Recent Postings from Solar and Stellar

Wind acceleration in AGB stars: Solid ground and loose ends

The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scattering of stellar photons, and they drag along the surrounding gas particles through collisions, triggering an outflow. This scenario, here referred to as Pulsation-Enhanced Dust-DRiven Outflow (PEDDRO), has passed a range of critical observational tests as models have developed from empirical and qualitative to increasingly self-consistent and quantitative. A reliable theory of mass loss is an essential piece in the bigger picture of stellar and galactic chemical evolution, and central for determining the contribution of AGB stars to the dust budget of galaxies. In this review, I discuss the current understanding of wind acceleration and indicate areas where further efforts by theorists and observers are needed.

Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterizing the impact of solar activity components on radial velocities

Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like star). In previous papers, we studied the detectability of such planets around the Sun seen as an edge-on star. For that purpose, we computed the RV and photometric variations induced by solar magnetic activity, using all active structures observed over one entire cycle. Our goal is to perform similar studies on stars with different physical and geometrical properties. As a first step, we focus on Sun-like stars seen with various inclinations, and on estimating detection capabilities with forthcoming instruments. To do so, we first parameterize the solar active structures with the most realistic pattern so as to obtain results consistent with the observed ones. We simulate the growth, evolution and decay of solar spots, faculae and network, using parameters and empiric laws derived from solar observations and literature. We generate the corresponding structure lists over a full solar cycle. We then build the resulting spectra and deduce the RV and photometric variations for a `Sun’ seen with various inclinations. The produced RV signal takes into account the photometric contribution of structures as well as the attenuation of the convective blueshift. The comparison between our simulated activity pattern and the observed one validates our model. We show that the inclination of the stellar rotation axis has a significant impact on the time series. RV long-term amplitudes as well as short-term jitters are significantly reduced when going from edge-on to pole-on configurations. Assuming spin-orbit alignment, the optimal configuration for planet detection is an inclined star (i~45{\deg}).

Binary Central Stars of Planetary Nebulae Discovered Through Photometric Variability III: The Central Star of Abell 65

A growing number of close binary stars are being discovered among central stars of planetary nebulae. Recent and ongoing surveys are finding new systems and contributing to our knowledge of the evolution of close binary systems. The push to find more systems was largely based on early discoveries which suggested that 10 to 15% of all central stars are close binaries. One goal of this series of papers is confirmation and classification of these systems as close binaries and determination of binary system parameters. Here we provide time-resolved multi-wavelength photometry of the central star of Abell 65 as well as further analysis of the nebula and discussion of possible binary–nebula connections. Our results for Abell 65 confirm recent work showing that it has a close, cool binary companion, though several of our model parameters disagree with the recently published values. With our longer time baseline of photometric observations from 1989–2009 we also provide a more precise orbital period of 1.0037577 days.

Var C: Long-term photometric and spectral variability of an LBV in M33

So far the highly unstable phase of luminous blue variables (LBVs) has not been understood well. It is still uncertain why and which massive stars enter this phase. Investigating the variabilities by looking for a possible regular or even (semi-)periodic behaviour could give a hint at the underlying mechanism for these variations and might answer the question of where these variabilities originate. Finding out more about the LBV phase also means understanding massive stars better in general, which have (e.g. by enriching the ISM with heavy elements, providing ionising radiation and kinetic energy) a strong and significant influence on the ISM, hence also on their host galaxy. Photometric and spectroscopic data were taken for the LBV Var C in M33 to investigate its recent status. In addition, scanned historic plates, archival data, and data from the literature were gathered to trace Var C’s behaviour in the past. Its long-term variability and periodicity was investigated. Our investigation of the variability indicates possible (semi-)periodic behaviour with a period of 42.3 years for Var C. That Var C’s light curve covers a time span of more than 100 years means that more than two full periods of the cycle are visible. The critical historic maximum around 1905 is less strong but discernible even with the currently rare historic data. The semi-periodic and secular structure of the light curve is similar to the one of LMC R71. Both light curves hint at a new aspect in the evolution of LBVs.

Stellar populations in $\omega$ Centauri: a multivariate analysis

We have performed multivariate statistical analyses of photometric and chemical abundance parameters of three large samples of stars in the globular cluster $\omega$ Centauri. The statistical analysis of a sample of 735 stars based on seven chemical abundances with the method of Maximum Parsimony (cladistics) yields the most promising results: seven groups are found, distributed along three branches with distinct chemical, spatial and kinematical properties. A progressive chemical evolution can be traced from one group to the next, but also within groups, suggestive of an inhomogeneous chemical enrichment of the initial interstellar matter. The adjustment of stellar evolution models shows that the groups with metallicities [Fe/H]\textgreater{}-1.5 are Helium-enriched, thus presumably of second generation. The spatial concentration of the groups increases with chemical evolution, except for two groups, which stand out in their other properties as well. The amplitude of rotation decreases with chemical evolution, except for two of the three metal-rich groups, which rotate fastest, as predicted by recent hydrodynamical simulations. The properties of the groups are interpreted in terms of star formation in gas clouds of different origins. In conclusion, our multivariate analysis has shown that metallicity alone cannot segregate the different populations of $\omega$ Centauri.

Constraints to dark-matter properties from asteroseismic analysis of KIC 2009504

Asteroseismology can be used to constrain some properties of dark-matter (DM) particles (Casanellas & Lopes, 2013). In this work, we performed an asteroseismic modelling of the main-sequence solar-like pulsator KIC 2009505 (also known as Dushera) in order to test the existence of DM particles with the characteristics that explain the recent results found in some of the DM direct detection experiments. We found that the presence of a convective core in KIC 2009504 is incompatible with the existence of some particular models of DM particles.

Direct Observations of Magnetic Reconnection Outflow and CME Triggering in a Small Erupting Solar Prominence

We examine a small prominence eruption that occurred on 2014 May 1 at 01:35 UT and was observed by the Interface Region Imaging Spectrometer (IRIS) and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Pre- and post-eruption images were taken by the X-Ray Telescope (XRT) on Hinode. Pre-eruption, a dome-like structure exists above the prominence, as demarcated by coronal rain. As the eruption progresses, we find evidence for reconnection between the prominence magnetic field and the overlying field. Fast flows are seen in AIA and IRIS, indicating reconnection outflows. Plane-of-sky flows of ~300 km s$^{-1}$ are observed in the AIA 171 A channel along a potentially reconnected field line. IRIS detects intermittent fast line-of-sight flows of ~200 km s$^{-1}$ coincident with the AIA flows. Differential emission measure calculations show heating at the origin of the fast flows. Post-eruption XRT images show hot loops probably due to reconfiguration of magnetic fields during the eruption and subsequent heating of plasma in these loops. Although there is evidence for reconnection above the prominence during the eruption, high spatial resolution images from IRIS reveal potential reconnection sites below the prominence. A height-time analysis of the erupting prominence shows a slow initial rise with a velocity of ~0.4 km s$^{-1}$ followed by a rapid acceleration with a final velocity of ~250 km s$^{-1}$. Brightenings in IRIS during the transition between these two phases indicate the eruption trigger for the fast part of the eruption is likely a tether-cutting mechanism rather than a break-out mechanism.

Searching for Classical Be Stars from the LAMOST DR1

We report on searching for Classical B-type emission-line (CBe) stars from the first data release (DR1) of the Large Sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST; also named the Guoshoujing Telescope). A total of 192 (12 known CBes) objects were identified as CBe candidates with prominent He~I~$\lambda4387$, He~I~$\lambda4471$, and Mg~II~$\lambda4481$ absorption lines, as well as H$\beta$~$\lambda4861$ and H$\alpha$~$\lambda6563$ emission lines. These candidates significantly increases current CBe sample of about 8\%. Most of the CBe candidates are distributed at the Galactic Anti-Center due to the LAMOST observing strategy. Only two of CBes are in the star clusters with ages of 15.8 and 398~Myr, respectively.

Helium signature in red giant oscillation patterns observed by Kepler

The space-borne missions CoRoT and Kepler have provided a large amount of precise photometric data. Among the stars observed, red giants show a rich oscillation pattern that allows their precise characterization. Long-duration observations allow for investigating the fine structure of this oscillation pattern. A common pattern of oscillation frequency was observed in red giant stars, which corresponds to the second-order development of the asymptotic theory. This pattern, called the universal red giant oscillation pattern, describes the frequencies of stellar acoustic modes. We aim to investigate the deviations observed from this universal pattern, thereby characterizing them in terms of the location of the second ionization zone of helium. We also show how this seismic signature depends on stellar evolution. We measured the frequencies of radial modes with a maximum likelihood estimator method, then we identified a modulation corresponding to the departure from the universal oscillation pattern. We identify the modulation component of the radial mode frequency spacings in more than five hundred red giants. The variation in the modulation that we observe at different evolutionary states brings new constraints on the interior models for these stars. We also derive an updated form of the universal pattern that accounts for the modulation and provides highly precise radial frequencies.

Diagnostic of stellar magnetic fields with cumulative circular polarisation profiles

Information about stellar magnetic field topologies is obtained primarily from high-resolution circular polarisation (Stokes $V$) observations. Due to their generally complex morphologies, the stellar Stokes $V$ profiles are usually interpreted with elaborate inversion techniques such as Zeeman Doppler imaging (ZDI). Here we further develop a new method of interpretation of circular polarisation signatures in spectral lines using cumulative Stokes $V$ profiles (anti-derivative of Stokes $V$). This method is complimentary to ZDI and can be applied for validation of the inversion results or when the available observational data are insufficient for an inversion. Based on the rigorous treatment of polarised line formation in the weak-field regime, we show that, for rapidly rotating stars, the cumulative Stokes $V$ profiles contain information about the spatially resolved longitudinal magnetic field density. Rotational modulation of these profiles can be employed for a simple, qualitative characterisation of the stellar magnetic field topologies. We apply this diagnostic method to the archival observations of the weak-line T Tauri star V410 Tau and Bp He-strong star HD 37776. We show that the magnetic field in V410 Tau is dominated by an azimuthal component, in agreement with the ZDI map that we recover from the same data set. For HD 37776 the cumulative Stokes $V$ profile variation indicates the presence of multiple regions of positive and negative field polarity. This behaviour agrees with the ZDI results but contradicts the popular hypothesis that the magnetic field of this star is dominated by an axisymmetric quadrupolar component.

Pulsation frequency distribution in Delta Scuti stars

We study the frequency distributions of Delta Scuti stars observed by the Kepler satellite in short-cadence mode. To minimize errors in the estimated stellar parameters, we divided the instability strip into ten regions and determined the mean frequency distribution in each region. We confirm that the presence of low frequencies is a property of all Delta Scuti stars, rendering meaningless the concept of Delta Sct/Gamma Dor hybrids. We obtained the true distribution of equatorial rotational velocities in each region and calculated the frequency distributions predicted by pulsation models, taking into account rotational splitting of the frequencies. We confirm that rotation cannot account for the presence of low frequencies. We calculated a large variety of standard pulsation models with different metal and helium abundances, but were unable to obtain unstable low-frequency modes driven by the kappa mechanism in any model. We also constructed models with modified opacities in the envelope. Increasing the opacity at a temperature log T = 5.06 by a factor of two does lead to instability of low-degree modes at low frequencies, but also decreases the frequency range of Delta Sct-type pulsations to some extent. We also re-affirm the fact that less than half of the stars in the Delta Sct instability strip have pulsations detectable by Kepler. We also point out the huge variety of frequency patterns in stars with roughly similar parameters, suggesting that nonlinearity is an important factor in Delta Sct pulsations.

Physical properties of solar polar jets: A statistical study with Hinode XRT data

The target of this work is to investigate the physical nature of polar jets in the solar corona and their possible contribution to coronal heating and solar wind flow based on the analysis of X-ray images acquired by the Hinode XRT telescope. We estimate the di?erent forms of energy associated with many of these small-scale eruptions, in particular the kinetic energy and enthalpy. Two Hinode XRT campaign datasets focusing on the two polar coronal holes were selected to analyze the physical properties of coronal jets; the analyzed data were acquired using a series of three XRT filters. Typical kinematical properties (e.g., length, thickness, lifetime, ejection rate, and velocity) of 18 jets are evaluated from the observed sequences, thus providing information on their possible contribution to the fast solar wind flux escaping from coronal holes. Electron temperatures and densities of polar-jet plasmas are also estimated using ratios of the intensities observed in di?erent filters. We find that the largest amount of energy eventually provided to the corona is thermal. The energy due to waves may also be significant, but its value is comparatively uncertain. The kinetic energy is lower than thermal energy, while other forms of energy are comparatively low. Lesser and fainter events seem to be hotter, thus the total contribution by polar jets to the coronal heating could have been underestimated so far. The kinetic energy flux is usually around three times smaller than the enthalpy counterpart, implying that this energy is converted into plasma heating more than in plasma acceleration. This result suggests that the majority of polar jets are most likely not escaping from the Sun and that only cooler ejections could possibly have enough kinetic energy to contribute to the total solar wind flow.

New insights on the Galactic Bulge Initial Mass Function

We have derived the Galactic bulge initial mass function of the SWEEPS field down to 0.15 $M_{\odot}$, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, $F814W \approx$ 26 mag, with a proper-motion accuracy better than 0.5 mas/yr (20 km/s). This allowed us to determine the initial mass function of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge initial mass function can be fitted with two power laws with a break at $M \sim$ 0.56 $M_{\odot}$, the slope being steeper ($\alpha = -2.41\pm$0.50) for the higher masses, and shallower ($\alpha = -1.25\pm$0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar mass–to–light values for the Galactic bulge and we found $M/L_{F814W} =$ 2.2$\pm$0.3 and $M/L_{F606W} =$ 3.2$\pm$0.5.

The VLT-FLAMES Tarantula Survey XXII. Multiplicity properties of the B-type stars

We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate relative radial velocities from the helium and metal absorption lines for each of our targets. Objects with significant radial-velocity variations (and with an amplitude larger than 16 km/s) are classified as spectroscopic binaries. We find an observed spectroscopic binary fraction (defined by periods of <10^3.5 d and mass ratios >0.1) for the B-type stars, f_B(obs) = 0.25 +/- 0.02, which appears constant across the field of view, except for the two older clusters (Hodge 301 and SL 639). These two clusters have significantly lower fractions of 0.08 +/- 0.08 and 0.10 +/- 0.09, respectively. Using synthetic populations and a model of our observed epochs and their potential biases, we constrain the intrinsic multiplicity properties of the dwarf and giant (i.e. relatively unevolved) B-type stars in 30 Dor. We obtain a present-day binary fraction f_B(true) = 0.58 +/- 0.11, with a flat period distribution. Within the uncertainties, the multiplicity properties of the B-type stars agree with those for the O stars in 30 Dor from the VFTS.

Study of FK Comae Berenices: VII. Correlating photospheric and chromospheric activity

We study the connection between the chromospheric and photospheric behaviour of the active late-type star FK Comae. We use spot temperature modelling, light curve inversion based on narrow- and wide-band photometric measurements, Halpha observations from 1997-2010, and Doppler maps from 2004-2010 to compare the behaviour of chromospheric and photospheric features. Investigating low-resolution Halpha spectra we find that the changes in the chromosphere seem to happen mainly on a time scale longer than a few hours, but shorter variations were also observed. According to the Halpha measurements prominences are often found in the chromosphere that reach to more than a stellar radius and are stable for weeks, and which seem to be often, but not every time connected with dark photospheric spots. The rotational modulation of the Halpha emission seems to typically be anticorrelated with the light curve, but we did not find convincing evidence of a clear connection in the long-term trends of the Halpha emission and the brightness of the star. In addition, FK Com seems to be in an unusually quiet state in 2009-2010 with very little chromospheric activity and low spot contrast, that might indicate the long-term decrease of activity.

Systematics-insensitive periodic signal search with K2

From pulsating stars to transiting exoplanets, the search for periodic signals in K2 data, Kepler’s 2-wheeled extension, is relevant to a long list of scientific goals. Systematics affecting K2 light curves due to the decreased spacecraft pointing precision inhibit the easy extraction of periodic signals from the data. We here develop a method for producing periodograms of K2 light curves that are insensitive to pointing-induced systematics; the Systematics-Insensitive Periodogram (SIP). Traditional sine-fitting periodograms use a generative model to find the frequency of a sinusoid that best describes the data. We extend this principle by including systematic trends, based on a set of ‘Eigen light curves’, following Foreman-Mackey et al. (2015), in our generative model as well as a sum of sine and cosine functions over a grid of frequencies. Using this method we are able to produce periodograms with vastly reduced systematic features. The quality of the resulting periodograms are such that we can recover acoustic oscillations in giant stars and measure stellar rotation periods without the need for any detrending. The algorithm is also applicable to the detection of other periodic phenomena such as variable stars, eclipsing binaries and short-period exoplanet candidates. The SIP code is available at https://github.com/RuthAngus/SIPK2.

Using Double-peaked Supernova Light Curves to Study Extended Material

Extended material at large radii surrounding a supernova can result in a double-peaked light curve when the material is sufficiently massive that the supernova shock continues to propagate into it and sufficiently extended that it produces a bright first peak. Such material can be the leftover, low-mass envelope of a star that has been highly stripped, the mass associated with a wind, or perhaps mass surrounding the progenitor due to some type of pre-explosion activity. I summarize the conditions necessary for such a light curve to occur, describe what can be learned about the extended material from the light curve shape, and provide a semi-analytic model for fitting the first peak in these double-peaked supernovae. This is applied to the specific case of a Type Ic super-luminous supernova, LSQ14bdq. The mass in the extended material around this explosion’s progenitor is measured to be small, ~0.2-0.5 Msun. The radius of this material must be >500 Rsun, but it is difficult to constrain due to a degeneracy between radius and the supernova’s energy. In the future, spectra taken during the first peak will be important for measuring the velocity and composition of the extended material so that this degeneracy can be overcome.

The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, that will complement information obtained by the Gaia astrometry satellite. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student’s t-distributions than by normal distributions. Parametrised results are provided, that enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km/s, dependent on instrumental configuration.

Constraining the Braking Indices of Magnetars

Due to the lack of long term pulsed emission in quiescence and the strong timing noise, it is impossible to directly measure the braking index $n$ of a magnetar. Based on the estimated ages of their potentially associated supernova remnants (SNRs), we estimate the values of $n$ of nine magnetars with SNRs, and find that they cluster in a range of $1\sim$41. Six magnetars have smaller braking indices of $1<n<3$, and we interpret them within a combination of magneto-dipole radiation and wind aided braking, while the larger braking indices of $n>3$ for other three magnetars are attributed to the decay of external braking torque, which might be caused by magnetic field decay. We estimate the possible wind luminosities for the magnetars with $1<n<3$, and the dipolar magnetic field decay rates for the magnetars with $n>3$ within the updated magneto-thermal evolution models. We point out that there could be some connections between the magnetar’s anti-glitch event and its braking index, and the magnitude of $n$ should be taken into account when explaining the event. Although the constrained range of the magnetars’ braking indices is tentative, our method provides an effective way to constrain the magnetars’ braking indices if the measurements of the SNRs’ ages are reliable, which can be improved by future observations.

Quasi-normal modes of Pop III binary black holes can confirm or refute the Einstein theory in the strong gravity region [Cross-Listing]

Using our population synthesis code, we found that the typical chirp mass defined by $(m_1m_2)^{3/5}/(m_1+m_2)^{1/5}$ of Pop III binary black holes (BH-BHs) is $\sim30~\rm M_{\odot}$ with the total mass of $\sim60~\rm M_{\odot}$ so that the inspiral chirp signal as well as quasi normal mode (QNM) of the merged black hole (BH) are interesting targets of KAGRA, Adv. LIGO, Adv. Virgo and GEO network. The detection rate of the coalescing Pop III BH-BHs is 262 $\rm events~yr^{-1}$$(\rm SFR_P/(10^{-2.5}~\rm M_{\odot} \rm~yr^{-1}~Mpc^{-3}))\cdot Err_{sys}$ in our standard model where $\rm SFR_{p}$ and $\rm Err_{sys}$ are the peak value of the Pop III star formation rate and the systematic error with $\rm Err_{sys}=1$ for our standard model, respectively. To evaluate the robustness of chirp mass distribution and the range of $\rm Err_{sys}$, we examine the dependence of the results on the unknown parameters and the distribution functions in the population synthesis code. We found that the chirp mass has a peak at $\sim 30 ~\rm M_{\odot}$ in most of parameters and distribution functions as well as $\rm Err_{sys}$ ranges from 0.05577 to 2.289. Therefore, the detection rate of the coalescing Pop III BH-BHs ranges $14.6-599.3\ {\rm events~yr^{-1} ~(SFR_p/(10^{-2.5}~M_{\odot}~yr^{-1}~Mpc^{-3}))}$. The minimum rate corresponds to the worst model which we think unlikely so that unless $ {\rm ~(SFR_p/(10^{-2.5}~M_{\odot}~yr^{-1}~Mpc^{-3})) \ll 0.1}$, we expect the Pop III BH-BHs merger rate of at least one event per year by KAGRA, Adv. LIGO, Adv. Virgo and GEO network. Since the expected frequency of the QNM of the merged BH of mass $\sim60~\rm M_{\odot}$ is $\sim 200~{\rm Hz}$ where the interferometers have good sensitivity, there is a good chance to check if the Einstein theory is correct or not in the strong gravity region.

Quasi-normal modes of Pop III binary black holes can confirm or refute the Einstein theory in the strong gravity region

Using our population synthesis code, we found that the typical chirp mass defined by $(m_1m_2)^{3/5}/(m_1+m_2)^{1/5}$ of Pop III binary black holes (BH-BHs) is $\sim30~\rm M_{\odot}$ with the total mass of $\sim60~\rm M_{\odot}$ so that the inspiral chirp signal as well as quasi normal mode (QNM) of the merged black hole (BH) are interesting targets of KAGRA, Adv. LIGO, Adv. Virgo and GEO network. The detection rate of the coalescing Pop III BH-BHs is 262 $\rm events~yr^{-1}$$(\rm SFR_P/(10^{-2.5}~\rm M_{\odot} \rm~yr^{-1}~Mpc^{-3}))\cdot Err_{sys}$ in our standard model where $\rm SFR_{p}$ and $\rm Err_{sys}$ are the peak value of the Pop III star formation rate and the systematic error with $\rm Err_{sys}=1$ for our standard model, respectively. To evaluate the robustness of chirp mass distribution and the range of $\rm Err_{sys}$, we examine the dependence of the results on the unknown parameters and the distribution functions in the population synthesis code. We found that the chirp mass has a peak at $\sim 30 ~\rm M_{\odot}$ in most of parameters and distribution functions as well as $\rm Err_{sys}$ ranges from 0.05577 to 2.289. Therefore, the detection rate of the coalescing Pop III BH-BHs ranges $14.6-599.3\ {\rm events~yr^{-1} ~(SFR_p/(10^{-2.5}~M_{\odot}~yr^{-1}~Mpc^{-3}))}$. The minimum rate corresponds to the worst model which we think unlikely so that unless $ {\rm ~(SFR_p/(10^{-2.5}~M_{\odot}~yr^{-1}~Mpc^{-3})) \ll 0.1}$, we expect the Pop III BH-BHs merger rate of at least one event per year by KAGRA, Adv. LIGO, Adv. Virgo and GEO network. Since the expected frequency of the QNM of the merged BH of mass $\sim60~\rm M_{\odot}$ is $\sim 200~{\rm Hz}$ where the interferometers have good sensitivity, there is a good chance to check if the Einstein theory is correct or not in the strong gravity region.

Tight asteroseismic constraints on core overshooting and diffusive mixing in the slowly rotating pulsating B8.3V star KIC 10526294

KIC 10526294 is a very slowly rotating and slowly pulsating late B-type star. Its 19 consecutive dipole gravity modes constitute a series with almost constant period spacing. This unique collection of identified modes probes the near-core environment of this star and holds the potential to reveal the size and structure of the overshooting zone on top of the convective core, as well as the mixing properties of the star. We pursue forward seismic modelling based on adiabatic eigenfrequencies of equilibrium models for eight extensive evolutionary grids tuned to KIC 10526294, by varying the initial mass, metallicity, chemical mixture, and the extent of the overshooting layer on top of the convective core. We examine models for both OP and OPAL opacities and test the occurrence of extra diffusive mixing. We find a tight mass, metallicity relation within the ranges $M$ ~ 3.13 to 3.25 Msun and $Z$ ~ 0.014 to 0.028. We deduce that an exponentially decaying diffusive core overshooting prescription describes the seismic data better than a step function formulation and derive a value of $f_{ov}$ between 0.017 and 0.018. Moreover, the inclusion of extra diffusive mixing with a value of $\log D_{\rm mix}$ between 1.75 and 2.00 dex (with $D_{\rm mix}$ in cm^2/sec) improves the goodness-of-fit based on the observed and modelled frequencies with a factor 11 compared to the case where no extra mixing is considered, irrespective of the $(M,Z)$ combination within the allowed seismic range. The inclusion of diffusive mixing in addition to core overshooting is essential to explain the structure in the observed period spacing pattern of this star. Moreover, we deduce that an exponentially decaying prescription for the core overshooting is to be preferred over a step function. Our best models for KIC 10526294 approach the seismic data to a level that they can serve future inversion of its stellar structure.

A search for lithium in metal-poor L dwarfs

The aim of the project is to search for lithium in absorption at 6707.8 Angstroms to constrain the nature and the mass of the brightest low-metallicity L-type dwarfs (refered to as L subdwarfs) identified in large-scale surveys. We obtained low- to intermediate-resolution (R~2500-9000) optical (~560-770 nm) spectra of two mid-L subdwarfs, SDSSJ125637.13-022452.4 (SDSS1256; sdL3.5) and 2MASSJ162620.14+392519.5 (2MASS1626; sdL4) with spectrographs on the European Southern Observatory Very Large Telescope and the Gran Telescopio de Canarias. We report the presence of a feature at the nominal position of the lithium absorption doublet at 6707.8 Angstroms in the spectrum of SDSS1256, with an equivalent width of 66+/-27 Angstroms at 2.4 sigma, which we identify as arising from a CaH molecular transition based on atmosphere models. We do not see any feature at the position of the lithium feature in the spectrum of 2MASS1626. The existence of overlapping molecular absorption sets a confusion detection limit of [Li/H]=-3 for equivalently-typed L subdwarfs. We provided improved radial velocity measurements of -126+/-10 km/s and -239+/-12 km/s for SDSS1256 and 2MASS1626, respectively, as well as revised Galactic orbits. We implemented adjusting factors for the CaH molecule in combination with the NextGen atmosphere models to fit the optical spectrum of SDSS1256 in the 6200-7300 Angstroms range. We also estimate the expected Li abundance from interstellar accretion ([Li/H]=-5), place limits on circumstellar accretion (10^9 g/yr), and discuss the prospects of Li searches in cooler L and T subdwarfs.

Magnetic Structure and Dynamics of the Erupting Solar Polar Crown Prominence on 2012 March 12

We present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape/horn-like structure is observed surrounding the upper portion of the prominence at 171 angstrom before the eruption and becomes more prominent during the eruption. The disk view of STEREO-B shows that this long prominence is composed of a series of vertical threads and displays a half loop-like structure during the eruption. We focus on the magnetic support of the prominence vertical threads by studying the structure and dynamics of the prominence before and during the eruption using observations from SDO and STEREO-B. We also construct a series of magnetic field models (sheared arcade model, twisted flux rope model, and unstable model with hyperbolic flux tube (HFT)). Various observational characteristics appear to be in favor of the twisted flux rope model. We find that the flux rope supporting the prominence enters the regime of torus instability at the onset of the fast rise phase, and signatures of reconnection (post-eruption arcade, new U-shape structure, rising blobs) appear about one hour later. During the eruption, AIA observes dark ribbons seen in absorption at 171 angstrom corresponding to the bright ribbons shown at 304 angstrom, which might be caused by the erupting filament material falling back along the newly reconfigured magnetic fields. Brightenings at the inner edge of the erupting prominence arcade are also observed in all AIA EUV channels, which might be caused by the heating due to energy released from reconnection below the rising prominence.

Solar Sources of $^{3}$He-rich Solar Energetic Particle Events in Solar Cycle 24

Using high-cadence extreme-ultraviolet (EUV) images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 $^{3}$He-rich solar energetic particle (SEP) events at $\lesssim$1 MeV nucleon$^{-1}$ that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of $^{3}$He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, $^{3}$He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the $^{3}$He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed.

Light Curves of Core-Collapse Supernovae with Substantial Mass Loss using the New Open-Source SuperNova Explosion Code (SNEC)

We present the SuperNova Explosion Code SNEC, an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different wavelength bands assuming black body emission. As a first application of SNEC, we consider the explosions of a grid of 15 Msun (at zero-age main sequence) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ~20-100 days if >~1.5-2 Msun of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. The shorter plateau lengths are unlike the Type IIP supernova light curves typically observed in nature. This suggests that, at least for zero-age main sequence masses <~ 20 Msun, hydrogen mass loss occurs as an all or nothing process, perhaps pointing to the important role binary interactions play in observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for Type IIL supernovae, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for Type IIb supernovae, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ~500 Rsun.

Initial-Final Mass Relation for 3 to 4 M$_\odot$ Progenitors of White Dwarfs from the Single Cluster NGC 2099

We have expanded the sample of observed white dwarfs in the rich open cluster NGC 2099 (M37) with the Keck Low-Resolution Imaging Spectrometer. Of 20 white dwarf candidates, the spectroscopy shows 19 to be true white dwarfs with 14 of these having high S/N. We find 11 of these 14 to be consistent with singly evolved cluster members. They span a mass range of $\sim$0.7 to 0.95 M$_\odot$, excluding a low-mass outlier, corresponding to progenitor masses of $\sim$3 to 4 M$_\odot$. This region of the initial final mass relation (IFMR) has large scatter and a slope that remains to be precisely determined. With this large sample of white dwarfs that belong to a single age and metallicity population, we find an initial-final mass relation of (0.171$\pm$0.057)M$_{\rm initial}$+0.219$\pm$0.187 M$_\odot$, significantly steeper than the linear relation adopted over the full observed white dwarf mass range in many previous studies. Comparison of this new relation from the solar metallicity NGC 2099 to 18 white dwarfs in the metal-rich Hyades and Praesepe shows that their IFMR also has a consistently steep slope. This strong consistency also suggests that there is no significant metallicity dependence of the IFMR at this mass and metallicity range. As a result, the IFMR can be more reliably determined with this broad sample of 29 total white dwarfs giving M$_{\rm final}$=(0.163$\pm$0.022)M$_{\rm initial}$+0.238$\pm$0.071 M$_\odot$ from M$_{\rm initial}$ of 3 to 4 M$_\odot$. A steep IFMR in this mass range indicates that the full IFMR is nonlinear.

Direct Imaging and Spectroscopy of a Young Extrasolar Kuiper Belt in the Nearest OB Association

We describe the discovery of a bright, young Kuiper belt-like debris disk around HD 115600, a $\sim$ 1.4–1.5 M$_\mathrm{\odot}$, $\sim$ 15 Myr old member of the Sco-Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the \textit{Gemini Planet Imager} shows the ring has a (luminosity scaled) semi major axis of ($\sim$ 22 AU) $\sim$ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral scattering dust, is eccentric (e $\sim$ 0.1–0.2), and could be sculpted by analogues to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper belt chemical constituents, where water-ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e. SCExAO, GPI, SPHERE), HD 115600′s debris ring and planetary system provides a key reference point for the early evolution of the solar system, the structure and composition of the Kuiper belt, and the interaction between debris disks and planets.

Compact dust concentration in the MWC 758 protoplanetary disk

The formation of planetesimals requires that primordial dust grains grow from micron- to km-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka & Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the north-west of the central star, which matches the VLA clump position. This segregation of grains sizes is expected in the context of dust trapping, where big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a non-axisymmetric parametric model inspired by a steady state vortex solution which reproduces the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a region devoid of scattered polarised emission and the VLA clump is offset to the north of the north-western spiral-like feature, indicating moderate or no flaring in the outer disk.

The Remarkable Deaths of 9 - 11 Solar Mass Stars

The post-helium burning evolution of stars from 7 to 11 solar masses is complicated by the lingering effects of degeneracy and off-center ignition. Here stars in this mass range are studied using a standard set of stellar physics. Two important aspects of the study are the direct coupling of a reaction network of roughly 220 nuclei to the structure calculation at all stages and the use of a sub grid model to describe the convective bounded flame that develops during neon and oxygen burning. Below 9.0 solar masses, degenerate oxygen-neon cores form that may become either white dwarfs or electron-capture supernovae. Above 10.3 solar masses the evolution proceeds "normally" to iron-core collapse, without composition inversions or degenerate flashes. Emphasis here is upon the stars in between which typically ignite oxygen burning off center. After oxygen burns in a convectively bounded flame, silicon burning ignites in a degenerate flash that commences closer to the stellar center and with increasing violence for stars of larger mass. In some cases the silicon flash is so violent that it could lead to the early ejection of the hydrogen envelope. This might have interesting observable consequences. For example, the death of a 10.0 solar mass star could produce two supernova-like displays, a faint low energy event due to the silicon flash, and an unusually bright supernova many months later as the low energy ejecta from core collapse collides with the previously ejected envelope. The potential relation to the Crab supernova is discussed.

The Destruction of the Circumstellar Ring of SN 1987A

We present imaging and spectroscopic observations with HST and VLT of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ~8,000 (~2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500-1000 km/s, consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ~2025.

Observational signatures of convectively driven waves in massive stars

We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGW) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on 2D hydrodynamical simulations of IGW in a differentially-rotating massive star and the observed spectra.We also show that the velocity spectra caused by IGW may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright slowly and rapidly rotating OB-type stars in the scientific programme of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGW for various masses and ages.

Is the small-scale magnetic field correlated with the dynamo cycle?

The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence of this field using three-dimensional dynamo simulations. We use a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when only the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe a clear anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of both the small-scale dynamo and the tangling of the large-scale field. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of small-scale dynamo and tangling of the large-scale field. The observed cyclic variation of the small-scale field is produced by the interaction between the large-scale field and the flow.

The first symbiotic stars from the LAMOST survey

Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf, a red giant and a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of Milky Way symbiotic stars vary from 3000 up to 400000. However, the current census is less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. In this work we detect 4 of such binaries among 4,147,802 spectra released by the LAMOST, of which two are new identifications. The first is LAMOST J12280490-014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star.

Cyclic behavior of solar inter-network magnetic field

Solar inter-network magnetic field is the weakest component of solar magnetism, but contributes most of the solar surface magnetic flux. The study on its origin has been constrained by the inadequate tempo-spatial resolution and sensitivity of polarization observations. With dramatic advances in spatial resolution and detective sensitivity, solar spectro-polarimetry provided by the Solar Optical Telescope aboard Hinode in an interval from solar minimum to maximum of cycle 24 opens an unprecedented opportunity to study the cyclic behavior of solar inter-network magnetic field. More than 1000 Hinode magnetograms observed from 2007 January to 2014 August are selected in the study. It has been found that there is a very slight correlation between sunspot number and magnetic field at the inter-network flux spectrum. From solar minimum to maximum of cycle 24, the flux density of solar inter-network field is invariant, which is 10$\pm1$ G. The observations suggest that the inter-network magnetic field does not arise from the flux diffusion or flux recycling of solar active regions, thereby indicating the existence of a locally small-scale dynamo. Combining the full-disk magnetograms observed by SOHO/MDI and SDO/HMI in the same period, we find that the area ratio of the inter-network region to the full-disk of the Sun apparently decreases from solar minimum to maximum but always exceeds 60\% even though in the phase of solar maximum.

Does the variation of solar inter-network horizontal field follow sunspot cycle?

The ubiquitousness of solar inter-network horizontal magnetic field has been revealed by the space-borne observations with high spatial resolution and polarization sensitivity. However, no consensus has been achieved on the origin of the horizontal field among solar physicists. For a better understanding, in this study we analyze the cyclic variation of inter-network horizontal field by using the spectro-polarimeter observations provided by Solar Optical Telescope on board Hinode, covering the interval from 2008 April to 2015 February. The method of wavelength integration is adopted to achieve a high signal-to-noise ratio. It is found that from 2008 to 2015 the inter-network horizontal field does not vary when solar activity increases, and the average flux density of inter-network horizontal field is 87$\pm$1 G, In addition, the imbalance between horizontal and vertical field also keeps invariant within the scope of deviation, i.e., 8.7$\pm$0.5, from the solar minimum to maximum of solar cycle 24. This result confirms that the inter-network horizontal field is independent of sunspot cycle. The revelation favors the idea that a local dynamo is creating and maintaining the solar inter-network horizontal field.

Empirical Isochrones for Low Mass Stars in Nearby Young Associations

Absolute ages of young stars are important for many issues in pre-main sequence stellar and circumstellar evolution but are long recognized as difficult to derive and calibrate. In this paper, we use literature spectral types and photometry to construct empirical isochrones in HR diagrams for low-mass stars and brown dwarfs in the eta Cha, epsilon Cha, and TW Hya Associations and the beta Pic and Tuc-Hor Moving Groups. A successful theory of pre-main sequence evolution should match the shapes of the stellar loci for these groups of young stars. However, when comparing the combined empirical isochrones to isochrones predicted from evolutionary models, discrepancies lead to a spectral type (mass) dependence in stellar age estimates. Improved prescriptions for convection and boundary conditions in the latest models of pre-main sequence models lead to a significantly improved correspondence between empirical and model isochrones, with small offsets at low temperatures that may be explained by observational uncertainties or by model limitations. Independent of model predictions, linear fits to combined stellar loci of these regions provide a simple empirical method to order clusters by luminosity with a reduced dependence on spectral type. Age estimates calculated from various sets of modern models that reproduce Li depletion boundary ages of the beta Pic Moving Group also imply a ~4 Myr age for the low mass members of the Upper Sco OB Association, which is younger than the 11 Myr age that has been recently estimated for intermediate mass members.

PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope

PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{\mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {\mu}m fibre through a projected sky aperture of 0.74", comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics.

A new sdO+dM binary with extreme eclipses and reflection effect

We report the discovery of a new totally-eclipsing binary (RA=06:40:29.11; Dec=+38:56:52.2; J=2000.0; Rmax=17.2 mag) with an sdO primary and a strongly irradiated red dwarf companion. It has an orbital period of Porb=0.187284394(11) d and an optical eclipse depth in excess of 5 magnitudes. We obtained two low-resolution classification spectra with GTC/OSIRIS and ten medium-resolution spectra with WHT/ISIS to constrain the properties of the binary members. The spectra are dominated by H Balmer and He II absorption lines from the sdO star, and phase-dependent emission lines from the irradiated companion. A combined spectroscopic and light curve analysis implies a hot subdwarf temperature of Teff(spec) = 55 000 +/- 3000K, surface gravity of log g(phot) = 6.2 +/- 0.04 (cgs) and a He abundance of log(nHe/nH) = -2.24 +/- 0.40. The hot sdO star irradiates the red-dwarf companion, heating its substellar point to about 22 500K. Surface parameters for the companion are difficult to constrain from the currently available data: the most remarkable features are the strong H Balmer and C II-III lines in emission. Radial velocity estimates are consistent with the sdO+dM classification. The photometric data do not show any indication of sdO pulsations with amplitudes greater than 7mmag, and Halpha-filter images do not provide evidence of the presence of a planetary nebula associated with the sdO star.

Solar-Type Activity: Epochs of Cycle Formation

The diagram of indices of coronal and chromospheric activity allowed us to reveal stars where solar-type activity appears and regular cycles are forming. Using new consideration of a relation between coronal activity and the rotation rate, together with new data on the ages of open clusters, we estimate the age of the young Sun corresponding to the epoch of formation of its cycle. The properties of the activity of this young Sun, with an age slightly older than one billion years, are briefly discussed. An analysis of available data on the long-term regular variability of late-type stars leads to the conclusion that duration of a cycle associated with solar-type activity increases with the deceleration of the stellar rotation; i.e., with age. New data on the magnetic fields of comparatively young G stars and changes in the role of the large-scale and the local magnetic fields in the formation of the activity of the young Sun are discussed. Studies in this area aim to provide observational tests aimed at identifying the conditions for the formation of cyclic activity on stars in the lower part of the main sequence, and test some results of dynamo theory.

Grid-based estimates of stellar ages in binary systems. SCEPtER: Stellar CharactEristics Pisa Estimation gRid

We investigate the performance of grid-based techniques in estimating the age of stars in detached eclipsing binary systems. We evaluate the precision of the estimates due to the uncertainty in the observational constraints, and the systematic bias caused by the uncertainty in convective core overshooting, element diffusion, mixing-length value, and initial helium content. We adopted the SCEPtER grid, which includes stars with mass in the range [0.8; 1.6] Msun and evolutionary stages from the ZAMS to the central hydrogen depletion. Age estimates have been obtained by a generalisation of the technique described in our previous work. We showed that the typical 1 sigma random error in age estimates – due to the uncertainty on the observational constraints – is about +- 7%, which is nearly independent of the masses of the two stars. However, such an error strongly depends on the evolutionary phase and becomes larger and asymmetric for stars near the ZAMS where it ranges from about +90% to -25%. The systematic bias due to the including mild and strong convective core overshooting is about 50% and 120% of the error due to observational uncertainties. A variation of +- 1 in the helium-to-metal enrichment ratio accounts for about +- 150% of the random error. The neglect of microscopic diffusion accounts for a bias of about 60% of the random error. We also introduced a statistical test of the expected difference in the recovered age of two coeval stars in a binary system. We find that random fluctuations within the current observational uncertainties can lead genuine coeval binary components to appear to be non-coeval with a difference in age as high as 60%.

Are Crab Nanoshots Schwinger Sparks? [Cross-Listing]

The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum $e^{\pm}$ pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, $\sim 10^3 L_{\astrosun}$, 10 PeV $e^{\pm}$ accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than $1 m^3$ and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. This mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

A Modern Search for Wolf-Rayet Stars in the Magellanic Clouds. II. A Second Year of Discoveries

The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf-Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, with WN3-type emission combined with O3-type absorption features. Yet these stars are 2-3 magnitudes too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two "slash" WRs. This brings the total of LMC WRs known to 152, 13 (8.2%) of which were found by our survey, which is now 60% complete. We find that the spatial distribution of the WN3/O3s are similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that five of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly found Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.

Newtonian wormholes with spherical symmetry and tidal forces on test particles

A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.

Newtonian wormholes with spherical symmetry and tidal forces on test particles [Cross-Listing]

A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.

Newtonian wormholes with spherical symmetry and tidal forces on test particles [Cross-Listing]

A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.

Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457

(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, using the Planck-derived dust opacity spectral index beta, derived on scales of 30′ (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 micron, and we compare these in turn with APEX-Laboca observations. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index beta, does not change. A single beta that is only slightly different from the Planck-derived value is sufficient to describe the data, beta=1.53+/-0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find evidence for grain growth but also a single beta. Conclusions: While we find evidence for grain growth from the dust opacity in FeSt 1-457, we find no evidence for significant variations in the dust opacity spectral index beta on scales 0.02<x<1 pc (or 36"<x<30′). The correction to the Planck-derived dust beta that we find in both cases is on the order of the measurement error, not including any systematic errors, and it would thus be reasonable to directly apply the dust beta from the Planck all-sky dust model. As a corollary, reliable effective temperature maps can be derived which would be otherwise affected by beta variations.

Formation of planetary debris discs around white dwarfs II: Shrinking extremely eccentric collisionless rings

The formation channel of the tens of compact debris discs which orbit white dwarfs (WDs) at a distance of one Solar radius remains unknown. Asteroids that survive the giant branch stellar phases beyond a few au are assumed to be dynamically thrust towards the WD and tidally disrupted within its Roche radius, generating extremely eccentric (e>0.98) rings. Here, we establish that WD radiation compresses and circularizes the orbits of super-micron to cm-sized ring constituents to entirely within the WD’s Roche radius. We derive a closed algebraic formula which well-approximates the shrinking time as a function of WD cooling age, the physical properties of the star and the physical and orbital properties of the ring particles. The shrinking timescale increases with both particle size and cooling age, yielding age-dependent WD debris disc size distributions.

Bright 30 THz Impulsive Solar Bursts

Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin

A test of the asteroseismic numax scaling relation for solar-like oscillations in main-sequence and sub-giant stars

Large-scale analyses of stellar samples comprised of cool, solar-like oscillators now commonly utilize the so-called asteroseismic scaling relations to estimate fundamental stellar properties. In this paper we present a test of the scaling relation for the global asteroseismic parameter $\nu_{\rm max}$, the frequency at which a solar-like oscillator presents its strongest observed pulsation amplitude. The classic relation assumes that this characteristic frequency scales with a particular combination of surface gravity and effective temperature that also describes the dependence of the cut-off frequency for acoustic waves in an isothermal atmosphere, i.e., $\nu_{\rm max} \propto gT_{\rm eff}^{-1/2}$. We test how well the oscillations of cool main-sequence and sub-giant stars adhere to this relation, using a sample of asteroseismic targets observed by the NASA \emph{Kepler} Mission. Our results, which come from a grid-based analysis, rule out departures from the classic $gT_{\rm eff}^{-1/2}$ scaling dependence at the level of $\simeq 1.5\,\rm per cent$ over the full $\simeq 1560\,\rm K$ range in $T_{\rm eff}$ that we tested. There is some uncertainty over the absolute calibration of the scaling. However, any variation with $T_{\rm eff}$ is evidently small, with limits similar to those above.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^