of them exhibit mass exchange, mass-loss rates can be acquired through the period study of massive binaries. Aims. Using our own photometric observations as well as archival data, we look for variations in orbital periods of seven massive eclipsing binary systems in the Cygnus OB2 association and estimate their mass-loss rates and stellar parameters. Methods. We use a Bayesian parameter estimation method to simultaneously fit the period and period change to all available data and a stellar modelling tool to model the binary parameters from photometric and radial-velocity data. Results. Four out of the seven selected binaries show non-zero period change values at two-sigma confidence level. We also report for the first time the eclipsing nature of a star MT059.

The variation of tidal dissipation in the convective envelope of low-mass stars along their evolution

Since 1995, more than 1500 exoplanets have been discovered around a large diversity of host stars (from M- to A-type stars). Tidal dissipation in stellar convective envelopes is a key actor that shapes the orbital architecture of short-period systems. Our objective is to understand and evaluate how tidal dissipation in the convective envelope of low-mass stars (from M to F types) depends on their mass, evolutionary stage and rotation. Using a simplified two-layer assumption, we compute analytically the frequency-averaged tidal dissipation in their convective envelope. This dissipation is due to the conversion into heat of the kinetic energy of tidal non wave-like/equilibrium flow and inertial waves because of the viscous friction applied by turbulent convection. Using grids of stellar models allows us to study the variation of the dissipation as a function of stellar mass and age on the Pre-Main-Sequence and on the Main-Sequence for stars with masses spanning from $0.4$ to $1.4M_{\odot}$. As shown by observations, tidal dissipation in stars varies over several orders of magnitude as a function of stellar mass, age and rotation. During their Pre-Main-Sequence, all low-mass stars have an increase of the frequency-averaged tidal dissipation for a fixed angular velocity in their convective envelope until they reach a critical aspect and mass ratios. Next, the dissipation evolves on the Main Sequence to an asymptotic value that becomes maximum for $0.6M_{\odot}$ K-type stars and that decreases by several orders of magnitude with increasing stellar mass. Finally, the rotational evolution of low-mass stars strengthens the importance of tidal dissipation during the Pre-Main-Sequence for star-planet and multiple star systems.

K2 and MAXI observations of Sco X-1 - Evidence for disc precession?

Sco X-1 is the archetypal low mass X-ray binary (LMXB) and the brightest persistent extra-solar X-ray source in the sky. It was included in the K2 Campaign 2 field and was observed continuously for 71 days with 1 minute time resolution. In this paper we report these results and underline the potential of K2 for similar observations of other accreting compact binaries. We reconfirm that Sco X-1 shows a bimodal distribution of optical "high" and "low" states and rapid transitions between them on timescales less than 3 hours (or 0.15 orbits). We also find evidence that this behaviour has a typical systemic timescale of 4.8 days, which we interpret as a possible disc precession period in the system. Finally, we confirm the complex optical vs. X-ray correlation/anticorrelation behaviour for "high" and "low" optical states respectively.

On the Parallel and Perpendicular Propagating Motions Visible in Polar Plumes: An Incubator For (Fast) Solar Wind Acceleration?

We combine observations of the Coronal Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study the characteristic properties of (propagating) Alfvenic motions and quasi-periodic intensity disturbances in polar plumes. This unique combination of instruments highlights the physical richness of the processes taking place at the base of the (fast) solar wind. The (parallel) intensity perturbations with intensity enhancements around 1% have an apparent speed of 120 km/s (in both the 171A and 193A passbands) and a periodicity of 15 minutes, while the (perpendicular) Alfvenic wave motions have a velocity amplitude of 0.5 km/s, a phase speed of 830 km/s, and a shorter period of 5 minutes on the same structures. These observations illustrate a scenario where the excited Alfvenic motions are propagating along an inhomogeneously loaded magnetic field structure such that the combination could be a potential progenitor of the magnetohydrodynamic turbulence required to accelerate the fast solar wind.

The GALAH Survey and Galactic Archaeology in the next decade

The field of Galactic Archaeology aims to understand the origins and evolution of the stellar populations in the Milky Way, as a way to understand galaxy formation and evolution in general. The GALAH (Galactic Archaeology with HERMES) Survey is an ambitious Australian-led project to explore the Galactic history of star formation, chemical evolution, minor mergers and stellar migration. GALAH is using the HERMES spectrograph, a novel, highly multiplexed, four-channel high-resolution optical spectrograph, to collect high-quality R ~ 28,000 spectra for one million stars in the Milky Way. From these data we will determine stellar parameters, radial velocities and abundances for up to 29 elements per star, and carry out a thorough chemical tagging study of the nearby Galaxy. There are clear complementarities between GALAH and other ongoing and planned Galactic Archaeology surveys, and also with ancillary stellar data collected by of major cosmological surveys. Combined, these data sets will provide a revolutionary view of the structure and history of the Milky Way.

Evidence of the Solar EUV hot channel as a magnetic flux rope from remote-sensing and in-situ observations

Hot channels (HCs), high temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to make definitive proof given the fact that there is no direct measurement of magnetic field in the corona. An alternative way is to use the magnetic field measurement in the solar wind from in-situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the AIA high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. In the meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by \textit{ACE}, showing the shock, sheath and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC contained a low-ionization-state center and a high-ionization-state shell, consistent with the pre-existing HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. Therefore, our study provides strong observational evidence of the HC as an MFR.

The Brown Dwarf Kinematics Project (BDKP). IV. Radial Velocities of 85 Late-M and L dwarfs with MagE

Radial velocity measurements are presented for 85 late M- and L-type very low mass stars and brown dwarfs obtained with the Magellan Echellette (MagE) spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km/s, and combined these with astrometric and spectrophotometric data to calculate $UVW$ velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2$\pm$0.2 Gyr for sources within 20 pc. We find significantly different kinematic ages between late-M dwarfs (4.0$\pm$0.2 Gyr) and L dwarfs (6.5$\pm$0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric $U$ velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313$-$4912012AB, a low-probability member of the $\beta$ Pictoris Moving Group; and 2MASS J15104786-2818174, a moderate-probability member of the 30-50 Myr Argus Association.

Evidence for a [WR] or WEL-type binary nucleus in the bipolar planetary nebula Vy 1-2

We present high-dispersion spectroscopic data of the compact planetary nebula Vy 1-2, where high expansion velocities up to 100 km/s are found in the Ha, [N II] and [O III] emission lines. HST images reveal a bipolar structure. Vy 1-2 displays a bright ring-like structure with a size of 2.4"x3.2" and two faint bipolar lobes in the west-east direction. A faint pair of knots is also found, located almost symmetrically on opposite sides of the nebula at PA=305 degrees. Furthermore, deep low-dispersion spectra are also presented and several emission lines are detected for the first time in this nebula, such as the doublet [Cl III] 5517, 5537 A, [K IV] 6101 A, C II 6461 A, the doublet C IV 5801, 5812 A. By comparison with the solar abundances, we find enhanced N, depleted C and solar O. The central star must have experienced the hot bottom burning (CN-cycle) during the 2nd dredge-up phase, implying a progenitor star of higher than 3 solar masses. The very low C/O and N/O abundance ratios suggest a likely post-common envelope close binary system. A simple spherically symmetric geometry with either a blackbody or a H-deficient stellar atmosphere model is not able to reproduce the ionisation structure of Vy 1-2. The effective temperature and luminosity of its central star indicate a young nebula located at a distance of ~9.7 kpc with an age of ~3500 years. The detection of stellar emission lines, C II 6461 A, the doublet C IV {\lambda}{\lambda} 5801, 5812 A and O III 5592 A, emitted from a H-deficient star, indicates the presence of a late-type Wolf-Rayet or a WEL type central star.

A Consistent Spectral Model of WR 136 and its Associated Bubble NGC 6888

We analyse whether a stellar atmosphere model computed with the code CMFGEN provides an optimal description of the stellar observations of WR 136 and simultaneously reproduces the nebular observations of NGC 6888, such as the ionization degree, which is modelled with the pyCloudy code. All the observational material available (far and near UV and optical spectra) were used to constrain such models. We found that even when the stellar luminosity and the mass-loss rate were well constrained, the stellar temperature T_* at tau = 20, can be in a range between 70 000 and 110 000 K. When using the nebula as an additional restriction we found that the stellar models with T_* \sim 70 000 K represent the best solution for both, the star and the nebula. Results from the photoionization model show that if we consider a chemically homogeneous nebula, the observed N^+/O^+ ratios found in different nebular zones can be reproduced, therefore it is not necessary to assume a chemical inhomogeneous nebula. Our work shows the importance of calculating coherent models including stellar and nebular constraints. This allowed us to determine, in a consistent way, all the physical parameters of both the star and its associated nebula. The chemical abundances derived are 12 + log(N/H) = 9.95, 12 + log(C/H) = 7.84 and 12 + log(O/H) = 8.76 for the star and 12 + log(N/H) = 8.40, 12 + log(C/H) = 8.86 and 12 + log(O/H) = 8.20. Thus the star and the nebula are largely N- and C- enriched and O-depleted.

Gaia FGK benchmark stars: abundances of alpha and iron-peak elements

In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co and Ni for our predefined set of Gaia FGK benchmark stars. By analysing high-resolution and high-signal to noise spectra taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We perform a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis, as well as we assess errors due to NLTE and the stellar parameters in our final abundances. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. The Gaia FGK benchmark stars atmospheric parameters are already being widely used for calibration of several pipelines applied to different surveys. With the added reference abundances of 10 elements this set is very suitable to calibrate the chemical abundances obtained by these pipelines.

Star Formation Across the W3 Complex

We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images, combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex, and determined their structure and extension. We constructed extinction-limited samples for five principal clusters, and constructed K-band luminosity functions (KLF) that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and show small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

SOFIA Observations of SN 2010jl: Another Non-Detection of the 9.7 $\mu$m Silicate Dust Feature

We present photometric observations from the {\it Stratospheric Observatory for Infrared Astronomy (SOFIA)} at 11.1 $\mu$m of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by {\it SOFIA}, but the upper limits obtained, combined with new and archival detections from {\it Spitzer} at 3.6 \& 4.5 $\mu$m allow us to characterize the composition of the dust present. Dust in other Type IIn SNe has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 $\mu$m feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01-0.05 $\msun$ of carbonaceous dust radiating at a temperature of $\sim 550-620$ K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra.

Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy

We report the discovery of a new young stellar cluster in the outer Galaxy located at the position of an IRAS PSC source that has been previously mis-identified as an external galaxy. The cluster is seen in our near-infrared imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the young stellar nature of the sources detected. There is also evidence of sub-clustering seen in the spatial distributions of young stars and of gas and dust. Near- and mid-infrared photometry indicates that the stars exhibit colours compatible with reddening by interstellar and circumstellar dust and are likely to be low- and intermediate-mass YSOs with a large proportion of Class I YSOs. Ammonia and CO lines were detected, with the CO emission well centred near the position of the richest part of the cluster. The velocity of the CO and NH$_3$ lines indicates that the gas is Galactic and located at a distance of about 5.5 kpc, in the outer Galaxy. Herschel data of this region characterise the dust environment of this molecular cloud core where the young cluster is embedded. We derive masses, luminosities and temperatures of the molecular clumps where the young stars reside and discuss their evolutionary stages.

FUSE, STIS, and Keck spectroscopic analysis of the UV-bright star vZ 1128 in M3 (NGC 5272)

We present a spectral analysis of the UV-bright star vZ 1128 in M3 based on observations with the Far Ultraviolet Spectroscopic Explorer (FUSE), the Space Telescope Imaging Spectrograph (STIS), and the Keck HIRES echelle spectrograph. By fitting the H I, He I, and He II lines in the Keck spectrum with non-LTE H-He models, we obtain Teff = 36,600 K, log g = 3.95, and log N(He)/N(H) = -0.84. The star’s FUSE and STIS spectra show photospheric absorption from C, N, O, Al, Si, P, S, Fe, and Ni. No stellar features from elements beyond the iron peak are observed. Both components of the N V 1240 doublet exhibit P~Cygni profiles, indicating a weak stellar wind, but no other wind features are seen. The star’s photospheric abundances appear to have changed little since it left the red giant branch (RGB). Its C, N, O, Al, Si, Fe, and Ni abundances are consistent with published values for the red-giant stars in M3, and the relative abundances of C, N, and O follow the trends seen on the cluster RGB. In particular, its low C abundance suggests that the star left the asymptotic giant branch before the onset of third dredge-up.

Nuclear Energy Density Functionals: What do we really know? [Cross-Listing]

We present the simplest nuclear energy density functional (NEDF) to date, determined by only 4 significant phenomenological parameters, yet capable of fitting measured nuclear masses with better accuracy than the Bethe-Weizs\"acker mass formula, while also describing density structures (charge radii, neutron skins etc.) and time-dependent phenomena (induced fission, giant resonances, low energy nuclear collisions, etc.). The 4 significant parameters are necessary to describe bulk nuclear properties (binding energies and charge radii); an additional 2 to 3 parameters have little influence on the bulk nuclear properties, but allow independent control of the density dependence of the symmetry energy and isovector excitations, in particular the Thomas-Reiche-Kuhn sum rule. This Hohenberg-Kohn-style of density functional theory successfully realizes Weizs\"acker’s ideas and provides a computationally tractable model for a variety of static nuclear properties and dynamics, from finite nuclei to neutron stars, where it will also provide a new insight into the physics of the r-process, nucleosynthesis, and neutron star crust structure. This new NEDF clearly separates the bulk geometric properties – volume, surface, symmetry, and Coulomb energies which amount to 8MeV per nucleon or up to 2000MeV per nucleus for heavy nuclei – from finer details related to shell effects, pairing, isospin breaking, etc. which contribute at most a few MeV for the entire nucleus. Thus it provides a systematic framework for organizing various contributions to the NEDF. Measured and calculated physical observables – symmetry and saturation properties, the neutron matter equation of state, and the frequency of giant dipole resonances – lead directly to new terms not considered in current NEDF parameterizations.

Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=$-$1.7) are modelled during hydrogen burning for initial masses of 9-300 M$_{\odot}$ and rotational velocities of 0-900 km s$^{-1}$. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them Transparent Wind Ultraviolet INtense stars (TWUIN star), and their expected numbers might explain the observed HeII ionizing photon flux in I Zw 18 and other low-metallicity HeII galaxies. Our slowly rotating stars above $\sim$80 M$_{\odot}$ evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19$^{\mathrm{m}}$ at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star-forming dwarf galaxies and high-redshift galaxies, as well as the metal-poor components of our Milky Way and its globular clusters.

Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. II- Numerical aspects

Transverse magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere and may be responsible for generating the Sun’s million-degree outer atmosphere. However, direct evidence of the dissipation process and heating from these waves remains elusive. Through advanced numerical simulations combined with appropriate forward modeling of a prominence flux tube, we provide the observational signatures of transverse MHD waves in prominence plasmas. We show that these signatures are characterized by thread-like substructure, strong transverse dynamical coherence, an out-of-phase difference between plane-of-the-sky motions and LOS velocities, and enhanced line broadening and heating around most of the flux tube. A complex combination between resonant absorption and Kelvin-Helmholtz instabilities (KHI) takes place in which the KHI extracts the energy from the resonant layer and dissipates it through vortices and current sheets, which rapidly degenerate into turbulence. An inward enlargement of the boundary is produced in which the turbulent flows conserve the characteristic dynamics from the resonance, therefore guaranteeing detectability of the resonance imprints. We show that the features described in the accompanying paper (Okamoto et al. 2015) through coordinated Hinode and IRIS observations match well the numerical results.

Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System [Replacement]

We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304 A line taken close to the solar minimum of 2008-2009 and focus mainly on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25×25 to 150×500 Mm in size and obtain distributions of many their spatial characteristics, such as latitudinal position, height, size and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to be rarely exceeding 3 km/s. Besides, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to evaluate the total mass and gravitational energy of all simultaneously existing prominences (10e12-10e14 kg and 10e29-10e31 erg, respectively). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1 +- 0.2.

Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System

We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304 \AA\ line taken close to the solar minimum of 2008-2009 and focus mainly on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25$\times$25 to 150$\times$500 Mm$^2$ in size and obtain distributions of many their spatial characteristics, such as latitudinal position, height, size and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to be rarely exceeding 3 km/s. Besides, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to evaluate the total mass and gravitational energy of all simultaneously existing prominences (10$^{12}$-10$^{14}$ kg and 10$^{29}$-10$^{31}$ erg, respectively). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1$\pm$0.2.

New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme [Replacement]

CONTEXT: Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. AIMS: We present new Herschel HIFI and IRAM 30m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the $J=1\to0$ line to the $J=9\to8$ line, and even the $J=14\to13$ line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. METHODS: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. RESULTS: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates ($\sim 10^{-8}$ to $2\times 10^{-5}~\mathrm{M}_\odot~\mathrm{ yr}^{-1}$) and gas expansion velocities (2 to $21.5$ km s$^{-1}$), and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40%, on average. We also present "bonus" lines detected during our CO observations.

New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

CONTEXT: Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. AIMS: We present new \textit{Herschel} HIFI and IRAM 30m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the $J=1\to0$ line to the $J=9\to8$ line, and even the $J=14\to13$ line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. METHODS: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. RESULTS: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates ($\sim 10^{-8}$ to $2\times 10^{-5}~\mathrm{M}_\odot~\mathrm{ yr}^{-1}$) and gas expansion velocities (2 to $21.5$~ km s$^{-1}$), and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40\%, on average. We also present "bonus" lines detected during our CO observations.

Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in low-density graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

Testing magnetic helicity conservation in a solar-like active event

Magnetic helicity has the remarkable property of being a conserved quantity of ideal magnetohydrodynamics (MHD). Therefore, it could be used as an effective tracer of the magnetic field evolution of magnetized plasmas. Theoretical estimations indicate that magnetic helicity is also essentially conserved with non-ideal MHD processes, e.g. magnetic reconnection. This conjecture has however been barely tested, either experimentally or numerically. Thanks to recent advances in magnetic helicity estimation methods, it is now possible to test numerically its dissipation level in general three-dimensional datasets. We first revisit the general formulation of the temporal variation of relative magnetic helicity on a fully bounded volume when no hypothesis on the gauge are made. We introduce a method to precisely estimate its dissipation independently of the type of non-ideal MHD processes occurring. In a solar-like eruptive event simulation, using different gauges, we compare its estimation in a finite volume with its time-integrated flux through the boundaries, hence testing the conservation and dissipation of helicity. We provide an upper bound of the real dissipation of magnetic helicity: It is quasi-null during the quasi-ideal MHD phase. Even when magnetic reconnection is acting the relative dissipation of magnetic helicity is also very small (<2.2%), in particular compared to the relative dissipation of magnetic energy (>30 times larger). We finally illustrate how the helicity-flux terms involving velocity components are gauge dependent, hence limiting their physical meaning.

He-Accreting WDs: AM CVn stars with WD Donors

We study the physical and evolutionary properties of the "WD family" of AM CVn stars by computing realistic models of IDD systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by GW emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of \mdot\, after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (M_don,M_acc), is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of the accretion rate, the accretors enter the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if the physical a dynamical event never occurs. When the mass accretion rate decreases below (2-3 10^{-8}Msun/yr, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SNe .Ia or type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected.

He-Accreting WDs: AM CVn stars with WD Donors [Replacement]

We study the physical and evolutionary properties of the "WD family" of AM CVn stars by computing realistic models of IDD systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by GW emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of $\dot{M}$, after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (M$_{don}$,M$_{acc}$), is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of $\dot{M}$, the accretors enter the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if a dynamical event never occurs. When the mass accretion rate decreases below (2-3)$\times 10^{-8} M_\odot yr^{-1}$, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SNe .Ia or type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected.

Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. I- Observational aspects

Transverse magnetohydrodynamic (MHD) waves have been shown to be ubiquitous in the solar atmosphere and can in principle carry sufficient energy to generate and maintain the Sun’s million-degree outer atmosphere or corona. However, direct evidence of the dissipation process of these waves and subsequent heating has not yet been directly observed. Here we report on high spatial, temporal, and spectral resolution observations of a solar prominence that show a compelling signature of so-called resonant absorption, a long hypothesized mechanism to efficiently convert and dissipate transverse wave energy into heat. Aside from coherence in the transverse direction, our observations show telltale phase differences around 180 degrees between transverse motions in the plane-of-sky and line-of-sight velocities of the oscillating fine structures or threads, and also suggest significant heating from chromospheric to higher temperatures. Comparison with advanced numerical simulations support a scenario in which transverse oscillations trigger a Kelvin-Helmholtz instability (KHI) at the boundaries of oscillating threads via resonant absorption. This instability leads to numerous thin current sheets in which wave energy is dissipated and plasma is heated. Our results provide direct evidence for wave-related heating in action, one of the candidate coronal heating mechanisms.

Oscillating red giants observed during Campaign 1 of the Kepler K2 mission: New prospects for galactic archaeology

NASA’s re-purposed Kepler mission — dubbed K2 — has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2′s capabilities, in particular its 360-degree ecliptic field of view, is galactic archaeology — the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed towards the North Galactic Gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the $\log g$ range $\sim 1.9-3.2$. Our detection is complete down to $\mathit{Kp}\sim 14.5$, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^