Recent Postings from Solar and Stellar

Hybrid star structure with the Field Correlator Method [Cross-Listing]

We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential $V_1$, the gluon condensate $G_2$ and the color-flavor superconducting gap $\Delta$. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated.

Hybrid star structure with the Field Correlator Method [Cross-Listing]

We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential $V_1$, the gluon condensate $G_2$ and the color-flavor superconducting gap $\Delta$. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated.

Hybrid star structure with the Field Correlator Method

We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential $V_1$, the gluon condensate $G_2$ and the color-flavor superconducting gap $\Delta$. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated.

KIC 10080943: An eccentric binary system containing two pressure and gravity mode hybrid pulsators

Gamma Doradus and delta Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and are as such critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC10080943, clear signatures of gravity and pressure mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints, which will serve to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe we modelled the ellipsoidal variation and reflection signal of the binary in the light curve and used classical Fourier techniques to analyse the pulsation modes. We show that the eccentric binary system KIC10080943 contains two hybrid pulsators with masses $M_1=2.0\pm0.1~M_\odot$ and $M_2=1.9\pm0.1~M_\odot$, with radii $R_1=2.9\pm0.1~R_\odot$ and $R_2=2.1\pm0.2~R_\odot$. We detect rotational splitting in the g modes and p modes for both stars and use them to determine a first rough estimate of the core-to-surface rotation rates for the two components, to be improved by future detailed seismic modelling.

Forbidden calcium lines as disc tracers

Forbidden emission lines are particularly valuable disc tracers, because their profiles reflect the kinematics within their formation region. Here we present a short excerpt from the results of a spectroscopic survey of evolved massive stars surrounded by high-density discs.

Small-scale magnetic and velocity inhomogeneities in a sunspot light bridge

High resolution spectro-polarimetric observations of a sunspot light bridge by Hinode, reveal small-scale inhomogeneities in the magnetic field and velocity. These inhomogeneities arise as a consequence of a weak, secondary lobe in the Stokes V profile which have a polarity opposite that of the sunspot and very large (>5 km/s) Doppler velocities of both signs, suggesting two distinct types of magnetic anomalies. These two sets of inhomogeneities are highly time-dependent and appear exclusively in the upper half of the light bridge and only after the light bridge is completely formed. Both sets of inhomogeneities appear as patches and can be present independent of the other, next to one another, or spatially separated in a single scan. A two-component inversion of the corresponding spectral profiles indicate that the inhomogeneities occupy a very small fraction, amounting to less than 10 %, of the resolution element. These structures are likely driven by small-scale magneto-convection where they could further interact with the overlying sunspot magnetic field to produce reconnection jets in the chromosphere.

Observations of Hierarchical Solar-Type Multiple Star Systems

Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.

Small-scale magnetic flux emergence in a sunspot light bridge

We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. Blueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE inversions reveal that the asymmetric emission is caused by a temperature enhancement of about 700 K between -5.0<log tau<-3.0 and a blueshift of 3 km/s at log tau=-2.3. The photospheric blueshifts and redshifts seem to be caused by the emergence of a small-scale, flat Omega-loop with highly inclined footpoints of opposite polarity. The gas motions detected in the two footpoints are reminiscent of a siphon flow. The rising loop is probably confined to the lower atmosphere by the overlying sunspot magnetic field and the subsequent interaction may be responsible for temperature enhancements in the upper photosphere/lower chromosphere. This is the first time that magnetic flux is observed to emerge in the strongly magnetised environment of sunspots, pushed upward by the convective flows of a granular light bridge.

ALMA images of discs: are all gaps carved by planets?

Protoplanetary discs are now routinely observed and exoplanets, after the numerous indirect discoveries, are starting to be directly imaged. To better understand the planet formation process, the next step is the detection of forming planets or of signposts of young planets still in their disc, such as gaps. A spectacular example is the ALMA science verification image of HL Tau showing numerous gaps and rings in its disc. To study the observability of planet gaps, we ran 3D hydrodynamical simulations of a gas and dust disc containing a 5 M J gap-opening planet and characterised the spatial distribution of migrating, growing and fragmenting dust grains. We then computed the corresponding synthetic images for ALMA. For a value of the dust fragmentation threshold of 15 m s –1 for the collisional velocity, we identify for the first time a self-induced dust pile up in simulations taking fragmentation into account. This feature, in addition to the easily detected planet gap, causes a second apparent gap that could be mistaken for the signature of a second planet. It is therefore essential to be cautious in the interpretation of gap detections.

Performance analysis of the Least-Squares estimator in Astrometry

We characterize the performance of the widely-used least-squares estimator in astrometry in terms of a comparison with the Cramer-Rao lower variance bound. In this inference context the performance of the least-squares estimator does not offer a closed-form expression, but a new result is presented (Theorem 1) where both the bias and the mean-square-error of the least-squares estimator are bounded and approximated analytically, in the latter case in terms of a nominal value and an interval around it. From the predicted nominal value we analyze how efficient is the least-squares estimator in comparison with the minimum variance Cramer-Rao bound. Based on our results, we show that, for the high signal-to-noise ratio regime, the performance of the least-squares estimator is significantly poorer than the Cramer-Rao bound, and we characterize this gap analytically. On the positive side, we show that for the challenging low signal-to-noise regime (attributed to either a weak astronomical signal or a noise-dominated condition) the least-squares estimator is near optimal, as its performance asymptotically approaches the Cramer-Rao bound. However, we also demonstrate that, in general, there is no unbiased estimator for the astrometric position that can precisely reach the Cramer-Rao bound. We validate our theoretical analysis through simulated digital-detector observations under typical observing conditions. We show that the nominal value for the mean-square-error of the least-squares estimator (obtained from our theorem) can be used as a benchmark indicator of the expected statistical performance of the least-squares method under a wide range of conditions. Our results are valid for an idealized linear (one-dimensional) array detector where intra-pixel response changes are neglected, and where flat-fielding is achieved with very high accuracy.

Coordinated X-ray and Optical observations of Star-Planet Interaction in HD 17156

The large number of close-in Jupiter-size exoplanets prompts the question whether star-planet interaction (SPI) effects can be detected. We focused our attention on the system HD 17156, having a Jupiter-mass planet in a very eccentric orbit. Here we present results of the XMM-Newton observations and of a five month coordinated optical campaign with the HARPS-N spectrograph. We observed HD 17156 with XMM-Newton when the planet was approaching the apoastron and then at the following periastron passage, quasi simultaneously with HARPS-N. We obtained a clear ($\approx 5.5\sigma$) X-ray detection only at the periastron visit, accompanied by a significant increase of the $R’_{\rm HK}$ chromospheric index. We discuss two possible scenarios for the activity enhancement: magnetic reconnection and flaring or accretion onto the star of material tidally stripped from the planet. In any case, this is possibly the first evidence of a magnetic SPI effect caught in action.

The growth of helium burning cores

Helium burning in the convective cores of horizontal branch and `red clump’ stars appears to involve a process of `ingestion’ of unburnt helium into the core, the physics of which has not been identified yet. I show here that a limiting factor controlling the growth is the buoyancy of helium entering the denser C+O core. It yields a growth rate which scales directly with the convective luminosity of the core, and agrees with constraints on core size from current asteroseismology.

High-resolution abundance analysis of HD 140283

HD 140283 is a reference subgiant that is metal poor and confirmed to be a very old star. The abundances of this type of old star can constrain the nature and nucleosynthesis processes that occurred in its (even older) progenitors. The present study may shed light on nucleosynthesis processes yielding heavy elements early in the Galaxy. A detailed abundance analysis of a high-quality spectrum is carried out, with the intent of providing a reference on stellar lines and abundances of a very old, metal-poor subgiant. We aim to derive abundances from most available and measurable spectral lines. The analysis is carried out using high-resolution (R = 81 000) and high signal-to-noise ratio (800 < S/N/pixel < 3400) spectrum, in the wavelength range 3700 – 10475, obtained with a seven-hour exposure time, using the ESPaDOnS at the CFHT. The calculations in LTE were performed with the OSMARCS 1D atmospheric model and the spectrum synthesis code Turbospectrum, while the analysis in NLTE is based on the MULTI code. We present LTE abundances for 26 elements, and NLTE calculations for the species C I, O I, Na I, Mg I, Al I, K I, Ca I, Sr II, and Ba II lines. The abundance analysis provided an extensive line list suitable for metal-poor subgiant stars. The results for Li, CNO, alpha-, and iron peak elements are in good agreement with literature. The newly NLTE Ba abundance, along with a NLTE Eu correction and a 3D Ba correction from literature, leads to [Eu/Ba] = +0.59 +/- 0.18. This result confirms a dominant r-process contribution, possibly together with a very small contribution from the main s-process, to the neutron-capture elements in HD 140283. Overabundances of the lighter heavy elements and the high abundances derived for Ba, La, and Ce favour the operation of the weak r-process in HD 140283.

On the mechanisms of the quasi-biennial oscillations in the GCR intensity

Quasi-biennial oscillation (QBO) is a well-known quasi-periodical variation with characteristic time 0.5-4 years in different solar, heliospheric and cosmic ray characteristics. In this paper a hypothesis is checked on the causes of the apparent lack of correlation between solar and heliospheric QBOs, then the possible mechanisms of QBO in the GCR intensity are discussed as well as the idea of the same nature of the step-like changes and Gnevyshev Gap effects in the GCR intensity. Our main conclusions are as follows: 1) In the first approximation the hypothesis is justified that the change in the sunspot and QBO cycles in the transition from the Sun to the heliosphere is due to 1) the different magnitude and time behavior of the large-scale and small-scale photospheric solar magnetic fields and 2) the stronger attenuation of the small-scale fields in this transition. 2) As the QBO in the HMF strength influences both the diffusion coefficients and drift velocity, it can give rise to the complex QBO in the GCR intensity with respect to the dominating HMF polarity. The description of drift velocity field for the periods of the HMF inversion is suggested, although it has drawbacks. 3) As the conditions in the heliosphere are quite different around the sunspot maximum and during the periods of low solar activity (both with respect to the HMF polarity distribution and with the presence or absence of the large-scale barriers), the suggestion that both the step-like changes of the GCR intensity and Gnevyshev Gap effect could have the same nature, looks questionable.

On the causes and mechanisms of the long-term variations in the GCR characteristics

We argue that the degree of understanding the causes and mechanisms of the long-term variations (11-year and 22-year) in the galactic cosmic rays (GCR) characteristics is still insufficient and to improve it we need new approaches and methods. For the time being there is a long-lasting controversy on how these long-term variations, observed for more than 50 years in the inner heliosphere, are formed. It is widely believed that the 11-year variation is due entirely to the toroidal branch of solar activity (the area and number of sunspots, the strength of the heliospheric magnetic field etc) because of the diffusion, convection and adiabatic energy loss, while the much smaller 22-year variation is caused by the particle drifts connected with the poloidal branch of solar activity (the high-latitude solar magnetic fields). At the same time, both past and more recent numerical simulations indicate that the contribution of particle drifts could be significant for both 22- and 11-year variations in the GCR intensities. However, even those who agree on the significant influence of drifts appear to have different perceptions on the mechanisms of this influence. In this paper, we present an analysis of the possible causes of the first point of view (small role of drifts in the 11-year GCR variation) and the reasons why one can expect the significant contri- bution of the processes connected with the poloidal branch of solar activity in both types of the long-term variations of the GCR characteristics. Then we briefly discuss some numerical methods suggested in the past and recently and the approaches and perspectives for the sought-for methods are considered.

GCR intensity during the sunspot maximum phase and the inversion of the heliospheric magnetic field

The maximum phase of the solar cycle is characterized by several interesting features in the solar activity, heliospheric characteristics and the galactic cosmic ray (GCR) intensity. Recently the maximum phase of the current solar cycle (SC) 24, in many relations anomalous when compared with solar cycles of the second half of the 20-th century, came to the end. The corresponding phase in the GCR intensity cycle is also in progress. In this paper we study different aspects of the sunspot, heliospheric and GCR behavior around this phase. Our main conclusions are as follows: 1) The maximum phase of the sunspot SC 24 ended in 06.2014, the development of the sunspot cycle being similar to those of SC 14, 15 (the Glaisberg minimum). The maximum phase of SC 24 in the GCR intensity is still in progress. 2) The inversion of the heliospheric magnetic field consists of three stages, characterized by the appearance of the global heliospheric current sheet (HCS), connecting all longitudes. In two transition dipole stages beside the global HCS there are additional local HCSs, while the inversion stage lies between two transition dipole ones and there is no global HCS in this stage. The inversion stage of the current SC 24 is the longest when compared with those for SC 21-23. The second transition dipole stage and hence the whole inversion period of the heliospheric magnetic field in SC 24 provisionally ended in 08.2014. 3) The behavior of the GCR intensity in the period of the sunspot maximum phase and the inversion of the heliospheric magnetic fields for SC 21-23 demonstrates all the characteristic features for this period: the two-gap structure corresponding to two-peak structure in the sunspot activity, and the energy hysteresis. In the current SC 24 the GCR intensity shows rather unusual features and we should wait for one or even two years to see the whole picture.

Wolf-Rayet content of the Milky Way

An overview of the known Wolf-Rayet (WR) population of the Milky Way is presented, including a brief overview of historical catalogues and recent advances based on infrared photometric and spectroscopic observations resulting in the current census of 642 (v1.13 online catalogue). The observed distribution of WR stars is considered with respect to known star clusters, given that <20% of WR stars in the disk are located in clusters. WN stars outnumber WC stars at all galactocentric radii, while early-type WC stars are strongly biased against the inner Milky Way. Finally, recent estimates of the global WR population in the Milky Way are reassessed, with 1,200+/-100 estimated, such that the current census may be 50% complete. A characteristic WR lifetime of 0.25 Myr is inferred for an initial mass threshold of 25 Msun.

A uvbyCaHbeta CCD Analysis of the Open Cluster Standard, NGC 752

Precision uvbyCaHbeta photometry of the nearby old open cluster, NGC 752, is presented. The mosaic of CCD fields covers an area ~42′ on a side with internal precision at the 0.005 to 0.010 mag level for the majority of stars down to V~15. The CCD photometry is tied to the standard system using an extensive set of published photoelectric observations adopted as secondary standards within the cluster. Multicolor indices are used to eliminate as nonmembers a large fraction of the low probability proper-motion members near the faint end of the main sequence, while identifying 24 potential dwarf members between V=15.0 and 16.5, eight of which have been noted before from Vilnius photometry. From 68 highly probable F dwarf members, we derive a reddening estimate of E(b-y)= 0.025 +/- 0.003 (E(B-V) = 0.034 +/- 0.004), where the error includes the internal photometric uncertainty and the systematic error arising from the choice of the standard (b-y), Hbeta relation. With reddening fixed, [Fe/H] is derived from the F dwarf members using both m_1 and hk, leading to [Fe/H] = -0.071 +/-0.014 (sem) and -0.017 +/- 0.008 (sem), respectively. Taking the internal precision and possible systematics in the standard relations into account, [Fe/H] for NGC 752 becomes -0.03 +/-0.02. With the reddening and metallicity defined, we use the Victoria-Regina isochrones on the Stromgren system and find an excellent match for (m-M) = 8.30 +/- 0.05 and an age of 1.45 +/- 0.05 Gyr at the appropriate metallicity.

Time-Dependent Turbulent Heating of Open Flux Tubes in the Chromosphere, Corona, and Solar Wind

We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfven-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models (Cranmer et al., 2007) against fully time-dependent three-dimensional reduced-magnetohydrodynamics modeling of BRAID (van Ballegooijen et al., 2011). We find that the time-steady results agree well with time-averaged results from BRAID. The time-dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10^21.91 erg, within the "picoflare" range, and many events reach classical "nanoflare" energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure (DEM) distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfven waves accelerates the solar wind in open flux tubes.

Origin and kinematics of the eruptive flow from XZ Tau revealed by ALMA

We present high angular resolution ($\sim$0.94$"$) $^{12}$CO(1-0) Atacama Large Millimeter/Submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast-northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolar outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 $\times$ 10$^{-7}$ $M_\odot$) and energetics (E$_{kin}$ $=$ 3 $\times$ 10$^{37}$ ergs) for the collimated outflow are comparable with those found in molecular outflows associated with young brown dwarfs.

Investigation of Umbral Dots with the New Vacuum Solar Telescope

Umbral dots (UDs) are small isolated brightening observed in sunspot umbrae. They are convective phenomena existing inside umbrae. UDs are usually divided into central UDs (CUDs) and peripheral UDs (PUDs) with respect to their positions inside an umbra. Our purpose is to investigate UD properties and analyze their relationships, and further to find whether or not the properties depend on the umbral magnetic field variation. For the purpose, we selected the high-resolution TiO images of four active regions (ARs) obtained under the best seeing conditions with the \emph{New Vacuum Solar Telescope} (NVST) in Fuxian Solar Observatory of Yunnan Astronomical Observatory, China. The four ARs (NOAA 11598, 11801, 12158, and 12178) include six sunspots. A total of 1220 CUDs were extracted from six sunspots, and 603 PUDs from three sunspots. Meanwhile, the radial component of the magnetic field of the sunspots obtained with the \emph{Helioseismic and Magnetic Imager} onboard the \emph{Solar Dynamics Observatory} was used to analyze the influence to UD properties. To CUDs, their diameters and lifetimes exhibit an increasing trend with brightness, whereas their horizontal velocities exhibit an inverse trend. Moreover, the properties: diameter, intensity and velocity depend on magnetic field variation. To a CUD, its diameter becomes larger and brighter, and its motion shows slower in a weak magnetic field than in a strong field. To PUDs, the similar trends are also found. Moreover, we also find that the lifetimes of UDs located in different sunspots are not obviously different, implying that they are unrelated to the magnetic flux density in which they lived.

The effect of broadband soft X-rays in SO2-containing ices: Implication on the photochemistry of ices towards young stellar objects

We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (keV) photoelectrons and low-energy (eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 K and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In-situ analyses were performed by a Fourier transform infrared (FTIR) spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was in the order of 2-7E-18 cm2. The ice temperature seems not to affect the stability for SO2 in the presence of X-rays. Formation cross sections of produced new species were also determined. Molecular half-lives at ices towards YSOs due to the presence of incoming soft X-rays were estimated. The low obtained values, employing two different models of radiation field of YSOs (TW Hydra and typical T Tauri star), reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

We present a new code designed to solve the equations of classical ideal magneto-hydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvenic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

Light Bridge in a Developing Active Region. II. Numerical Simulation of Flux Emergence and Light Bridge Formation

Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly-magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

A distance limited sample of massive molecular outflows

We have observed 99 mid-infrared-bright, massive young stellar objects and compact HII regions drawn from the Red MSX source (RMS) survey in the J=3$-$2 transition of $^{12}$CO and $^{13}$CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 percent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic timescale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to $\sim$30 M$_{\odot}$ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of $\sim$10$^{-3}$ M$_{\odot}$ yr$^{-1}$ onto the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B=5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influnece the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.

Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, IRIS, and Solar Dynamics Observatory (SDO), we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with surrounding magnetic fields.

A distance limited sample of massive star forming cores from the RMS survey

We analyse C$^{18}$O ($J=3-$2) data from a sample of 99 infrared-bright massive young stellar objects (MYSOs) and compact HII regions that were identified as potential molecular-outflow sources in the Red MSX source (RMS) survey. We extract a distance limited (D $<$ 6 kpc) sample shown to be representative of star formation covering the transition between the source types. At the spatial resolution probed, Larson-like relationships are found for these cores, though the alternative explanation, that Larson’s relations arise where surface-density-limited samples are considered, is also consistent with our data. There are no significant differences found between source properties for the MYSOs and HII regions, suggesting that the core properties are established prior to the formation of massive stars, which subsequently have little impact at the later evolutionary stages investigated. There is a strong correlation between dust-continuum and C$^{18}$O-gas masses, supporting the interpretation that both trace the same material in these IR-bright sources. A clear linear relationship is seen between the independently established core masses and luminosities. The position of MYSOs and compact HII regions in the mass-luminosity plane is consistent with the luminosity expected a cluster of protostars when using a $\sim$40 percent star-formation efficiency and indicates that they are at a similar evolutionary stage, near the end of the accretion phase.

Accretion, disks, and magnetic activity in the TW Hya association

We present new photometric and spectroscopic data for the M-type members of the TW Hya association with the aim of a comprehensive study of accretion, disks and magnetic activity at the critical age of ~10 Myr where circumstellar matter disappears.

Measurements of Ca II Infrared Triplet Lines of Young Stellar Objects

Equivalent widths and line widths of Ca II infrared triplet emission lines were measured in high-resolution optical spectra of 39 young stellar objects.We found that the equivalent widths of the emission lines decrease with stellar evolution. It has been often claimed that strong chromospheric activity is generated by a dynamo process caused by fast rotation of the photosphere. However, we found no clear correlation between the strength of the Ca II lines and the stellar rotation velocity. Instead, we found that the objects with high mass accretion rates had stronger Ca II emission lines. This correlation supports the turbulent chromosphere model or the magnetic accretion theory for classical T Tauri stars. We also noticed that the equivalent widths of Ca II lines of transitional disk objects are one-tenth of those of classical T Tauri stars, even if the masses of the circumstellar disks are comparable.

Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

The SDSS III APOGEE survey recently identified two new $\sigma$ Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a $\sim$0.7701 day period in each dataset, suggesting the system is amongst the faster known $\sigma$ Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a $\sim$0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.

The O- and B-Type Stellar Population in W3: Beyond the High-Density Layer

We present the first results from our survey of the star-forming complex W3, combining VRI photometry with multiobject spectroscopy to identify and characterize the high-mass stellar population across the region. With 79 new spectral classifications, we bring the total number of spectroscopically-confirmed O- and B-type stars in W3 to 105. We find that the high-mass slope of the mass function in W3 is consistent with a Salpeter IMF, and that the extinction toward the region is best characterized by an Rv of approximately 3.6. B-type stars are found to be more widely dispersed across the W3 giant molecular cloud (GMC) than previously realized: they are not confined to the high-density layer (HDL) created by the expansion of the neighboring W4 HII region into the GMC. This broader B-type population suggests that star formation in W3 began spontaneously up to 8–10 Myr ago, although at a lower level than the more recent star formation episodes in the HDL. In addition, we describe a method of optimizing sky subtraction for fiber spectra in regions of strong and spatially-variable nebular emission.

Panchromatic imaging and spectroscopic observations of the mass ejections of RY Scuti

We describe recent panchromatic imaging and spectroscopic studies of the supergiant, mass-transferring, binary star RY Scuti, which is in a brief transitional phase to become a Wolf-Rayet star and a stripped-envelope supernova.

Infrared Observations of novae in the SOFIA era

Classical novae inject chemically enriched gas and dust into the local inter-stellar medium (ISM). Abundances in the ejecta can be deduced from infrared (IR) forbidden line emission. IR spectroscopy can determine the mineralogy of grains that grow in nova ejecta. We anticipate the impact that NASA’s new Stratospheric Observatory for Infrared Astronomy (SOFIA) will have on future IR studies of novae.

Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside 2–7 AU separation and to create a "single-star sequence" for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the "Tool for Astrophysical Data Analysis" (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J – K_s, J vs. J – H and K_s vs. H – K_s color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHK_s, and WISE W1 to W).We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. The full sequence covers the mass range 0.13 to 2.3 Msun, and effective temperatures between 3060 K and 8200 K. Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distance to individual Hyades members, and uncertainties in the photometry. Additionally, a small (~0.05 mag) systematic offset can be noted on J vs. J – K and K vs. H – K diagrams – the observed sequence is shifted to redder colors from the theoretical predictions.

A Machine Learning Technique to Identify Transit Shaped Signals

We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighbors to determine whether a given signal is sufficiently similar to known transits in the same data set. This metric is being used by the Kepler Robovetter to determine which signals should be part of the Q1-Q17 DR24 catalog of planetary candidates. The Kepler Mission reports roughly 20,000 potential transiting signals with each run of its pipeline, yet only a few thousand appear sufficiently transit shaped to be part of the catalog. The other signals tend to be variable stars and instrumental noise. With this metric we are able to remove more than 90% of the non-transiting signals while retaining more than 99% of the known planet candidates. When tested with injected transits, less than 1% are lost. This metric will enable the Kepler mission and future missions looking for transiting planets to rapidly and consistently find the best planetary candidates for follow-up and cataloging.

The Controversial Star-Formation History and Helium Enrichment of the Milky Way Bulge

The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxy’s oldest stars for [Fe/H]$\lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$\lesssim0$ are older than $t \approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t \approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t \approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.

Direct Exoplanet Detection with Binary Differential Imaging

Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4\asec ~with MagAO/Clio-2 at 3.9 \microns, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5$\sigma$ contrast is \about 0.5 mags better than ADI’s within \about 1\asec ~for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4$\times$ more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets.

RR Lyrae mode switching in globular cluster M 68 (NGC 4590)

We build on our detailed analysis of time-series observations of the globular cluster M 68 to investigate the irregular pulsational behaviour of four of the RR Lyrae stars in this cluster. M 68 is one of only two globular clusters in which mode-switching of RR Lyrae stars has previously been reported, and we discuss one additional case, as well as a case of irregular behaviour, and we briefly revisit the two previously reported cases with a homogeneous analysis. We find that in 2013, V45 was pulsating in the first-overtone mode only, despite being previously reported as a double-mode (fundamental and first overtone) pulsator in 1994, and that the amplitude of the fundamental mode in V7 is increasing with time. We also suggest that V21 might not have switched pulsation modes as previously reported, although the first overtone seems to be becoming less dominant. Finally, our analysis of available archival data confirms that V33 lost a pulsation mode between 1950 and 1986.

The Distribution of Main Sequence and Pre-Main Sequence Stars in the Young Anticenter Cluster NGC 2401

Images obtained with the Gemini Multi-Object Spectrograph on Gemini South are used to examine the photometric properties and spatial distributions of main sequence (MS) and pre-main sequence (PMS) objects in the star cluster NGC 2401. The data sample several magnitudes fainter than previous studies, and a large population of candidate PMS (cPMS) stars are identified. The cPMS stars are traced out to 2.4 arcmin from the cluster center, and have a flatter spatial distribution than the brightest MS stars near the cluster center. The luminosity function of all MS and candidate PMS stars can be matched by a model that assumes a solar neighborhood mass function, suggesting that NGC 2401 has not yet shed significant numbers of members with masses in excess of 0.5 solar. The frequency of wide binaries among the MS stars is ~3 times higher than among the cPMS stars. It is argued that the difference in the spatial distributions of MS and PMS objects is not the consequence of secular dynamical evolution or structural evolution driven by near-catastrophic mass loss. Rather, it is suggested that the different spatial distributions of these objects is the fossil imprint of primordial sub-clustering that arises naturally if massive stars form preferentially in the highest density central regions of a protocluster.

Presumable European aurorae in the mid AD 770s were halo displays [Cross-Listing]

The interpretation of the strong 14-C variation around AD 775 as one (or several) solar super-flare(s) by, e.g., Usoskin et al. (2013) is based on alleged aurora sightings in the mid AD 770s in Europe: A "red cross/crucifix" in AD 773/4/6 from the Anglo-Saxon Chronicle, "inflamed shields" in AD 776 (both listed in the aurora catalogue of Link 1962), and "riders on white horses" in AD 773 (newly proposed as aurora in Usoskin et al. 2013), the two latter from the Royal Frankish Annals. We discuss the reports about these three sightings in detail here. We can show that all three were halo displays: The "red cross" or "crucifix" is formed by the horizontal arc and a vertical pillar of light (either with the Sun during sunset or with the moon after sunset); the "inflamed shields" and the "riders on white horses" were both two mock suns, especially the latter narrated in form of a Christian adaptation of the antique dioscuri motive. While the latter event took place early in AD 774 (dated AD 773 in Usoskin et al. 2013), the two other sightings have to be dated AD 776, i.e. anyway too late for being in connection with a 14-C rise that started before AD 775. We also sketch the ideological background of those sightings and there were many similar reports throughout that time. In addition, we present a small drawing of a lunar halo display with horizontal arc and vertical pillar forming a cross for shortly later, namely AD 806 June 4, the night of full moon, also from the Anglo-Saxon Chronicle; we also show historic drawings of solar and lunar halo crosses from G. Kirch and Helevius and a modern photograph.

Accretion Processes for General Spherically Symmetric Compact Objects [Cross-Listing]

We investigate the accretion process for different spherically symmetric space-time geometries for a static fluid. We analyse this procedure using the most general black hole metric ansatz. After that, we examine the accretion process for specific spherically symmetric metrics obtaining the velocity of the sound during the process and the critical speed of the flow of the fluid around the black hole. In addition, we study the behaviour of the rate of change of the mass for each chosen metric for a barotropic fluid.

Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra

Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality with the ground-based advanced LIGO/Virgo GW detector network starting its first science run this year. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission starting from an early baryonic wind phase and resulting in a final pulsar wind nebula that is confined by the previously ejected material. Lightcurves and spectra are computed for a wide range of post-merger physical properties and particular attention is paid to the emission in the X-ray band. In the context of SGRB afterglow modeling, we present X-ray lightcurves corresponding to the ‘standard’ and the recently proposed ‘time-reversal’ scenario (SGRB prompt emission produced at the time of merger or at the time of collapse of the long-lived NS). The resulting afterglow lightcurve morphologies include, in particular, single and two-plateau features with timescales and luminosities that are in good agreement with the observations by the Swift satellite. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario. If found, such a signal would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient signal peaking in the X-ray band …

Peacock jets above the light bridge of a sunspot driven by reconnection

We report on a fan-shaped set of high-speed jets above the light bridge (LB) of a sunspot observed in the H-alpha line. We study the origin, dynamics and thermal properties of the jets using high-resolution imaging spectroscopy in \Halpha\ from the Swedish 1-m Solar Telescope and data from the Atmospheric Imaging Assembly (AIA) at the Solar Dynamics Observatory. The H-alpha jets have lengths of 14-38 Mm, are impulsively accelerated to a speed of ~100 km/s close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are launched from one edge of the light bridge, and their footpoints appear bright in the H-alpha wings.AIA data indicates elongated brightenings that are nearly co-spatial with the H-alpha jets. We interpret them as jets of at least transition region temperatures.The photospheric line-of-sight magnetic field in the light bridge is weaker than, and has opposite polarity compared to, the umbra. All measured jet properties are consistent with the emergence of bipolar magnetic field in the LB that reconnects with the pre-existing vertical field of the sunspot umbra.

Electromagnetic emission from long-lived binary neutron star merger remnants I: formulation of the problem

Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs), which are among the most luminous explosions in the universe. Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the evolution of the post-merger system and predict its electromagnetic (EM) emission in a self-consistent way, starting from initial data that can be extracted from BNS merger simulations and taking into account the most relevant radiative processes. Moreover, the model can accomodate the collapse of the remnant NS at any time during the evolution as well as different scenarios for the prompt SGRB emission. A second major reason of interest for BNS mergers is that they are considered the most promising source of gravitational waves (GWs) for detection with the advanced ground-based detector network LIGO/Virgo coming online this year. Multimessenger astronomy with joint EM and GW observations of the merger and post-merger phase can greatly enhance the scientific output of either type of observation. However, the actual benefit depends on …

The Dense Filamentary Giant Molecular Cloud G23.0-0.4: Birthplace of Ongoing Massive Star Formation

We present observations of 1.5 square degree maps of the 12CO, 13CO, and C18O (J=1-0) emission toward the complex region of the supernova remnant (SNR) W41 and SNR G22.7-0.2. A massive (~5E5Msun), large (~84×15 pc), and dense (~10E3 cm^-3) giant molecular cloud (GMC), G23.0-0.4 with VLSR~77 km/s, is found to be adjacent to the two SNRs. The GMC displays a filamentary structure approximately along the Galactic plane. The filamentary structure of the dense molecular gas, traced by C18O (J=1-0) emission, is also coincident well with the distribution of the dust-continuum emission in the direction. Two dense massive MC clumps, two 6.7 GHz methanol masers, and one HII/SNR complex, associated with the 77 km/s GMC G23.0-0.4, are aligned along the filamentary structure, indicating the star forming activity within the GMC. These sources have periodic projected spacing of 0.18-0.26degree along the giant filament, which is consistent well with the theoretical predictions of 0.22degree. It indicates that the turbulence seems to dominate the fragmentation process of the dense gaseous filament on large scale. The established 4.4 kpc distance of the GMC and the long dense filament traced by C18O emission, together with the rich massive star formation groups in the nearby region, suggest that G23.0-0.4 is probably located at the near side of the Scutum-Centaurus arm in the first quadrant. Considering the large scale and the elongation structure along the Galactic plane, we speculate that the dense filamentary GMC has relation to the spiral density wave of the Milky Way.

Sunspot areas and tilt angles for solar cycles 7-10

Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims at estimating areas of sunspots observed by Schwabe in 1825-1867 and at calculating the tilt angles of sunspot groups. The sunspot sizes in Schwabe’s drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, place the leading polarity on average 5.85+-0.25 closer to the equator, in good agreement with tilt angles obtained from 20th-century data sets. Sources of uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The sunspot area and tilt angle data are provided online.

Near-Infrared Polarimetry of the GG Tauri A Binary System

A high angular resolution near-infrared polarized-intensity image of the GG Tau A binary system was obtained with the Subaru Telescope. The image shows the circumbinary disk scattering the light from the central binary. The azimuthal profile of the polarized intensity of the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein function and the Rayleigh function, indicating small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits anti-clockwise, while material in the disk orbit clockwise. We propose a shadow of material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 years are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

On the Geometry of the IBEX Ribbon

The Energetic Neutral Atom (ENA) full-sky maps obtained with the Interstellar Boundary Explorer (IBEX) show an unexpected bright narrow band of increased intensity. This so-called ENA ribbon results from charge exchange of interstellar neutral atoms with protons in the outer heliosphere or beyond. Amongst other hypotheses it has been argued that this ribbon may be related to a neutral density enhancement, or H-wave, in the local interstellar medium. Here we quantitatively demonstrate, on the basis of an analytical model of the principal large-scale heliospheric structure, that this scenario for the ribbon formation leads to results that are fully consistent with the observed location of the ribbon in the full-sky maps at all energies detected with high-energy sensor IBEX-Hi.

The ISM in O-star spectroscopic surveys: GOSSS, OWN, IACOB, NoMaDS, and CAF\'E-BEANS

I present results on the interstellar medium towards the O stars observed in five optical spectroscopic surveys: GOSSS, OWN, IACOB, NoMaDS, and CAF\’E-BEANS. I have measured both the amount [$E(4405-5495)$] and type [$R_{5495}$] of extinction towards several hundreds of Galactic O stars and verified that the Ma\’iz Apell\’aniz et al. (2014) family of extinction laws provides a significantly better fit to optical+NIR Galactic extinction than either the Cardelli et al. (1989) or the Fitzpatrick (1999) families. $R_{5495}$ values are concentrated between 3.0 and 3.5 but for low values of $E(4405-5495)$ there is a significant population with larger $R_{5495}$ associated with H II regions. I have also measured different DIBs and I have found that $W$(5797)/$W$(5780) is anticorrelated with $R_{5495}$, a sign that extreme $\zeta$ clouds are characterized not only by low ionization environments (as opposed to $\sigma$ clouds) but also by having a larger fraction of small dust grains. The equivalent width of the "Gaia DIB" (8621 \AA) is strongly correlated with $E(4405-5495)$, as expected, and its behavior appears to be more $\sigma$-like than $\zeta$-like. We have also started analyzing some individual sightlines in detail.


You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^