Recent Postings from Solar and Stellar

Using the Maximum X-ray Flux Ratio and X-ray Background to Predict Solar Flare Class

We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux level. We established this relationship based on an analysis of the Geostationary Operational Environmental Satellites (GOES) X-ray observations of ~ 50,000 X, M, C, and B flares derived from the NOAA/SWPC flares catalog. Employing a combination of machine learning techniques (K-nearest neighbors and nearest-centroid algorithms) we show a separation of the observed parameters for the different peak flaring energies. This analysis is validated by successfully predicting the flare classes for 100% of the X-class flares, 76% of the M-class flares, 80% of the C-class flares and 81% of the B-class flares for solar cycle 24, based on the training of the parametric extracts for solar flares in cycles 22-23.

Spicules Intensity Oscillations in SOT/HINODE Observations

Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthens the theory of the coronal heating and solar wind through energy transport and photospheric oscillations. Methods. Using time sequences from the HINODE/SOT in Ca II H line, we investigate oscillations found in intensity profiles at different heights above the solar limb. We use the Fourier and wavelet analysis to measure dominant frequency peaks of intensity at the heights, and phase difference between oscillations at two certain heights, to find evidence for the coherency of the oscillations. Finally, we can calculate the energy and the mass transported by spicules providing energy equilibrium, according to density values of spicules at different heights. To extend this work, we can also consider coherent oscillations at different latitudes and suggest to study of oscillations which may be obtained from observations of other satellites.

Kinematic and Thermal Structure at the onset of high-mass star formation

We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH$_3$(1,1) and (2,2) lines within seven very young high-mass star-forming regions with the VLA and the Effelsberg 100m telescope. This allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5$"$, corresponding to $\sim$0.05 pc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. We report an upper limit for the linewidth of $\sim$1.3 km s$^{-1}$, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2 km s$^{-1}$ and gradients of 5 to 10 km s$^{-1}$ pc$^{-1}$. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centers that is larger than 30 km s$^{-1}$ pc$^{-1}$. This steep velocity gradient is consistent with recent models of cloud collapse. Furthermore, we report a spatial correlation of ammonia and cold dust, but we also find decreasing ammonia emission close to infrared emission sources.

Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8-h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m/s in the clockwise direction at 40{\deg} latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anti-clockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m/s for the average outflow and 200 m/s for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between $-$60{\deg} and 60{\deg}. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g. 4/(10^6 s) clockwise compared to 8/(10^6 s) anti-clockwise at 40{\deg} latitude). Results from MDI/SOHO obtained in 2010 are biased compared to the HMI/SDO results for the same period.

On the 27-day Variations of Cosmic Ray Intensity in Recent Solar Minimum 23/24

We have studied the 27-day variations and their harmonics of the galactic cosmic ray (GCR) intensity, solar wind velocity, and interplanetary magnetic field (IMF) components in the recent prolonged solar minimum 23 24. The time evolution of the quasi-periodicity in these parameters connected with the Suns rotation reveals that their synodic period is stable and is aprox 26-27 days. This means that the changes in the solar wind speed and IMF are related to the Suns near equatorial regions in considering the differential rotation of the Sun. However, the solar wind parameters observed near the Earths orbit provide only the conditions in the limited local vicinity of the equatorial region in the heliosphere (within in latitude). We also demonstrate that the observed period of the GCR intensity connected with the Suns rotation increased up to aprox 33-36 days in 2009. This means that the process driving the 27-day variations of the GCR intensity takes place not only in the limited local surroundings of the equatorial region but in the global 3-D space of the heliosphere, covering also higher latitude regions. A relatively long period ( aprox 34 days) found for 2009 in the GCR intensity gives possible evidence of the onset of cycle 24 due to active regions at higher latitudes and rotating slowly because of the Suns differential rotation. We also discuss the effect of differential rotation on the theoretical model of the 27-day variations of the GCR intensity.

First Zeeman Doppler imaging of a cool star using all four Stokes parameters

Magnetic fields are ubiquitous in active cool stars but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters of the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1-3.5 times higher. The overall complexity is also increased as the field energy is shifted towards higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.

5-minute Solar Oscillations and Ion Cyclotron Waves in the Solar Wind [Cross-Listing]

In the present paper we study impact of the photospheric 5-minute oscillations on the ion cyclotron waves in the solar wind. We proceed from the assumption that the ion cyclotron waves in solar wind are experiencing modulation with a characteristic period of 5 minutes under the influence of Alfven waves driven by photospheric motions. The theory presented in our paper predicts a deep frequency modulation of the ion cyclotron waves. The frequency modulation is expected mainly from variations in orientation of the IMF lines. In turn, the variations in orientation are caused by the Alfven waves, propagating from the Sun. To test the theoretical predictions we have analyzed records of the ultra-low-frequency (ULF) geoelectromagnetic waves in order to find the permanent quasi-monochromatic oscillations of natural origin in the Pc1-2 frequency band (0.1-5 Hz), the carrier frequency of which varies with time in a wide range. As a result we found the so-called "serpentine emission" (SE), which was observed in Antarctic at the Vostok station near the South Geomagnetic Pole. The permanency, range of frequencies, and the deep frequency modulation of SE correspond to the qualitative properties of ion cyclotron waves in the solar wind. Clearly expressed 5-minute modulation of the carrier frequency is particularly important feature of the SE in the context of this work. We believe that we have found non-trivial manifestation of the solar 5-min oscillations on the Earth.

Statistical properties of superflares on solar-type stars based on 1-min cadence data

We searched for superflares on solar-type stars using Kepler data with 1 min sampling in order to detect superflares with short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of $10^{32}$ erg to $10^{36}$ erg. Some superflares show multiple peaks with the peak separation of the order of $100$-$1000$ seconds which is comparable to the periods of quasi-periodic pulsations in solar and stellar flares. Using these new data combined with the results from the data with 30 min sampling, we found the occurrence frequency ($dN/dE$) of superflares as a function of flare energy ($E$) shows the power-law distribution ($dN/dE \propto E^{-\alpha}$) with $\alpha \sim -1.5$ for $10^{33}<E<10^{36}$ erg which is consistent with the previous results. The average occurrence rate of superflares with the energy of $10^{33}$ erg which is equivalent to X100 solar flares is about once in 500-600 years. The upper limit of energy released by superflares is basically comparable to a fraction of the magnetic energy stored near starspots which is estimated from the photometry. We also found that the duration of superflares ($\tau$) increases with the flare energy ($E$) as $\tau \propto E^{0.39\pm 0.03}$. This can be explained if we assume the time-scale of flares is determined by the Alfv$\acute{\rm e}$n time.

An Unbiased 1.3 mm Emission Line Survey of the Protoplanetary Disk Orbiting LkCa 15

The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ~2-5 Myr-old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210-270 GHz (1.4 – 1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimetrique (IRAM) 30 meter telescope. The survey demonstrates that, in this spectral region, the most readily detectable lines are those of CO and its isotopologues 13CO and C18O, as well as HCO+, HCN, CN, C2H, CS, and H2CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2-1) and C2H (3-2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C2H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high resolution interferometric imaging of disks.

Common Patterns in the Evolution between the Luminous Neutron Star Low-Mass X-ray Binary Subclasses

The X-ray transient XTE J1701-462 was the first source seen to evolve through all known subclasses of low-magnetic-field neutron star low-mass X-ray binaries (NS-LMXBs), as a result of large changes in its mass accretion rate. To investigate to what extent similar evolution is seen in other NS-LMXBs we have performed a detailed study of the color-color and hardness-intensity diagrams (CDs and HIDs) of Cyg X-2, Cir X-1, and GX 13+1 — three luminous X-ray binaries, containing weakly magnetized neutron stars, known to exhibit strong secular changes in their CD/HID tracks. Using the full set of Rossi X-ray Timing Explorer Proportional Counter Array data collected for the sources over the 16-year duration of the mission, we show that Cyg X-2 and Cir X-1 display CD/HID evolution with close similarities to XTE J1701-462. Although GX 13+1 shows behavior that is in some ways unique, it also exhibits similarities to XTE J1701-462, and we conclude that its overall CD/HID properties strongly indicate that it should be classified as a Z source, rather than as an atoll source. We conjecture that the secular evolution of Cyg X-2, Cir X-1, and GX 13+1 — illustrated by sequences of CD/HID tracks we construct — arises from changes in the mass accretion rate. Our results strengthen previous suggestions that within single sources Cyg-like Z behavior takes place at higher luminosities and mass accretion rates than Sco-like Z behavior, and lend support to the notion that the mass accretion rate is the primary physical parameter distinguishing the various NS-LMXB subclasses.

Single-Degenerate Type Ia Supernovae Are Preferentially Overluminous

Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass white dwarfs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass white dwarfs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of supersoft X-ray sources are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario.

The Past and Future of Detached Double White Dwarfs with Helium Donors

We present a method for modeling the evolution of detached double white dwarf (DWD) binaries hosting helium donors from the end of the common envelope (CE) phase to the onset of Roche Lobe overflow (RLOF). This is achieved by combining detailed stellar evolution calculations of extremely low mass (ELM) helium WDs possessing hydrogen envelopes with the the orbital shrinking of the binary driven by gravitational radiation. We show that the consideration of hydrogen fusion in these systems is crucial, as a significant fraction ($\approx$50%) of future donors are expected to still be burning when mass transfer commences. We apply our method to two detached eclipsing DWD systems, SDSS J0651+2844 and NLTT-11748, in order to demonstrate the effect that carbon-nitrogen-oxygen (CNO) flashes have on constraining the evolutionary history of such systems. We find that when CNO flashes are absent on the low mass WD ($M_{2}$ < $0.18 M_{\odot}$), such as in NLTT-11748, we are able to self consistently solve for the donor conditions at CE detachment given a reliable cooling age from the massive WD companion. When CNO flashes occur (0.18 $M_{\odot}$ < $M_{2}$ < 0.36 $M_{\odot}$), such as in SDSS J0651+2844, the evolutionary history is eradicated and we are unable to comment on the detachment conditions. We find that for any donor mass our models are able to predict the conditions at reattachment and comment on the stabilizing effects of hydrogen envelopes. This method can be applied to a population of detached DWDs with measured donor radii and masses.

The Age and Age Spread of the Praesepe and Hyades Clusters: a Consistent, ~800 Myr Picture from Rotating Stellar Models

We fit the upper main sequence of the Praesepe and Hyades open clusters using stellar models with and without rotation. When neglecting rotation, we find that no single isochrone can fit the entire upper main sequence at the clusters’ spectroscopic metallicity: more massive stars appear, at high significance, to be younger than less massive stars. This discrepancy is consistent with earlier studies, but vanishes when including stellar rotation. The entire upper main sequence of both clusters is very well-fit by a distribution of 800 Myr-old stars with the spectroscopically measured [Fe/H]=0.12. The increase over the consensus age of ~600-650 Myr is due both to the revised Solar metallicity (from $Z_\odot \approx 0.02$ to $Z_\odot \approx 0.014$) and to the lengthening of main sequence lifetimes and increase in luminosities with rapid rotation. Our results show that rotation can remove the need for large age spreads in intermediate age clusters, and that these clusters may be significantly older than is commonly accepted. A Hyades/Praesepe age of ~800 Myr would also require a recalibration of rotation/activity age indicators.

A new survey of cool supergiants in the Magellanic Clouds

In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.

Effective collision strengths between Mg I and electrons

The treatment of the inelastic collisions with electrons and hydrogen atoms are the main source of uncertainties in non-Local Thermodynamic Equilibrium (LTE) spectral line computations. We report, in this research note, quantum mechanical data for 369 collisional transitions of \ion{Mg}{I} with electrons for temperatures comprised between 500 and 20000~K. We give the quantum mechanical data in terms of effective collision strengths, more practical for non-LTE studies.

Variability in Proto-Planetary Nebulae: IV. Light Curve Analyses of Four Oxygen-Rich, F Spectral-Type Objects

We present new light curves covering 14 to 19 years of observations of four bright proto-planetary nebulae (PPNs), all O-rich and of F spectral type. They each display cyclical light curves with significant variations in amplitude. All four were previously known to vary in light. Our data were combined with published data and searched for periodicity. The results are as follows: IRAS 19475+3119 (HD 331319; 41.0 days), 17436+5003 (HD 161796; 45.2 days), 19386+0155 (101.8 days), and 18095+2704 (113.3 days). The two longer periods are in agreement with previous studies while the two shorter periods each reveal for the first time reveal a dominant period over these long observing intervals. Multiple periods were also found for each object. The secondary periods were all close to the dominant periods, with P2/P1 ranging from 0.86 to 1.06. The variations in color reveal maximum variations in T(eff) of 400 to 770 K. These variations are due to pulsations in these post-AGB objects. Maximum seasonal light variations are all less than 0.23 mag (V), consistent for their temperatures and periods with the results of Hrivnak et al. (2010) for 12 C-rich PPNs. For all of these PPNs, there is an inverse relationship between period and temperature; however, there is a suggestion that the period-temperature relationship may be somewhat steeper for the O-rich than for the C-rich PPNs.

A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars

Previous studies suggest that tidal interactions may be responsible for discrepancies between the ages of exoplanet host stars estimated using stellar models (isochronal ages) and age estimates based on the stars’ rotation periods (gyrochronological ages). We have compiled a sample of 28 transiting exoplanet host stars with measured rotation periods. We use a Bayesian Markov chain Monte Carlo method to determine the joint posterior distribution for the mass and age of each star in the sample, and extend this method to include a calculation of the posterior distribution of the gyrochronological age. The gyrochronological age ($\tau_{\rm gyro}$) is significantly less than the isochronal age for about half of the stars in our sample. Tidal interactions between the star and planet are a reasonable explanation for this discrepancy in some cases, but not all. The distribution of $\tau_{\rm gyro}$ values is evenly spread from very young ages up to a maximum value of a few Gyr. There is no clear correlation between $\tau_{\rm gyro}$ and the strength of the tidal force on the star due to the innermost planet. There is clear evidence that the isochronal ages for some K-type stars are too large, and this may also be the case for some G-type stars. This may be the result of magnetic inhibition of convection. There is currently no satisfactory explanation for the discrepancy between the young age for CoRoT-2 estimated from either gyrochronology or its high lithium abundance, and the extremely old age for its K-type stellar companion inferred from its very low X-ray flux. There is now strong evidence that the gyrochronological ages of some transiting exoplanet host stars are significantly less than their isochronal ages, but it is not always clear that this is good evidence for tidal interactions between the star and the planet.

Signatures of running penumbral waves in sunspot photospheres

The highly dynamic atmosphere above sunspots exhibits a wealth of magnetohydrodynamic (MHD) waves. Recent studies suggest a coupled nature of the most prominent phenomena: umbral flashes (UFs) and running penumbral waves (RPWs). From an observational point of view, we perform a height-dependent study of RPWs, compare their wave characteristics and aim to track down these so far only chromospherically observed phenomena to photospheric layers to prove the upward propagating field-guided nature of RPWs. We analyze a time series (58\,min) of multi-wavelength observations of an isolated circular sunspot (NOAA11823) taken at high spatial and temporal resolution in spectroscopic mode with the Interferometric BIdimensional Spectro-polarimeter (IBIS/DST). By means of a multi-layer intensity sampling, velocity comparisons, wavelet power analysis and sectorial studies of time-slices, we retrieve the power distribution, characteristic periodicities and propagation characteristics of sunspot waves at photospheric and chromospheric levels. Signatures of RPWs are found at photospheric layers. Those continuous oscillations occur preferably at periods between 4-6\,min starting at the inner penumbral boundary. The photospheric oscillations all have a slightly delayed, more defined chromospheric counterpart with larger relative velocities (which are linked to preceding UF events). In all layers the power of RPWs follows a filamentary fine-structure and shows a typical ring-shaped power distribution increasing in radius for larger wave periods. The analysis of time-slices reveals apparent horizontal velocities for RPWs at photospheric layers of $\approx50\,\rm{km/s}$ which decrease to $\approx30\,\rm{km/s}$ at chromospheric heights. The observations strongly support the scenario of RPWs being upward propagating slow-mode waves guided by the magnetic field lines.

Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings from stellar models

With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations — glitches — in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red-giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the \’echelle diagram. Interestingly, along the red-giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium-core burning and at the beginning of helium-shell burning signifying the asymptotic-giant-branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild, could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

Revisiting the birth locations of pulsars B1929+10, B2020+28,and B2021+51

We present new proper motion and parallax measurements obtained with the European VLBI Network (EVN) at 5$\,$GHz for the three isolated pulsars B1929+10, B2020+28, and B2021+51. For B1929+10 we combined our data with earlier VLBI measurements and confirm the robustness of the astrometric parameters of this pulsar. For pulsars B2020+28 and B2021+51 our observations indicate that both stars are almost a factor of two closer to the solar system than previously thought, placing them at a distance of $1.39_{-0.06}^{+0.05}$ and $1.25_{-0.17}^{+0.14}\,$kpc. Using our new astrometry, we simulated the orbits of all three pulsars in the Galactic potential with the aim to confirm or reject previously proposed birth locations. Our observations ultimately rule out a claimed binary origin of B1929+10 and the runaway star $\zeta$ Ophiuchi in Upper Scorpius. A putative common binary origin of B2020+28 and B2021+51 in the Cygnus Superbubble is also very unlikely.

A coordinate-independent characterization of a black-hole shadow [Cross-Listing]

A large international effort is under way to assess the presence of a shadow in the radio emission from the compact source at the center of our galaxy, Sagittarius A$^*$ (Sgr A$^*$). If detected, this shadow would provide the first direct evidence of the existence of black holes and that Sgr A$^*$ is a supermassive black hole. In addition, the shape of the shadow could be used to learn about extreme gravity near the event horizon and to determine which theory of gravity better describes the observations. The mathematical description of the shadow has so far used a number of simplifying assumptions that are unlikely to be met by the real observational data. We here provide a general formalism to describe the shadow as an arbitrary polar curve expressed in terms of a Legendre expansion. Our formalism does not presume any knowledge of the properties of the shadow, e.g., the location of its center, and offers a number of routes to characterize the distortions of the curve with respect to reference circles. These distortions can be implemented in a coordinate independent manner by different teams analyzing the same data. We show that the new formalism provides an accurate and robust description of noisy observational data, with smaller error variances when compared to previous measurements of the distortion.

A coordinate-independent characterization of a black-hole shadow

A large international effort is under way to assess the presence of a shadow in the radio emission from the compact source at the center of our galaxy, Sagittarius A$^*$ (Sgr A$^*$). If detected, this shadow would provide the first direct evidence of the existence of black holes and that Sgr A$^*$ is a supermassive black hole. In addition, the shape of the shadow could be used to learn about extreme gravity near the event horizon and to determine which theory of gravity better describes the observations. The mathematical description of the shadow has so far used a number of simplifying assumptions that are unlikely to be met by the real observational data. We here provide a general formalism to describe the shadow as an arbitrary polar curve expressed in terms of a Legendre expansion. Our formalism does not presume any knowledge of the properties of the shadow, e.g., the location of its center, and offers a number of routes to characterize the distortions of the curve with respect to reference circles. These distortions can be implemented in a coordinate independent manner by different teams analyzing the same data. We show that the new formalism provides an accurate and robust description of noisy observational data, with smaller error variances when compared to previous measurements of the distortion.

Measuring stellar rotation periods with Kepler

We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.

Interpretation of Helioseismic Traveltimes

Time-distance helioseismology uses cross-covariances of wave motions on the solar surface to determine the travel times of wave packets moving from one surface location to another. We review the methodology to interpret travel-time measurements in terms of small, localized perturbations to a horizontally homogeneous reference solar model. Using the first Born approximation, we derive and compute 3D travel-time sensitivity (Fr\’echet) kernels for perturbations in sound-speed, density, pressure, and vector flows. While kernels for sound speed and flows had been computed previously, here we extend the calculation to kernels for density and pressure, hence providing a complete description of the effects of solar dynamics and structure on travel times. We treat three thermodynamic quantities as independent and do not assume hydrostatic equilibrium. We present a convenient approach to computing damped Green’s functions using a normal-mode summation. The Green’s function must be computed on a wavenumber grid that has sufficient resolution to resolve the longest lived modes. The typical kernel calculations used in this paper are computer intensive and require on the order of 600 CPU hours per kernel. Kernels are validated by computing the travel-time perturbation that results from horizontally-invariant perturbations using two independent approaches. At fixed sound-speed, the density and pressure kernels are approximately related through a negative multiplicative factor, therefore implying that perturbations in density and pressure are difficult to disentangle. Mean travel-times are not only sensitive to sound-speed, density and pressure perturbations, but also to flows, especially vertical flows. Accurate sensitivity kernels are needed to interpret complex flow patterns such as convection.

Variability in Proto-Planetary Nebulae: III. Light Curve Studies of Magellanic Cloud Carbon-Rich Objects

We have investigated the light variability in a sample of 22 carbon-rich post-AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), based primarily on photometric data from the OGLE survey. All are found to vary. Dominant periods are found in eight of them; these periods range from 49 to 157 days, and most of these stars have F spectral types. These eight are found to be similar to the Milky Way Galaxy (MWG) carbon-rich proto-planetary nebulae (PPNs) in several ways: (a) they are in the same period range of ~38 to ~160 days, (b) they have similar spectral types, (c) they are (all but one) redder when fainter, (d) they have multiple periods, closely spaced in time, with a average ratio of secondary to primary period of ~1.0, and as an ensemble, (e) they show a trend of decreasing period with increasing temperature, and (f) they show a trend of decreasing amplitude with decreasing period. However, they possibly differ in that the decreasing trend of period with temperature may be slightly offset from that of the MWG. These eight are classified as PPNs. The other 14 all show evidence of variability on shorter timescales. They are likely hotter PPNs or young planetary nebulae. However, in the MWG the numbers of PPNs peak in the F-G spectral types, while it appears that in the LMC they peak at a hotter B spectral type. One of the periodic ones shows a small, R Coronae Borealis-type light curve drop.

A possible formation channel for blue hook stars in globular cluster

The formation mechanism for blue hook (BHk) stars in globular clusters (GCs) is still unclear. Following one of the possible scenario, named late hot flash scenario, we proposed that tidally enhanced stellar wind in binary evolution may provide the huge mass loss on the red giant branch (RGB) and produce BHk stars. Employing the detailed stellar evolution code, Modules for Experiments in Stellar Astrophysics (MESA), we investigated the contributions of tidally enhanced stellar wind as a possible formation channel for BHk stars in GCs. We evolved the primary stars with different initial orbital periods using the binary module in MESA (version 6208) from zero age main-sequence (ZAMS) to post horizontal branch (HB) stage, and obtained their evolution parameters which are compared with the observation. The results are consistent with observation in the color-magnitude diagram (CMD) and the logg-Teff plane for NGC 2808, which is an example GC hosting BHk stars. However, the helium abundance in the surface for our models is higher than the one obtained in BHk stars. This discrepancy between our models and observation is possibly due to the fact that gravitational settling and radiative levitation which are common processes in hot HB stars are not considered in the models as well as the fact that the flash mixing efficiency may be overestimated in the calculations. Our results suggested that tidally enhanced stellar wind in binary evolution is able to naturally provide the huge mass loss on the RGB needed for late hot flash scenario and it is a possible and reasonable formation channel for BHk stars in GCs.

HST Images Flash Ionization of Old Ejecta by the 2011 Eruption of Recurrent Nova T Pyxidis

T Pyxidis is the only recurrent nova surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowband Ha images of T Pyx . The flash of radiation from the nova event had no effect on the ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7e5 cm^-3 – at least an order of magnitude denser than the previously detected, unresolved [NII] knots surrounding T Pyx. Material to the northwest and southeast was photoionized between 132 and 183 days after the eruption began. 99 days later that hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. There is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [NII] – emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is probably an order of magnitude larger than that of the [NII] knots. We also determine that there is no significant reservoir of undetected ejecta from the outer boundaries of the previously detected ejecta out to about twice that distance, near the plane of the sky. The lack of distant ejecta is consistent with the Schaefer et al (2010) scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. This lack of distant ejecta is not consistent with scenarios in which T Pyx has been erupting continuously as a recurrent nova for many centuries or millennia.

Dependency of dynamical ejections of O stars on the masses of very young star clusters

Massive stars can be efficiently ejected from their birth clusters through encounters with other massive stars. We study how the dynamical ejection fraction of O star systems varies with the masses of very young star clusters, Mecl, by means of direct N -body calculations. We include diverse initial conditions by varying the half-mass radius, initial mass-segregation, initial binary fraction and orbital parameters of the massive binaries. The results show robustly that the ejection fraction of O star systems exhibits a maximum at a cluster mass of $10^{3.5}$ Msun for all models, even though the number of the ejected systems increases with cluster mass. We show that lower mass clusters (Mecl ~ 400 Msun ) are the dominant sources for populating the Galactic field with O stars by dynamical ejections, considering the mass function of embedded clusters. About 15 per cent (up to 38 per cent, depending on the cluster models) of O stars of which a significant fraction are binaries, and which would have formed in a 10 Myr epoch of star formation in a distribution of embedded clusters, will be dynamically ejected to the field. Individual clusters may eject 100 per cent of their original O star content. A large fraction of such O stars have velocities up to only 10 km/s. Synthesising a young star cluster mass function it follows, given the stellar-dynamical results presented here, that the observed fractions of field and runaway O stars, and the binary fractions among them can be well understood theoretically if all O stars form in embedded clusters.

Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler

The currently available Kepler light curves contain an outstanding amount of information but a detailed analysis of the individual oscillation modes in the observed power spectra, also known as peak bagging, is computationally demanding and challenging to perform on a large number of targets. Our intent is to perform for the first time a peak bagging analysis on a sample of 19 low-mass low-luminosity red giants observed by Kepler for more than four years. This allows us to provide high-quality asteroseismic measurements that can be exploited for an intensive testing of the physics used in stellar structure models, stellar evolution and pulsation codes, as well as for refining existing asteroseismic scaling relations in the red giant branch regime. For this purpose, powerful and sophisticated analysis tools are needed. We exploit the Bayesian code Diamonds, using an efficient nested sampling Monte Carlo algorithm, to perform both a fast fitting of the individual oscillation modes and a peak detection test based on the Bayesian evidence. We find good agreement for the parameters estimated in the background fitting phase with those given in the literature. We extract and characterize a total of 1618 oscillation modes, providing the largest set of detailed asteroseismic mode measurements ever published. We report on the evidence of a change in regime observed in the relation between linewidths and effective temperatures of the stars occurring at the bottom of the RGB. We show the presence of a linewidth depression or plateau around $\nu_\mathrm{max}$ for all the red giants of the sample. Lastly, we show a good agreement between our measurements of maximum mode amplitudes and existing maximum amplitudes from global analyses provided in the literature, useful as empirical tools to improve and simplify the future peak bagging analysis on a larger sample of evolved stars.

Initial Fragmentation in the Infrared Dark Cloud G28.53-0.25

To study the fragmentation and gravitational collapse of dense cores in infrared dark clouds (IRDCs), we have obtained submillimeter continuum and spectral line data as well as multiple inversion transitions of NH3 and H2O maser data of four massive clumps in an IRDC G28.53-0.25. Combining single dish and interferometer NH3 data, we derive the rotation temperature of G28.53. We identity 12 dense cores at 0.1 pc scale based on submillimeter continuum, and obtain their physical properties using NH3 and continuum data. By comparing the Jeans masses of cores with the core masses, we find that turbulent pressure is important in supporting the gas when 1 pc scale clumps fragment into 0.1 pc scale cores. All cores have a virial parameter smaller than 1 assuming a inverse squared radial density profile, suggesting they are gravitationally bound, and the three most promising star forming cores have a virial parameter smaller than 1 even taking magnetic field into account. We also associate the cores with star formation activities revealed by outflows, masers, or infrared sources. Unlike what previous studies suggested, MM1 turns out to harbor a few star forming cores and is likely a progenitor of high-mass star cluster. MM5 is intermediate while MM7/8 are quiescent in terms of star formation, but they also harbor gravitationally bound dense cores and have the potential of forming stars as in MM1.

Observational Tracking of the 2D Structure of Coronal Mass Ejections Between the Sun and 1 AU

The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (X) of these CMEs, which are measured out to ~0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and X=2.5R+0.86 for the aspect ratio (W and R in units of AU).

Inferring neutron-star properties from gravitational-wave signals of binary mergers

The oscillations of a merger remnant forming after the coalescence of two neutron stars are very characteristic for the high-density equation of state. The dominant oscillation frequency occurs as a pronounced peak in the kHz range of the gravitational-wave spectrum. We describe how the dominant oscillation frequency of the remnant can be employed to infer the radii of non-rotating neutron stars.

Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampere’s law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace’s equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used, since available line-of-sight magnetic field measurements approximated the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid potential field that minimizes the integrated square of the residual between the potential and actual fields, with the possibility of weighting by spatially uniform measurement uncertainties. This has advantages in both not overfitting the radial field used for the Neumann BC, and maximizing consistency with the observations. We show this with HMI vector magnetic field observations of AR 11158, and find that residual discrepancies between the observed and potential fields are significant, and imply nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid potential fields have substantially less energy than the Neumann fields in every case — by nearly 10^33 ergs in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

Equivalence relations between the Cortie and Zurich sunspot group morphological classifications

Catalogues of sunspots have been available with useful information about sunspots or sunspot groups for approximately the last 150 years. However, the task of merging these catalogues is not simple. In this paper, a method is suggested of converting the types of sunspot groups that were proposed by Cortie (1901) into the well-known Zurich types of sunspot groups. To achieve this, the sunspot catalogue of the Valencia University Observatory (from 1920 to 1928) was used in addition to the descriptions proposed by Cortie. To assess the quality of this conversion scheme, the Zurich type was computed from the Valencia catalogue, and the resulting contribution of each group type was compared to what can be found in other catalogues. The results show that the proposed scheme works well within the errors that are found in the different catalogues.

Wide-field Variability Survey of the Globular Cluster M79 and a New Period -- Luminosity Relation for SX Phe Stars

We present the results of a search for variable stars in a 26×39 arcmin^2 field around globular cluster M79 (NGC1904). The search was made by means of an extended version of image subtraction, which allows to analyze in a uniform manner CCD frames obtained with different telescopes and cameras of different sizes and resolutions. The search resulted in finding 20 new variable stars, among which 13 are cluster members. The members include one new RR Lyr star of subtype c, three SX Phe stars, and nine variable red giants. We also show that V7 is a W Vir star with a period of 13.985 d. Revised mean periods of RRab and RRc stars, <P_ab>=0.71 d and <P_c>=0.34 d, respectively, and relative percentage of RRc stars, N_c/(N_ab+N_c)=45 % confirm that M79 belongs to the Oosterhoff II group of globular clusters. The mean V magnitude of the horizontal branch of M79 based on ten RR Lyr stars has been estimated to be $V_HB=<V_RR>=16.11\pm0.03$ mag. In one RRc star, V9, light changes with three close frequencies were detected, indicating excitation of nonradial modes. An SX Phe star, V18, is a double-mode pulsator with two radial modes excited, fundamental and first overtone. Moreover, we have discovered two SX Phe or delta Sct stars and one W UMa type system, all likely field objects. We also studied the period — luminosity relation for SX Phe stars. Using 62 fundamental and fundamentalized periods of radial double-mode and high-amplitude SX Phe stars known in Galactic globular clusters, we have derived the slope and zero point of this relation to be, $-3.35\pm0.24$ and $2.68\pm0.03$ mag (at log(P/d)=-1.24), respectively.

On the Statistical Relationship between CME Speed and Soft X-ray Flux and Fluence of the Associated Flare

Both observation and theory reveal a close relationship between the kinematics of coronal mass ejections (CMEs) and the thermal energy release traced by the related soft X-ray (SXR) emission. The major problem of empirical studies of this relationship is the distortion of the CME speed by the projection effect in the coronagraphic measurements. We present a re-assessment of the statistical relationship between CME velocities and SXR parameters, using the SOHO/LASCO catalog and GOES whole Sun observations during the period 1996 to 2008. 49 events were identified where CMEs originated near the limb, at central meridian distances between 70$^\circ$ and 85$^\circ$, and had a reliably identified SXR burst, the parameters of which – peak flux and fluence – could be determined with some confidence. We find similar correlations between the logarithms of CME speed and of SXR peak flux and fluence as several earlier studies, with correlation coefficients of 0.48 and 0.58, respectively. Correlations are slightly improved over an unrestricted CME sample when only limb events are used. However, a broad scatter persists. We derive the parameters of the CME-SXR relationship and use them to predict ICME arrival times at Earth. We show that the CME speed inferred from SXR fluence measurements tends to perform better than SoHO/LASCO measurements in the prediction of ICME arrival times near 1 AU. The estimation of the CME speed from SXR observations can therefore make a valuable contribution to space weather predictions.

ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584

We study the circumstellar evolution of the binary HD101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. We used ALMA observations of the 12CO, 13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology, kinematics, masses, and energetics of the circumstellar environment. The circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic jet, about 150 km/s. We conjecture that the circumstellar morphology is related to an event that took place about 500 year ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy, and, taking into account the expected energy transfer efficiency of the process, the observed phenomenon does not match current common-envelope scenarios. This suggests that another process must augment, or even dominate, the ejection process. A significant amount of material resides in an unresolved region, presumably in the equatorial plane of the binary system.

Sound-Triggered Collapse of Stably Oscillating Low-Mass Cores in a Two-Phase Interstellar Medium

Inspired by Barnard 68, a Bok globule, that undergoes stable oscillations, we perform multi-phase hydrodynamic simulations to analyze the stability of Bok globules. We show that a high-density soft molecular core, with an adiabatic index $\gamma$ = 0.7 embedded in a warm isothermal diffuse gas, must have a small density gradient to retain the stability. Despite being stable, the molecular core can still collapse spontaneously as it will relax to develop a sufficiently large density gradient after tens of oscillations, or a few $10^7$ years. However, during its relaxation, the core may abruptly collapse triggered by the impingement of small-amplitude, long-wavelength ($\sim$ 6 $-$ 36 pc) sound waves in the warm gas. This triggered collapse mechanism is similar to a sonoluminescence phenomenon, where underwater ultrasounds can drive air bubble coalescence. The collapse configuration is found to be different from both inside-out and outside-in models of low-mass star formation; nonetheless the mass flux is close to the prediction of the inside-out model. The condition and the efficiency for this core collapse mechanism are identified. Generally speaking, a broad-band resonance condition must be met, where the core oscillation frequency and the wave frequency should match each other within a factor of several. A consequence of our findings predicts the possibility of propagating low-mass star formation, for which collapse of cores, within a mass range short of one order of magnitude, takes place sequentially tracing the wave front across a region of few tens of pc over $10^7$ years.

Effects of non-radial magnetic field on measuring magnetic helicity transport across solar photosphere

It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.

Solar Dynamics, Rotation, Convection and Overshoot

We discuss recent observational, theoretical and modeling progress made in understanding the Sun’s internal dynamics, including its rotation, meridional flow, convection and overshoot. Over the past few decades, substantial theoretical and observational effort has gone into appreciating these aspects of solar dynamics. A review of these observations, related helioseismic methodology and inference and computational results in relation to these problems is undertaken here.

Radial Flow Pattern of a Slow CME

Height-time plots of the leading edge of coronal mass ejections (CME) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied the method to a slow CME with an average leading edge speed about 480 km s$^{-1}$. In the Lagrangian frame, the speed of the individual CME mass elements stay almost constant within 2 and 15 R$_S$, the range over which we analyzed the CME. Hence we have no evidence of net radial forces acting on parts of the CME in this range nor of a pile-up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading-edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.

Frequency-Dependent Dispersion Measures and Implications for Pulsar Timing

We analyze the frequency dependence of the dispersion measure (DM), the column density of free electrons to a pulsar, caused by multipath scattering from small scale electron-density fluctuations. The DM is slightly different along each propagation path and the transverse spread of paths varies greatly with frequency, yielding time-of-arrival (TOA) perturbations that scale differently than the inverse square of the frequency, the expected dependence for a cold, unmagnetized plasma. We quantify DM and TOA perturbations analytically for thin phase screens and extended media and verify the results with simulations of thin screens. The rms difference between DMs across an octave band near 1.5~GHz $\sim 4\times10^{-5}\,{\rm pc\ cm^{-3}}$ for pulsars at $\sim 1$~kpc distance. TOA errors from chromatic DMs are of order a few to hundreds of nanoseconds for pulsars with DM $\lesssim 30$~pc~cm$^{-3}$ observed across an octave band but increase rapidly to microseconds or larger for larger DMs and wider frequency ranges. Frequency-dependent DMs introduce correlated noise into timing residuals whose power spectrum is `low pass’ in form. The correlation time is of order the geometric mean of the refraction times for the highest and lowest radio frequencies used and thus ranges from days to years, depending on the pulsar. We discuss the implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by using an additional chromatic term in arrival time models. Without mitigation, our results provide an additional term in the noise model for pulsar timing; they also indicate that in combination with measurement errors from radiometer noise, an arbitrary increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\Omega_k(r)\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non- Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density, in addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect . Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

The crucial role of surface magnetic fields for the solar dynamo

Sunspots and the plethora of other phenomena occuring in the course of the 11-year cycle of solar activity are a consequence of the emergence of magnetic flux at the solar surface. The observed orientations of bipolar sunspot groups imply that they originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope of the Sun. We show that the net toroidal magnetic flux generated by differential rotation within a hemisphere of the convection zone is determined by the emerged magnetic flux at the solar surface and thus can be calculated from the observed magnetic field distribution. The main source of the toroidal flux is the roughly dipolar surface magnetic field at the polar caps, which peaks around the minima of the activity cycle.

Line Strengths of Rovibrational and Rotational Transitions in the X$^2\Pi$ Ground State of OH

A new line list including positions and absolute intensities (in the form of Einstein $A$ values and oscillator strengths) has been produced for the OH ground X\DP\ state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v$\primed$ and v$\Dprimed$ up to 13, and $J$ up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute line intensities are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v=1 lifetime, experimental $\mu_\mathrm{v}$ values, and $\Delta$v=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund’s case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute intensities have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search program. To date, only one of these stars is known to harbor a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analyzed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a "gap" in metallicity between the thick-disk and high-alpha metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B – V colour cut-off, which excludes low-log g stars with high metallicities, and high-logg star with low-[Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars we suggest to use a sub-sample of stars in a "cut-rectangle" in the logg – [Fe/H] diagram to overcome the aforementioned issue.

The Puzzling Spectrum of HD 94509

The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. We aim to describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe I and Fe II are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

Color-Magnitude Diagram Constraints on the Metallicities, Ages, and Star Formation History of the Stellar Populations in the Carina Dwarf Spheroidal Galaxy

Victoria-Regina isochrones for $-0.4 \le$ [alpha/Fe] $\le +0.4$ and a wide range in [Fe/H], along with complementary zero-age horizontal branch (ZAHB) loci, have been applied to the color-magnitude diagram (CMD) of Carina. The color transformations that we have used have been "calibrated" so that isochrones provide excellent fits to the $[(B-V)_0,\,M_V]$-diagrams of M3 and M92, when well supported estimates of the globular cluster (GC) reddenings and metallicities are assumed. The adopted distance moduli, for both the GCs and Carina, are based on our ZAHB models, which are able to reproduce the old HB component (as well as the luminosity of the HB clump) of the dwarf spheroidal galaxy quite well — even if it spans a range in [Fe/H] of ~ 1.5 dex, provided that [alpha/Fe] varies with [Fe/H] in approximately the way that has been derived spectroscopically. Ages derived here agree reasonably well with those found previously for the old and intermediate-age turnoff stars, as well as for the period of negligible star formation (SF) activity (~ 6-10 Gyr ago). CMD simulations have been carried out for the faintest turnoff and subgiant stars. They indicate a clear preference for SF that lasted several Gyr instead of a short burst, with some indication that ages decrease with increasing [Fe/H]. In general, stellar models that assume spectroscopic metallicities provide satisfactory fits to the observations, including the thin giant branch of Carina, though higher oxygen abundances than those implied by the adopted values of [alpha/Fe] would have favorable consequences.

WASP-80b has a dayside within the T-dwarf range

WASP-80b is a missing link in the study of exo-atmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterisation, thanks to its host star’s properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 $\mu$m Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b’s dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, like brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimated. [abridged]

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^