Recent Postings from Galactic

Accretion in action: phase space coherence of stellar debris and globular clusters in Andromeda's South-West Cloud

A central tenet of the current cosmological paradigm is that galaxies grow over time through the accretion of smaller systems. Here, we present new kinematic measurements near the centre of one of the densest pronounced substructures, the South-West Cloud, in the outer halo of our nearest giant neighbour, the Andromeda galaxy. These observations reveal that the kinematic properties of this region of the South-West Cloud are consistent with those of PA-8, a globular cluster previously shown to be co-spatial with the stellar substructure. In this sense the situation is reminiscent of the handful of globular clusters that sit near the heart of the Sagittarius dwarf galaxy, a system that is currently being accreted into the Milky Way, confirming that accretion deposits not only stars but also globular clusters into the halos of large galaxies.

The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview

The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.

Does the Jet Production Efficiency of Radio Galaxies Control Their Optical AGN Types?

The jet production efficiency of radio galaxies can be quantified by comparison of their kinetic jet powers P_jet and Bondi accretion powers P_B. These two parameters are known to be related linearly, with the jet power resulting from the Bondi power by multiplication with an efficiency factor of order 1%. Using a recently published (Nemmen + Tchekhovskoy 2014) high-quality sample of 27 radio galaxies, I construct a P_B-P_jet diagram that includes information on optical AGN types as far as available. This diagram indicates that the jet production efficiency is a function of AGN type: Seyfert 2 galaxies seem to be systematically (with a false alarm probability of 0.043%) less efficient, by about one order of magnitude, in powering jets than Seyfert 1 galaxies, LINERs, or the remaining radio galaxies. This suggests an evolutionary sequence from Sy2s to Sy1s and LINERs, controlled by an interplay of jets on the one hand and dust and gas in galactic nuclei on the other hand. When taking this effect into account, the P_B-P_jet relation is probably much tighter intrinsically than currently assumed.

Wideband VLA Observations of Abell 2256 I: Continuum, Rotation Measure and Spectral Imaging

We report new observations of Abell 2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available for a single observation to study the spectral index, polarization and Rotation Measure as well as using the associated higher sensitivity to image total intensity features down to ~0.5" resolution. We find the Large Relic, which dominates the cluster, is made up of a complex of filaments which show correlated distributions in intensity, spectral index, and fractional polarization. The Rotation Measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex has interesting morphological similarities to the radio structure of NGC1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is </~100pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of Abell 2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.

Infrared spectra and photometry of complete samples of PG and 2MASS quasars

As a step toward a comprehensive overview of the infrared diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 {\mu}m) and photometric (24, 70 and 160 {\mu}m) measurements of all Palomar-Green (PG) quasars at z < 0.5 and 2MASS quasars at z < 0.3. We supplement these data with Herschel measurements at 160 {\mu}m. The sample is composed of 87 optically selected PG quasars and 52 near-IR selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 {\mu}m) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the SED shape of ~ 0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured – silicate emission) and 2MASS (obscured – silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 {\mu}m, possibly indicating effects on grain properties near the AGN. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

The Interstellar Medium and Star Formation in Edge-On Galaxies. II. NGC 4157, 4565, and 5907

We present a study of the vertical structure of the gaseous and stellar disks in a sample of edge-on galaxies (NGC 4157, 4565, and 5907) using BIMA/CARMA 12CO (J = 1 –> 0), VLA H I, and Spitzer 3.6 micron data. In order to take into account projection effects when we measure the disk thickness as a function of radius, we first obtain the inclination by modeling the radio data. Using the measurement of the disk thicknesses and the derived radial profiles of gas and stars, we estimate the corresponding volume densities and vertical velocity dispersions. Both stellar and gas disks have smoothly varying scale heights and velocity dispersions, contrary to assumptions of previous studies. Using the velocity dispersions, we find that the gravitational instability parameter Q follows a fairly uniform profile with radius and is greater than or equal to 1 across the star forming disk. The star formation law has a slope that is significantly different from those found in more face-on galaxy studies, both in deprojected and pixel-by-pixel plots. Midplane gas pressure based on the varying scale heights and velocity dispersions appears to roughly hold a power-law correlation with the midplane volume density ratio.

Structure Formation in Gas-Rich Galactic Discs with Finite Thickness: From Discs to Rings

Gravitational instabilities play an important role in structure formation of gas-rich high-redshift disc galaxies. In this paper, we revisit the axisymmetric perturbation theory and the resulting growth of structure, by taking the realistic thickness of the disc into account. In the unstable regime, which corresponds for thick discs to a Toomre parameter below the critical value Q=0.696, we find a fastest growing perturbation wavelength that is always a factor 1.93 times larger than in the classical razor-thin disc approximation. This result is independent of the adopted disc scale height and by this independent of temperature and surface density. In order to test the analytical theory, we compare it with a high resolution hydrodynamical simulation of an isothermal gravitationally unstable gas disc with the typical vertical sech density profile and study its break-up into rings that subsequently fragment into dense clumps. In the first phase rings form, that organise themselves discretely, with distances corresponding to the local fastest growing perturbation wavelength. These rings later on contract to a thin and dense line, while at the same time accreting more gas from the inter-ring region. It is these dense, circular filaments, that subsequently fragment into a large number of clumps. Contrary to what is typically assumed, the clump sizes cannot be predicted from the simple perturbation theory. The ring properties are very well determined by the fastest growing wavelength of the Toomre instability analysis for thick discs. The number of clumps and their properties on the other hand depend on the physics of filament break-up in an evolutionary phase where the disc has already developed strongly non-linear, high-density regions. We find that the disc scale height has to be resolved initially with 5 or more grid cells in order to guarantee proper growth of the ring structures.

The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs

The formation of protostellar discs is severely hampered by magnetic braking, as long as magnetic fields remain frozen in the gas. The latter condition depends on the levels of ionisation that characterise the innermost regions of a collapsing cloud. The chemistry of dense cloud cores and, in particular, the ionisation fraction is largely controlled by cosmic rays. The aim of this paper is to evaluate whether the attenuation of the flux of cosmic rays expected in the regions around a forming protostar is sufficient to decouple the field from the gas, thereby influencing the formation of centrifugally supported disc. We adopted the method developed in a former study to compute the attenuation of the cosmic-ray flux as a function of the column density and the field strength in clouds threaded by poloidal and toroidal magnetic fields. We applied this formalism to models of low- and high-mass star formation extracted from numerical simulations of gravitational collapse that include rotation and turbulence. For each model we determine the size of the magnetic decoupling zone, where collapse or rotation motion becomes unaffected by the local magnetic field. In general, we find that decoupling only occurs when the attenuation of cosmic rays is taken into account with respect to a calculation in which the cosmic-ray ionisation rate is kept constant. The extent of the decoupling zone also depends on the dust grain size distribution and is larger if large grains (of radius $\sim 10^{-5}$ cm) are formed by compression and coagulation during cloud collapse. We conclude that a realistic treatment of cosmic-ray propagation and attenuation during cloud collapse may lead to a value of the resistivity of the gas in the innermost few hundred AU around a forming protostar that is higher than generally assumed.

HST-COS Observations of AGN. II. Extended Survey of Ultraviolet Composite Spectra from 159 Active Galactic Nuclei

The ionizing fluxes from quasars and other active galactic nuclei (AGN) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium (IGM). Using far-ultraviolet spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGN at redshifts 0.001 < z_AGN < 1.476 and construct a composite spectrum from 475-1875A. We identify the underlying AGN continuum and strong EUV emission lines from ions of oxygen, neon, and nitrogen after masking out absorption lines from the HI Lya forest, 7 Lyman-limit systems (N_HI > 10^17.2 cm^-2) and 214 partial Lyman-limit systems (15.0 < log N_HI < 17.2). The 159 AGN exhibit a wide range of FUV/EUV spectral shapes, F_nu \propto nu^(alpha_nu), typically with -2 < alpha_nu < 0 and no discernible continuum edges at 912A (H I) or 504A (He I). The composite rest-frame continuum shows a gradual break at 1000 A, with mean spectral index alpha_nu = -0.83 +/- 0.09 in the FUV (1200-2000A) steepening to alpha_nu = -1.41 +/- 0.15 in the EUV (500-1000A). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inflow rates, and luminosities relative to Eddington values.

Oxygen abundances of zCOSMOS galaxies at z~1.4 based on five lines and implications for the fundamental metallicity relation

A relation between the stellar mass M and the gas-phase metallicity Z of galaxies, the MZR, is observed up to higher redshifts. It is a matter of debate, however, if the SFR is a second parameter in the MZR. To explore this issue at z > 1, we used VLT-SINFONI near-infrared (NIR) spectroscopy of eight zCOSMOS galaxies at 1.3 < z < 1.4 to measure the strengths of four emission lines: Hbeta, [OIII]lambda5007, Halpha, and [NII]lambda6584, additional to [OII]lambda3727 measured from VIMOS. We derive reliable O/H metallicities based on five lines, and also SFRs from extinction corrected Halpha measurements. We find that the MZR of these star-forming galaxies at z~1.4 is lower than the local SDSS MZR by a factor of three to five, a larger change than reported in the literature using [NII]/Halpha-based metallicities from individual and stacked spectra. Correcting N2-based O/Hs using recent results by Newman et al. (2014), also the larger FMOS sample at z~1.4 of Zahid et al. (2014) shows a similar evolution of the MZR like the zCOSMOS objects. These observations seem also in agreement with a non-evolving FMR using the physically motivated formulation of the FMR from Lilly et al. (2013).

Oxygen abundances of zCOSMOS galaxies at z~1.4 based on five lines and implications for the fundamental metallicity relation [Replacement]

A relation between the stellar mass M and the gas-phase metallicity Z of galaxies, the MZR, is observed up to higher redshifts. It is a matter of debate, however, if the SFR is a second parameter in the MZR. To explore this issue at z > 1, we used VLT-SINFONI near-infrared (NIR) spectroscopy of eight zCOSMOS galaxies at 1.3 < z < 1.4 to measure the strengths of four emission lines: Hbeta, [OIII]lambda5007, Halpha, and [NII]lambda6584, additional to [OII]lambda3727 measured from VIMOS. We derive reliable O/H metallicities based on five lines, and also SFRs from extinction corrected Halpha measurements. We find that the MZR of these star-forming galaxies at z~1.4 is lower than the local SDSS MZR by a factor of three to five, a larger change than reported in the literature using [NII]/Halpha-based metallicities from individual and stacked spectra. Correcting N2-based O/Hs using recent results by Newman et al. (2014), also the larger FMOS sample at z~1.4 of Zahid et al. (2014) shows a similar evolution of the MZR like the zCOSMOS objects. These observations seem also in agreement with a non-evolving FMR using the physically motivated formulation of the FMR from Lilly et al. (2013).

Herschel Far-Infrared Photometry of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. PACS Observations

Far-Infrared (FIR) photometry from the the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58-month Swift Burst Alert Telescope (BAT) Active Galactic catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160um for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160um could be from star formation, independent of AGN type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band ) and the FIR emission at 70 and 160um for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (i) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (ii) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F70/F160 ratios.

Starburst-AGN mixing: II. Optically-selected active galaxies

We use 4 galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey with clear signs of accretion onto supermassive black holes to investigate the relative contribution of star-formation and active galactic nucleus (AGN) activity to the line-emission of each galaxy as a function of radius. The combination of star-formation and AGN activity produces curved "mixing sequences" on standard optical diagnostic diagrams, and the fraction of emission due to AGN activity decreases smoothly with distance from the centre of the galaxy. We use the AGN activity profiles to calculate the size of the AGN narrow line regions, which have radii of ~ 6.3 kpc. We calculate the fractional contribution of the star-formation and the AGN activity to the global Halpha, [O II] $\lambda \lambda$ 3727,3729 and [O III] $\lambda$ 5007 luminosities of each galaxy, and show that both ionization sources contribute significantly to the emission in all three lines. We use weighted combinations of stellar and AGN photoionization models to produce mixing models, which are consistent with observations for 85 percent of spaxels across the galaxies in our sample. We also present a new diagnostic for starburst-AGN mixing which requires only the [O II], [O III] and Hbeta emission lines, and can therefore be used to calculate AGN fractions up to z ~ 0.85 in the optical and z ~ 3.5 in the near-infrared. We anticipate that this diagnostic will facilitate studies of the properties of AGN ionizing radiation fields and the relative optical contribution of star-formation and AGN activity over cosmic time.

Line-driven radiative outflows in luminous quasars

An analysis of ~19500 narrow (<200 km/s) CIV 1548.2,1550.8 absorbers in ~34000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow-velocity shows that in approximately two-thirds of outflows, with multiple CIV absorbers present, absorbers are line-locked at the 500 km/s velocity separation of the CIV absorber doublet; appearing as ‘triplets’ in the quasar spectra. Line-locking is an observational signature of radiative line driving in outflowing material, where the successive shielding of ‘clouds’ of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line quasars (BALs) and non-BAL quasars with comparable frequencies and with velocities out to at least 20000 km/s. There are no detectable differences in the absorber properties and the dust content of single CIV doublets and line-locked CIV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from HeII and HI resonance lines. The simulations confirm that line driving can be the dominant acceleration mechanism for clouds with N(HI) ~ 10^19 cm^-2.

Line-driven radiative outflows in luminous quasars [Replacement]

An analysis of ~19500 narrow (<200 km/s) CIV 1548.2,1550.8 absorbers in ~34000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow-velocity shows that in approximately two-thirds of outflows, with multiple CIV absorbers present, absorbers are line-locked at the 500 km/s velocity separation of the CIV absorber doublet; appearing as ‘triplets’ in the quasar spectra. Line-locking is an observational signature of radiative line driving in outflowing material, where the successive shielding of ‘clouds’ of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line quasars (BALs) and non-BAL quasars with comparable frequencies and with velocities out to at least 20000 km/s. There are no detectable differences in the absorber properties and the dust content of single CIV doublets and line-locked CIV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from HeII and HI resonance lines. The simulations confirm that line driving can be the dominant acceleration mechanism for clouds with N(HI) ~ 10^19 cm^-2.

Accretion History of the Milky Way Dark Matter Halo and the Origin of its Angular Momentum

The flow of dark matter into the Milky Way and Large Magellanic Cloud in a model for the gravitational field of the neighboring galaxies yields a growth history for the dark matter halo of the Milky Way that ends up with angular momentum roughly in the observed direction, and it produces a dark matter stream around the Large Magellanic Cloud that resembles the Magellanic Stream.

Feeding Versus Feedback in AGNs from Near-Infrared IFU Observations: The Case of Mrk 766

We have mapped the emission-line flux distributions and ratios as well as the gaseous kinematics of the inner 450 pc radius of the Seyfert 1 galaxy Mrk 766 using integral field near-IR J- and Kl-band spectra obtained with the Gemini nifs at a spatial resolution of 60 pc and velocity resolution of 40 km/s. Emission-line flux distributions in ionized and molecular gas extend up to ~ 300 pc from the nucleus. Coronal [S IX]{\lambda}1.2523{\mu}m line emission is resolved, being extended up to 150 pc from the nucleus. At the highest flux levels, the [Fe II]{\lambda}1.257{\mu}m line emission is most extended to the south-east, where a radio jet has been observed.The emission-line ratios [Fe II]{\lambda}1.2570{\mu}m/Pa{\beta} and $H_2${\lambda}2.1218{\mu}m/Br{\gamma} show a mixture of Starburst and Seyfert excitation; the Seyfert excitation dominates at the nucleus, to the north-west and in an arc-shaped region between 0.2" and 0.6" to the south-east at the location of the radio jet. A contribution from shocks at this location is supported by enhanced [Fe II]/[P II] line ratios and increased [Fe II] velocity dispersion. The gas velocity field is dominated by rotation that is more compact for $H_2$ than for Pa{\beta}, indicating that the molecular gas has a colder kinematics and is located in the galaxy plane. There is about $10^3$ solar masses of hot $H_2$, implying ~ $10^9$ solar masses of cold molecular gas. At the location of the radio jet, we observe an increase in the [Fe II] velocity dispersion (150 km/s), as well as both blueshift and redshifts in the channel maps, supporting the presence of an outflow there. The ionized gas mass outflow rate is estimated to be ~ 10 solar masses/yr, and the power of the outflow ~ 0.08 $L_{bol}$.

Consequences of bursty star formation on galaxy observables at high redshifts

The star formation histories (SFHs) of dwarf galaxies are thought to be bursty, with large — order of magnitude — changes in the star formation rate on timescales similar to O-star lifetimes. As a result, the standard interpretations of many galaxy observables (which assume a slowly varying SFH) are often incorrect. Here we use the SFHs from hydro-dynamical simulations to investigate the effects of bursty SFHs on sample selection and interpretation of observables and make predictions to confirm such SFHs in future surveys. First, because dwarf galaxies’ star formation rates change rapidly, the mass-to-light ratio is also changing rapidly in both the ionizing continuum and, to a lesser extent, the non-ionizing UV continuum. Therefore, flux limited surveys are highly biased toward selecting galaxies in the burst phase and very deep observations are required to detect all dwarf galaxies at a given stellar mass. Second, we show that a $\log_{10}[\nu L_{\nu}(1500{\rm \AA})/L_{{\rm H}\alpha}]>2.5$ implies a very recent quenching of star formation and can be used as evidence of stellar feedback regulating star formation. Third, we show that the ionizing continuum can be significantly higher than when assuming a constant SFH, which can affect interpretation of nebular emission line equivalent widths and direct ionizing continuum detections. Finally, we show that a star formation rate estimate based on continuum measurements only will not trace the rapid changes in star formation and will give the false impression of a star-forming main sequence with low dispersion. In galaxies with M$_{*} < 10^{9}~{\rm M}_{\odot}$, it is important to use tracers of star formation on short time scales, such as the hydrogen Balmer lines, to quantify the dispersion in star formation rates as a function of mass.

Relativistic MOND from Modified Energetics

We begin to investigate the question of what modifications in energy-momentum tensor can yield correct MOND regime. As a starting study, we refrain from insisting on an action principle and focus exclusively on the equations of motion. The present work, despite the absence of an explicit action functional, can be regarded to extend Milgrom’s modified inertia approach to relativistic domain. Our results show that a proper MOND limit arises if energy-momentum tensor is modified to involve determinant of the metric tensor in reference to the flat metric, where the latter is dynamically generated as in gravitational Higgs mechanism. This modified energy-momentum tensor is conserved in both Newtonian and MONDian regimes.

Relativistic MOND from Modified Energetics [Cross-Listing]

We begin to investigate the question of what modifications in energy-momentum tensor can yield correct MOND regime. As a starting study, we refrain from insisting on an action principle and focus exclusively on the equations of motion. The present work, despite the absence of an explicit action functional, can be regarded to extend Milgrom’s modified inertia approach to relativistic domain. Our results show that a proper MOND limit arises if energy-momentum tensor is modified to involve determinant of the metric tensor in reference to the flat metric, where the latter is dynamically generated as in gravitational Higgs mechanism. This modified energy-momentum tensor is conserved in both Newtonian and MONDian regimes.

Ionized gas kinematics of galaxies in the CALIFA survey I: Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems

This work provides an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of this survey for including kinematical criteria for specific studies. From the first 200 galaxies observed by CALIFA, we present the 2D kinematic view of the 177 galaxies satisfying a gas detection threshold. After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component. The main kinematic parameters were directly derived from the radial velocities with no assumptions on the internal motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [OIII] profiles. Most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. 35% of the objects present evidence of a displacement between the photometric and kinematic centers larger than the original spaxel radii. Only 17% of the objects in the sample exhibit kinematic lopsidedness when comparing receding and approaching sides of the velocity fields, but most of them are interacting galaxies exhibiting nuclear activity. Early-type galaxies in the sample present clear photometric-kinematic misaligments. There is evidence of asymmetries in the emission line profiles suggesting the presence of kinematically distinct gaseous components at different distances from the nucleus. This work constitutes the first determination of the ionized gas kinematics of the galaxies observed in the CALIFA survey. The derived velocity fields, the reported kinematic peculiarities and the identification of the presence of several gaseous components might be used as additional criteria for selecting galaxies for specific studies.

Collisional excitation of singly deuterated ammonia NH$_2$D by H$_2$

The availability of collisional rate coefficients with H$_2$ is a pre-requisite for interpretation of observations of molecules whose energy levels are populated under non local thermodynamical equilibrium conditions. In the current study, we present collisional rate coefficients for the NH$_2$D / para–H$_2$($J_2 = 0,2$) collisional system, for energy levels up to $J_\tau = 7_7$ ($E_u$$\sim$735 K) and for gas temperatures in the range $T = 5-300$K. The cross sections are obtained using the essentially exact close–coupling (CC) formalism at low energy and at the highest energies, we used the coupled–states (CS) approximation. For the energy levels up to $J_\tau = 4_2$ ($E_u$$\sim$215 K), the cross sections obtained through the CS formalism are scaled according to a few CC reference points. These reference points are subsequently used to estimate the accuracy of the rate coefficients for higher levels, which is mainly limited by the use of the CS formalism. Considering the current potential energy surface, the rate coefficients are thus expected to be accurate to within 5\% for the levels below $J_\tau = 4_2$, while we estimate an accuracy of 30\% for higher levels.

Collisional excitation of singly deuterated ammonia NH$_2$D by H$_2$ [Replacement]

The availability of collisional rate coefficients with H$_2$ is a pre-requisite for interpretation of observations of molecules whose energy levels are populated under non local thermodynamical equilibrium conditions. In the current study, we present collisional rate coefficients for the NH$_2$D / para–H$_2$($J_2 = 0,2$) collisional system, for energy levels up to $J_\tau = 7_7$ ($E_u$$\sim$735 K) and for gas temperatures in the range $T = 5-300$K. The cross sections are obtained using the essentially exact close–coupling (CC) formalism at low energy and at the highest energies, we used the coupled–states (CS) approximation. For the energy levels up to $J_\tau = 4_2$ ($E_u$$\sim$215 K), the cross sections obtained through the CS formalism are scaled according to a few CC reference points. These reference points are subsequently used to estimate the accuracy of the rate coefficients for higher levels, which is mainly limited by the use of the CS formalism. Considering the current potential energy surface, the rate coefficients are thus expected to be accurate to within 5\% for the levels below $J_\tau = 4_2$, while we estimate an accuracy of 30\% for higher levels.

On the HI-Hole and AGB Stellar Population of the Sagittarius Dwarf Irregular Galaxy

Using two HST/ACS data-sets that are separated by ~2 years has allowed us to derive the relative proper-motion for the Sagittarius dwarf irregular (SagDIG) and reduce the heavy foreground Galactic contamination. The proper-motion decontaminated SagDIG catalog provides a much clearer view of the young red-supergiant and intermediate-age asymptotic giant branch populations. We report the identification of 3 Milky Way carbon-rich dwarf stars, probably belonging to the thin disk, and pointing to the high incidence of this class at low Galactic latitudes. A sub-group of 4 oxygen-rich candidate stars depicts a faint, red extension of the well-defined SagDIG carbon-rich sequence. The origin of these oxygen-rich candidate stars remains unclear, reflecting the uncertainty in the ratio of carbon/oxygen rich stars. SagDIG is also a gas-rich galaxy characterized by a single large cavity in the gas disk (HI-hole), which is offset by ~360 pc from the optical centre of the galaxy. We nonetheless investigate the stellar feedback hypothesis by comparing the proper-motion cleaned stellar populations within the HI-hole with appropriately selected comparison regions, having higher HI densities external to the hole. The comparison shows no significant differences. In particular, the centre of the HI-hole (and the comparison regions) lack stellar populations younger than ~400 Myr, which are otherwise abundant in the inner body of the galaxy. We conclude that there is no convincing evidence that the SagDIG HI-hole is the result of stellar feedback, and that gravitational and thermal instabilities in the gas are the most likely mechanism for its formation.

A bag of tricks: Proper motions of Galactic stars to identify the Hercules ultra-faint dwarf galaxy members

Hercules is the prototype of the ultra-faint dwarf (UFD) galaxies. To date, there are still no firm constraints on its total luminosity, due to the difficulty of disentangling Hercules bona-fide stars from the severe Galactic field contamination. In order to better constrain Hercules properties we aim at removing foreground and background contaminants in the galaxy field using the proper motions of the Milky Way stars and the colour-colour diagram. We have obtained images of Hercules in the rSloan, BBessel and Uspec bands with the Large Binocular Telescope (LBT) and LBC-BIN mode capabilities. The rSloan new data-set combined with data from the LBT archive span a time baseline of about 5 yr, allowing us to measure for the first time proper motions of stars in the Hercules direction. The Uspec data along with existing LBT photometry allowed us to use colour-colour diagram to further remove the field contamination. Thanks to a highly-accurate procedure to derive the rSloan-filter geometric distortion solution for the LBC-red, we were able to measure stellar relative proper motions to a precision of better than 5 mas yr^-1 down to rSloan=22 mag and disentangle a significant fraction (\>90\%) of Milky Way contaminants. We ended up with a sample of 528 sources distributed over a large portion of the galaxy body (0.12 deg^2). Of these sources, 171 turned out to be background galaxies and additional foreground stars, from the analysis of the Uspec – BBessel vs. BBessel – rSloan colour-colour diagram. This leaves us with a sample of 357 likely members of the Hercules UFD. We compared the cleaned colour-magnitude diagram (CMD) with evolutionary models and synthetic CMDs, confirming the presence in Hercules of an old population (t=12\pm 2 Gyr), with a wide spread in metallicity (-3.3\<[Fe/H]\<-1.8).

Counter-Rotating Accretion Discs

Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc co-rotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are $\gtrsim 25$ times larger than those for a disc rotating in one direction with the same viscosity.

Kelvin-Helmholtz Instability of Counter-Rotating Discs

Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc ($r<r_0$) is co-rotating and the outer part is counter-rotating. This work analyzes the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three-dimensional. The nonlinear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result the heated gas will free-fall towards the disc’s center over the surface of the inner disc.

Insights from the Outskirts: Chemical and Dynamical Properties in the outer Parts of the Fornax Dwarf Spheroidal Galaxy

We present radial velocities and [Fe/H] abundances for 340 stars in the Fornax dwarf spheroidal from R~16,000 spectra. The targets have been obtained in the outer parts of the galaxy, a region which has been poorly studied before. Our sample shows a wide range in [Fe/H], between -0.5 and -3.0 dex, in which we detect three subgroups. Removal of stars belonging to the most metal-rich population produces a truncated metallicity distribution function that is identical to Sculptor, indicating that these systems have shared a similar early evolution, only that Fornax experienced a late, intense period of star formation (SF). The derived age-metallicity relation shows a fast increase in [Fe/H] at early ages, after which the enrichment flattens significantly for stars younger than ~8 Gyr. Additionally, the data indicate a strong population of stars around 4 Gyr, followed by a second rapid enrichment in [Fe/H]. A leaky-box chemical enrichment model generally matches the observed relation but does not predict a significant population of young stars nor the strong enrichment at late times. The young population in Fornax may therefore originate from an externally triggered SF event. Our dynamical analysis reveals an increasing velocity dispersion with decreasing [Fe/H] from sigma_sys 7.5 km/s to >14 km/s, indicating an outside-in star formation history in a dark matter dominated halo. The large velocity dispersion at low metallicities is possibly the result of a non-Gaussian velocity distribution amongst stars older than ~8 Gyr. Our sample also includes members from the Fornax GCs H2 and H5. In agreement with past studies we find [Fe/H]=-2.04+-0.04 and a mean radial velocity RV=59.36+-0.31 km/s for H2 and [Fe/H]=-2.02+-0.11 and RV=59.39+-0.44 km/s for H5. Overall, we find large complexity in the chemical and dynamical properties, with signatures that additionally vary with galactocentric distance.

Signatures of warm carbon monoxide in protoplanetary discs observed with Herschel SPIRE

Molecular gas constitutes the dominant mass component of protoplanetary discs. To date, these sources have not been studied comprehensively at the longest far-infrared and shortest submillimetre wavelengths. This paper presents Herschel SPIRE FTS spectroscopic observations toward 18 protoplanetary discs, covering the entire 450-1540 GHz (666-195 $\mu$m) range at R~400-1300. The spectra reveal clear detections of the dust continuum and, in six targets, a significant amount of spectral line emission primarily attributable to $^{12}$CO rotational lines. Other targets exhibit little to no detectable spectral lines. Low signal-to-noise detections also include signatures from $^{13}$CO, [CI] and HCN. For completeness, we present upper limits of non-detected lines in all targets, including low-energy transitions of H2O and CH$^+$ molecules. The ten $^{12}$CO lines that fall within the SPIRE FTS bands trace energy levels of ~50-500 K. Combined with lower and higher energy lines from the literature, we compare the CO rotational line energy distribution with detailed physical-chemical models, for sources where these are available and published. Our 13CO line detections in the disc around Herbig Be star HD 100546 exceed, by factors of ~10-30, the values predicted by a model that matches a wealth of other observational constraints, including the SPIRE $^{12}$CO ladder. To explain the observed $^{12}$CO/$^{13}$CO ratio, it may be necessary to consider the combined effects of optical depth and isotope selective (photo)chemical processes. Considering the full sample of 18 objects, we find that the strongest line emission is observed in discs around Herbig Ae/Be stars, although not all show line emission. In addition, two of the six T Tauri objects exhibit detectable $^{12}$CO lines in the SPIRE range.

Evidence for Large Grains in the Star-forming Filament OMC-2/3

We present a new 3.3 mm continuum map of the OMC-2/3 region. When paired with previously published maps of 1.2mm continuum and NH3-derived temperature, we derive the emissivity spectral index of dust emission in this region, tracking its changes across the filament and cores. We find that the median value of the emissivity spectral index is 0.9, much shallower than previous estimates in other nearby molecular clouds. We find no significant difference between the emissivity spectral index of dust in the OMC-2/3 filament and the starless or protostellar cores. Furthermore, the temperature and emissivity spectral index, beta, are anti-correlated at the 4 sigma level. The low values of the emissivity spectral index found in OMC-2/3 can be explained by the presence of millimeter-sized dust grains in the dense regions of the filaments to which these maps are most sensitive. Alternatively, a shallow dust emissivity spectral index may indicate non-powerlaw spectral energy distributions, significant free-free emission, or anomalous microwave emission. We discuss the possible implications of millimeter-sized dust grains compared to the alternatives.

The NuSTAR View of Nearby Compton-thick AGN: The Cases of NGC 424, NGC 1320 and IC 2560

We present X-ray spectral analyses for three Seyfert 2 active galactic nuclei, NGC 424, NGC 1320, and IC 2560, observed by NuSTAR in the 3-79 keV band. The high quality hard X-ray spectra allow detailed modeling of the Compton reflection component for the first time in these sources. Using quasi-simultaneous NuSTAR and Swift/XRT data, as well as archival XMM-Newton data, we find that all three nuclei are obscured by Compton-thick material with column densities in excess of ~5 x $10^{24}$ cm$^{-2}$, and that their X-ray spectra above 3 keV are dominated by reflection of the intrinsic continuum on Compton-thick material. Due to the very high obscuration, absorbed intrinsic continuum components are not formally required by the data in any of the sources. We constrain the intrinsic photon indices and the column density of the reflecting medium through the shape of the reflection spectra. Using archival multi-wavelength data we recover the intrinsic X-ray luminosities consistent with the broadband spectral energy distributions. Our results are consistent with the reflecting medium being an edge-on clumpy torus with a relatively large global covering factor and overall reflection efficiency of the order of 1%. Given the unambiguous confirmation of the Compton-thick nature of the sources, we investigate whether similar sources are likely to be missed by commonly used selection criteria for Compton-thick AGN, and explore the possibility of finding their high-redshift counterparts.

The stellar-to-halo mass relations of local galaxies segregated by color

We derive the stellar-to-halo mass relations, SHMR, of local blue and red central galaxies separately, as well as the fraction of halos hosting blue/red central galaxies. We find that: 1) the SHMR of central galaxies is segregated by color, with blue centrals having a SHMR above the one of red centrals; at logMh~12, the Ms/Mh ratio of the blue centrals is ~0.05, which is ~1.7 times larger than the value of red centrals. 2) The intrinsic scatters of the SHMRs of red and blue centrals are ~0.14 and ~0.11dex, respectively. The intrinsic scatter of the average SHMR of all central galaxies changes from ~0.20dex to ~0.14dex in the 11.3<logMh<15 range. 3) The fraction of halos hosting blue centrals at Mh=1E11Msun is 87%, but at 2x1E12Msun decays to ~20%, approaching to a few per cents at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is Mh~7x1E11Msun. Our results suggest that the SHMR of central galaxies at large masses is shaped by halo mass quenching (likely through shock virial heating and AGN feedback), but group richness also plays an important role: central galaxies living in less dense environments quenched their star formation later or did not quench it yet. At low masses, processes that delay star formation without invoking too strong supernova-driven outflows could explain the high Ms/Mh ratios of blue centrals as compared to those of the scarce red centrals.

The Milky Way Tomography with SDSS. V. Mapping the Dark Matter Halo

We present robust constraints from the Sloan Digital Sky Survey (SDSS) on the shape and distribution of the dark matter halo within the Milky Way (MW). Using the number density distribution and kinematics of SDSS halo stars, we probe the dark matter distribution to heliocentric distances exceeding 10 kpc and galactocentric distances exceeding 20 kpc. Our analysis utilizes Jeans equations to generate two-dimensional acceleration maps throughout the volume; this approach is thoroughly tested on a cosmologically derived N-body+SPH simulation of a MW-like galaxy. We show that the known accelerations (gradients of the gravitational potential) can be successfully recovered in such a realistic system. Leveraging the baryonic gravitational potential derived by Bovy & Rix (2013), we show that the gravitational potential implied by the SDSS observations cannot be explained, assuming Newtonian gravity, by visible matter alone: the gravitational force experienced by stars at galactocentric distances of 20 kpc is as much as three times stronger than what can be attributed to purely visible matter. We also show that the SDSS data provide a strong constraint on the shape of the dark matter halo potential. Within galactocentric distances of 20 kpc, the dark matter halo potential is well described as an oblate halo with axis ratio qDM=0.7+/-0.1; this corresponds to an axis ratio qDM=0.4+/-0.1 for the dark matter density distribution. Because of our precise two-dimensional measurements of the acceleration of the halo stars, we can reject several MOND models as an explanation of the observed behavior.

Does the stellar distribution flare? A comparison of stellar scale heights with LAB HI data

The question, whether the stellar populations in the Milky Way take part in flaring of the scale heights as observed for the HI gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach at large galactocentric distances high altitudes that are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with HI data from the Leiden/Argentine/Bonn (LAB) survey. Within the systemic and statistical uncertainties we find a good agreement between both.

NuSTAR Reveals the Comptonizing Corona of the Broad-Line Radio Galaxy 3C 382

Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of $\Gamma=1.68^{+0.03}_{-0.02}$, while the photon-index of the higher flux spectrum is $\Gamma=1.78^{+0.02}_{-0.03}$. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from $kT_e=330\pm 30$ keV in the low flux data to $231^{+50}_{-88}$ keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts $\sim 10$% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe K$\alpha$ line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.

LOFAR observations of PSR B0943+10: profile evolution and discovery of a systematically changing profile delay in Bright mode

We present broadband, low-frequency (25-80 MHz and 110-190 MHz) LOFAR observations of PSR B0943+10, with the goal of better illuminating the nature of its enigmatic mode-switching behaviour. This pulsar shows two relatively stable states: a Bright (B) and Quiet (Q) mode, each with different characteristic brightness, profile morphology, and single-pulse properties. We model the average profile evolution both in frequency and time from the onset of each mode, and highlight the differences between the two modes. In both modes, the profile evolution can be well explained by radius-to-frequency mapping at altitudes within a few hundred kilometres of the stellar surface. If both B and Q-mode emission originate at the same magnetic latitude, then we find that the change of emission height between the modes is less than 6%. We also find that, during B-mode, the average profile is gradually shifting towards later spin phase and then resets its position at the next Q-to-B transition. The observed B-mode profile delay is frequency-independent (at least from 25-80 MHz) and asymptotically changes towards a stable value of about 0.004 in spin phase by the end of mode instance, much too large to be due to changing spin-down rate. Such a delay can be interpreted as a gradual movement of the emission cone against the pulsar’s direction of rotation, with different field lines being illuminated over time. Another interesting explanation is a possible variation of accelerating potential inside the polar gap. This explanation connects the observed profile delay to the gradually evolving subpulse drift rate, which depends on the gradient of the potential across the field lines.

Estimating masses of dwarf spheroidal galaxies

Precise measurements of mass in dark matter dominated dwarf spheroidal galaxies are of great importance for testing the theories of structure formation. We use $N$-body simulations of the tidal evolution of a dwarf galaxy orbiting the Milky Way to generate mock kinematical data sets and use them to test the reliability of a simple mass estimator proposed by Wolf et al. The evolution of the initially disky dwarf galaxy embedded in a dark matter halo was traced for 10 Gyr on a rather tight orbit. After about half of the time a dwarf spheroidal galaxy is formed that retains some remnant rotation and a non-spherical shape. Observing the triaxial galaxy along each of its principal axes we measure its half-light radius and the line-of-sight velocity dispersion and use them to estimate the mass. We find that the mass is significantly overestimated when the dwarf is seen along the longest axis of the stellar component and underestimated when observed along the shortest axis. We provide a formula that quantifies the systematic error in the estimated mass with respect to the true one as a function of the galaxy shape and line of sight.

Chemical evolution of galaxies with radiation-driven dust wind

We discuss how the removal of interstellar dust by radiation pressure of stars influences the chemical evolution of galaxies by using a new one-zone chemical evolution models with dust wind. The removal efficiency of an element (e.g., Fe, Mg, and Ca) through radiation-driven dust wind in a galaxy is assumed to depend both on the dust depletion level of the element in interstellar medium and the total luminosity of the galaxy in the new model. We particularly focus on the time evolution of [alpha/Fe] and its dependence on model parameters for dust wind in this study. The principal results are as follows. The time evolution of [Ca/Fe] is significantly different between models with and without dust wind in the sense that [Ca/Fe] can be systematically lower in the models with dust wind. The time evolution of [Mg/Fe], on the other hand, can not be so different between the models with and without dust wind owing to the lower level of dust depletion for Mg. As a result of this, [Mg/Ca] can be systematically higher in the models with dust wind. We compare these results with the observed elemental features of stars in the Large Magellanic Cloud (LMC), because a growing number of observational studies on [alpha/Fe] for the LMC have been recently accumulated for a detailed comparison. Based on the present new results, we also discuss the origins of [alpha/Fe] in the Fornax dwarf galaxy and elliptical galaxies in the context of radiation-driven dust wind.

HST Imaging of Fading AGN Candidates I: Host-Galaxy Properties and Origin of the Extended Gas

We present narrow- and medium-band HST imaging, with supporting data, for 8 galaxies hosting fading AGN. These are selected to have AGN-ionized gas projected >10 kpc from the nucleus, and a significant shortfall of ionizing radiation, indicating fading of the AGN on ~50,000-year timescales. This paper deals with the host-galaxy properties and origin of the gas. In every galaxy, we identify evidence of ongoing or past interactions. Several show multiple dust lanes in different orientations, broadly fit by differentially precessing disks of accreted material. The host systems are of early Hubble type, with one S0 and one SB0 galaxy. The gas, generally of low metallicity and lying near the galaxies’ rotation curves, is consistent with an external tidal origin, although the ionized gas and stellar tidal features do not always match closely. Unlike the case in many radio-loud AGN, these clouds are kinematically quiet and generally follow organized rotation curves. [O III]/H-alpha ratios often trace distinct ionization cones. We find only a few sets of young star clusters potentially triggered by AGN outflows. In UGC 7342 and UGC 11185, multiple luminous star clusters are seen just within the projected ionization cones, potentially marking star formation triggered by outflows. In some regions, lack of a strong correlation between H-alpha surface brightness and ionization parameter indicates unresolved fine structure. Together with thin coherent filaments spanning several kpc, persistence of these structures over their orbital lifetimes may require a role for magnetic confinement. Overall, we find that the fading AGN occur in interacting and merging systems, that the extended ionized gas is composed of tidal debris rather than galactic winds, and that these host systems are bulge-dominated and show no strong evidence of triggered star formation in luminous clusters. (Abridged)

Observational Signatures of Galactic Winds Powered by Active Galactic Nuclei

We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended 1-10 keV X-ray emission of 10^(41-44) erg/s, significantly in excess of the spatially extended X-ray emission associated with normal star forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio quiet quasars should have a radio luminosity comparable to or in excess of the far infrared-radio correlation of normal star forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations between radio luminosity and the kinematics of AGN narrow-line regions in radio quiet quasars.

Chemodynamics of a Simulated Disc Galaxy: Initial Mass Functions and SNIa Progenitors

We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L* galaxy. We use nine realisations of the same initial conditions with different stellar Initial Mass Functions (IMFs), mass limits for type-II and type-Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these sub-grid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 Msun are required to match low metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution knee in [O/Fe]-[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions, are more alpha-rich and metal poor with age.

The behavior of the pitch angle of spiral arms depending on optical wavelength

Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

Spectroscopy of the three distant Andromedan satellites Cassiopeia III, Lacerta I, and Perseus I

We present Keck II/DEIMOS spectroscopy of the three distant dwarf galaxies of M31 Lacerta I, Cassiopeia III, and Perseus I, recently discovered within the Pan-STARRS1 3\pi imaging survey. The systemic velocities of the three systems (v_{r,helio} = -198.4 +/- 1.1 km/s, -371.6 +/- 0.7 km/s, and -326 +/- 3 km/s, respectively) confirm that they are satellites of M31. In the case of Lacerta I and Cassiopeia III, the high quality of the data obtained for 126 and 212 member stars, respectively, yields reliable constraints on their global velocity dispersions (\sigma_{vr} = 10.3 +/- 0.9 km/s and 8.4 +/- 0.6 km/s, respectively), leading to dynamical-mass estimates for both of ~4×10^7 Msun within their half-light radius. These translate to V-band mass-to-light ratios of 15^{+12}_{-9} and 8^{+9}_{-5} in solar units. We also use our spectroscopic data to determine the average metallicity of the 3 dwarf galaxies ([Fe/H] = -2.0 +/- 0.1, -1.7 +/- 0.1, and -2.0 +/- 0.2, respectively). All these properties are typical of dwarf galaxy satellites of Andromeda with their luminosity and size.

An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set

We present results of an all-sky search in the Parkes Pulsar Timing Array (PPTA) Data Release 1 data set for continuous gravitational waves (GWs) in the frequency range from $5\times 10^{-9}$ to $2\times 10^{-7}$ Hz. Such signals could be produced by individual supermassive binary black hole systems in the early stage of coalescence. We phase up the pulsar timing array data set to form, for each position on the sky, two data streams that correspond to the two GW polarizations and then carry out an optimal search for GW signals on these data streams. Since no statistically significant GWs were detected, we place upper limits on the intrinsic GW strain amplitude $h_0$ for a range of GW frequencies. For example, at $10^{-8}$ Hz our analysis has excluded with $95\%$ confidence the presence of signals with $h_0\geqslant 1.7\times 10^{-14}$. Our new limits are about a factor of four more stringent than those of Yardley et al. (2010) based on an earlier PPTA data set and a factor of two better than those reported in the recent Arzoumanian et al. (2014) paper. We also present PPTA directional sensitivity curves and find that for the most sensitive region on the sky, the current data set is sensitive to GWs from circular supermassive binary black holes with chirp masses of $10^{9} M_{\odot}$ out to a luminosity distance of about 100 Mpc. Finally, we set an upper limit of $4 \times 10^{-3} {\rm{Mpc}}^{-3} {\rm{Gyr}}^{-1}$ at $95\%$ confidence on the coalescence rate of nearby ($z \lesssim 0.1$) supermassive binary black holes in circular orbits with chirp masses of $10^{10}M_{\odot}$.

An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set [Cross-Listing]

We present results of an all-sky search in the Parkes Pulsar Timing Array (PPTA) Data Release 1 data set for continuous gravitational waves (GWs) in the frequency range from $5\times 10^{-9}$ to $2\times 10^{-7}$ Hz. Such signals could be produced by individual supermassive binary black hole systems in the early stage of coalescence. We phase up the pulsar timing array data set to form, for each position on the sky, two data streams that correspond to the two GW polarizations and then carry out an optimal search for GW signals on these data streams. Since no statistically significant GWs were detected, we place upper limits on the intrinsic GW strain amplitude $h_0$ for a range of GW frequencies. For example, at $10^{-8}$ Hz our analysis has excluded with $95\%$ confidence the presence of signals with $h_0\geqslant 1.7\times 10^{-14}$. Our new limits are about a factor of four more stringent than those of Yardley et al. (2010) based on an earlier PPTA data set and a factor of two better than those reported in the recent Arzoumanian et al. (2014) paper. We also present PPTA directional sensitivity curves and find that for the most sensitive region on the sky, the current data set is sensitive to GWs from circular supermassive binary black holes with chirp masses of $10^{9} M_{\odot}$ out to a luminosity distance of about 100 Mpc. Finally, we set an upper limit of $4 \times 10^{-3} {\rm{Mpc}}^{-3} {\rm{Gyr}}^{-1}$ at $95\%$ confidence on the coalescence rate of nearby ($z \lesssim 0.1$) supermassive binary black holes in circular orbits with chirp masses of $10^{10}M_{\odot}$.

Herschel observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium

Long-duration gamma-ray bursts (GRBs) are indisputably related to star formation, and their vast luminosity in gamma rays pin-points regions of star formation independent of galaxy mass. As such, GRBs provide a unique tool for studying star forming galaxies out to high-z independent of luminosity. Most of our understanding of the properties of GRB hosts (GRBHs) comes from optical and near-infrared (NIR) follow-up observations, and we therefore have relatively little knowledge of the fraction of dust-enshrouded star formation that resides within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of dust along the line of sight to the afterglow through the host galaxy, and these GRBs tend to reside within redder and more massive galaxies than GRBs with optically bright afterglows. In this paper we present Herschel observations of five GRBHs with evidence of being dust-rich, targeted to understand the dust attenuation properties within GRBs better. Despite the sensitivity of our Herschel observations, only one galaxy in our sample was detected (GRBH 070306), for which we measure a total star formation rate (SFR) of ~100Mstar/yr, and which had a relatively high stellar mass (log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample of GRBHs observed with Herschel, it is clear that stellar mass is not the only factor contributing to a Herschel detection, and significant dust extinction along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better tracer of GRBHs with high dust mass. This suggests that the extinguishing dust along the GRB line of sight lies predominantly within the host galaxy ISM, and thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel detections are likely to have been predominantly extinguished by dust within an intervening dense cloud.

Deficient Reasoning for Dark Matter in Galaxies

Astronomers have been using the measured luminosity to estimate the {\em luminous mass} of stars, based on empirically established mass-to-light ratio which seems to be only applicable to a special class of stars—the main-sequence stars—with still considerable uncertainties. Another basic tool to determine the mass of a system of stars or galaxies comes from the study of their motion, as Newton demonstrated with his law of gravitation, which yields the {\em gravitational mass}. Because the luminous mass can at best only represent a portion of the gravitational mass, finding the luminous mass to be different or less than the gravitational mass should not be surprising. Using such an apparent discrepancy as a compelling evidence for the so-called dark matter, which has been believed to possess mysterious nonbaryonic properties and present a dominant amount in galaxies and the universe, seems to be too far a stretch when seriously examining the facts and uncertainties in the measurement techniques. In our opinion, a galaxy with star type distribution varying from its center to edge may have a mass-to-light ratio varying accordingly. With the thin-disk model computations based on measured rotation curves, we found that most galaxies have a typical mass density profile that peaks at the galactic center and decreases rapidly within $\sim 5\%$ of the cut-off radius, and then declines nearly exponentially toward the edge. The predicted mass density in the Galactic disk is reasonably within the reported range of that observed in interstellar medium. This leads us to believe that ordinary baryonic matter can be sufficient for supporting the observed galactic rotation curves; speculation of large amount of non-baryonic matter may be based on an ill-conceived discrepancy between gravitational mass and luminous mass which appears to be unjustified.

The Shape of X-ray Cavities in Galaxy Clusters: Effects of Jet Properties and Viscosity

X-ray observations of galaxy clusters have detected numerous X-ray cavities, evolved from the interaction of AGN jets with the intracluster medium (ICM) and providing compelling evidence for the importance of mechanical AGN feedback. Here we argue for the physical importance of the cavity shape, and particularly radial elongation $\tau$ defined as the ratio of the semi-major axis along the jet direction to that along the azimuthal direction. Using a large suite of hydrodynamic simulations, we study how the cavity shape is affected by various jet parameters and the ICM viscosity. Our simulations successfully reproduce two observed types of cavities elongated along either the azimuthal ($\tau\leq1$; type I) or jet direction ($\tau>1$; type II). We find that viscosity does not significantly affect the shapes of young cavities, and $\tau$ increases with the jet density, velocity, and duration, but decreases with the jet energy density and radius. To disentangle these parameters, we suggest to study the variation of the cavity’s azimuthal length along the jet axis. In our jet model, bottom-broad type-I cavities are produced by jets with low density and high energy density, while top-broad type-II cavities are produced by jets with high density and low energy density. Consistent with previous studies of initially static cavities, the long-term evolution of cavities directly created by jets is also significantly affected by viscosity, which helps suppress surface instabilities. We encourage observers to study the shapes of X-ray cavities, which may shed new insights on the properties of AGN jets and the ICM viscosity level.

Tidal evolution of disky dwarf galaxies: prograde versus retrograde orbits

The formation of dwarf spheroidal galaxies in the Local Group from disky progenitors via tidal interaction with a bigger host is one of the most promising scenarios of their origin. Using N-body simulations we study the process by following the evolution of a disky dwarf orbiting a Milky Way-like host. We focus on the effect of the orientation of the dwarf galaxy disk’s angular momentum with respect to the orbital one. We find a strong dependence of the efficiency of the transformation from a disk to a spheroid on the disk orientation. The effect is strongest for the exactly prograde and weakest for the exactly retrograde orbit. In the prograde case the stellar component forms a strong bar and remains prolate until the end of the evolution, while its rotation is very quickly replaced by random motions of the stars. In the retrograde case the dwarf remains oblate, does not form a bar and loses rotation very slowly. Our results suggest that resonant effects are the most important mechanism underlying the evolution while tidal shocking plays only a minor role.

Radiation pressure confinement - IV. Application to broad absorption line outflows

A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000 – 10,000 km/s. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor $f<10^{-3}$. What produces such a small $f$? Here we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times $10^{22}$ cm$^{-2}$, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have $L/L_{\rm Edd} \gtrsim 0.1$.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^