Recent Postings from Galactic

MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic study of the archetypal galaxy ESO137-001

We present MUSE observations of ESO137-001, a spiral galaxy infalling towards the center of the massive Norma cluster at z~0.0162. During the high-velocity encounter of ESO137-001 with the intracluster medium, a dramatic ram-pressure stripping event gives rise to an extended gaseous tail, traced by our MUSE observations to >30 kpc from the galaxy center. By studying the H-alpha surface brightness and kinematics in tandem with the stellar velocity field, we conclude that ram pressure has completely removed the interstellar medium from the outer disk, while the primary tail is still fed by gas from the galaxy center. Gravitational interactions do not appear to be a primary mechanism for gas removal. The stripped gas retains the imprint of the disk rotational velocity to ~20 kpc downstream, offering evidence that ESO137-001 is fast moving along a radial orbit in the plane of the sky. Beyond ~20 kpc, a greater degree of turbulence is seen, with velocity dispersion up to >100 km/s. For a model-dependent infall velocity of ~3000 km/s, we conclude that the transition from laminar to turbulent flow in the tail occurs on timescales of ~6.5 Myr. Our work demonstrates the terrific potential of MUSE for detailed studies of how ram-pressure stripping operates on small scales, providing a deep understanding of how galaxies interact with the dense plasma of the cluster environment.

No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 – whether violent disk instabilities or secular processes – are as efficient in smooth galaxies as they are in clumpy galaxies.

Analysis of Sunyaev-Zel'dovich Effect Mass-Observable Relations using South Pole Telescope Observations of an X-ray Selected Sample of Low Mass Galaxy Clusters and Groups

(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$\sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.

A correlation between the amount of dark matter in elliptical galaxies and their shape

We discuss the correlation between the dark matter content of elliptical galaxies and their ellipticities. We then explore a mechanism for which the correlation would emerge naturally. Such mechanism leads to identifying the dark matter particles to gravitons. A similar mechanism is known in Quantum Chromodynamics (QCD) and is essential to our understanding of the mass and structure of baryonic matter.

A correlation between the amount of dark matter in elliptical galaxies and their shape [Cross-Listing]

We discuss the correlation between the dark matter content of elliptical galaxies and their ellipticities. We then explore a mechanism for which the correlation would emerge naturally. Such mechanism leads to identifying the dark matter particles to gravitons. A similar mechanism is known in Quantum Chromodynamics (QCD) and is essential to our understanding of the mass and structure of baryonic matter.

Constraints on a charge in the Reissner--Nordstr\"om metric for the black hole at the Galactic Center [Cross-Listing]

Using an algebraic condition of vanishing discriminant for multiple roots of fourth degree polynomials we derive an analytical expression of a shadow size as a function of a charge in the Reissner — Nordstr\"om (RN) metric \cite{Reissner_16,Nordstrom_18}. We consider shadows for negative tidal charges and charges corresponding to naked singularities $q=\mathcal{Q}^2/M^2 > 1$, where $\mathcal{Q}$ and $M$ are black hole charge and mass, respectively, with the derived expression. An introduction of a negative tidal charge $q$ can describe black hole solutions in theories with extra dimensions, so following the approach we consider an opportunity to extend RN metric to negative $\mathcal{Q}^2$, while for the standard RN metric $\mathcal{Q}^2$ is always non-negative. We found that for $q > 9/8$ black hole shadows disappear. Significant tidal charges $q=-6.4$ (suggested by Bin-Nun (2010)) are not consistent with observations of a minimal spot size at the Galactic Center observed in mm-band, moreover, these observations demonstrate that a Reissner — Nordstr\"om black hole with a significant charge $q \approx 1$ provides a better fit of recent observational data for the black hole at the Galactic Center in comparison with the Schwarzschild black hole.

Constraints on a charge in the Reissner--Nordstr\"om metric for the black hole at the Galactic Center [Cross-Listing]

Using an algebraic condition of vanishing discriminant for multiple roots of fourth degree polynomials we derive an analytical expression of a shadow size as a function of a charge in the Reissner — Nordstr\"om (RN) metric \cite{Reissner_16,Nordstrom_18}. We consider shadows for negative tidal charges and charges corresponding to naked singularities $q=\mathcal{Q}^2/M^2 > 1$, where $\mathcal{Q}$ and $M$ are black hole charge and mass, respectively, with the derived expression. An introduction of a negative tidal charge $q$ can describe black hole solutions in theories with extra dimensions, so following the approach we consider an opportunity to extend RN metric to negative $\mathcal{Q}^2$, while for the standard RN metric $\mathcal{Q}^2$ is always non-negative. We found that for $q > 9/8$ black hole shadows disappear. Significant tidal charges $q=-6.4$ (suggested by Bin-Nun (2010)) are not consistent with observations of a minimal spot size at the Galactic Center observed in mm-band, moreover, these observations demonstrate that a Reissner — Nordstr\"om black hole with a significant charge $q \approx 1$ provides a better fit of recent observational data for the black hole at the Galactic Center in comparison with the Schwarzschild black hole.

Multiwavelength study of the radio emission from a tight galaxy pair Arp 143

We present results of the recent low-frequency radio observations of a tight galaxy pair Arp 143 at 234 and 612 MHz. These data are analysed together with the archive data at 1490, 4860, 8440, and 14940 MHz. From the analysis of the radio emission we derive constraints on the age of the radio emitting structures as well as on the properties of their magnetic field. We show that the collisional ring of NGC 2445 hosts strong magnetic fields (reaching 12 $\mu$G in its northwestern part) manifesting as a steep–spectrum, nonthermal radiation at radio frequencies. The spectral age of this structure is higher than estimates derived for the star-forming regions from the H$\alpha$ distribution, suggesting that the radio emission might have a different origin. The galactic core is of a very young spectral age, suggesting an ongoing starburst activity. Additionally we identify a possible ridge of emission between the ring galaxy and its elliptical companion NGC 2444.

The SAMI Galaxy Survey: instrument specification and target selection

The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope (AAT) in a 3-year survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12, and 14.5 hours, and cover a total of 144 square degrees (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2dFGRS and SDSS and photometry in regions covered by the Sloan Digital Sky Survey (SDSS) and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes r$_{pet}$ < 19.4, stellar masses $10^{7} – 10^{12}$ M$_{sol}$, and environments from isolated field galaxies through groups to clusters of $10^{15}$ M$_{sol}$.

The observed spiral structure of the Milky Way

The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7-GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. We update the catalogs of Galactic HII regions, GMCs, and 6.7-GHz methanol masers, and then outline the spiral structure of the Milky Way. We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7-GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, $R_0$ = 8.5 kpc and $\Theta_0$ = 220 km s$^{-1}$, and the most recent updated values of $R_0$ = 8.3 kpc and $\Theta_0$ = 239 km s$^{-1}$, after we modified the velocities of tracers with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers. The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. The four-arm model provides a better match to the observed tangential directions of spiral arms, and is consistent with the two-fold symmetry of the Galaxy structure. A model of polynomial-logarithmic spirals not only delineates the tracer distribution but also matches the observed tangential directions.

A Multi-wavelength Survey of AGN in Massive Clusters: AGN Distribution and Host Galaxy Properties

We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi- wavelength surveys covering regions centered on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. AGN host galaxies also show a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the "green valley" between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star-formation in the hosts. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts. This may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy than the intracluster medium and/or local galaxy environment.

Measurement of Galaxy Clustering at z~7.2 and the Evolution of Galaxy Bias from 3.8<z<8 in the XDF, GOODS-S AND GOODS-N

Lyman-Break Galaxy (LBG) samples observed during reionization ($z\gtrsim6$) with Hubble Space Telescope’s Wide Field Camera 3 are reaching sizes sufficient to characterize their clustering properties. Using a combined catalog from the Hubble eXtreme Deep Field and CANDELS surveys, containing $N=743$ LBG candidates at z>6.5 at a mean redshift of $z=7.2$, we detect a clear clustering signal in the angular correlation function (ACF) at $\sim4\sigma$, corresponding to a real-space correlation length $r_{0}=6.7^{+0.9}_{-1.0}h^{-1}$cMpc. The derived galaxy bias $b=8.6^{+0.9}_{-1.0}$ is that of dark-matter halos of $M=10^{11.1^{+0.2}_{-0.3}}$M$_{\odot}$ at $z=7.2$, and highlights that galaxies below the current detection limit ($M_{AB}\sim-17.7$) are expected in lower-mass halos ($M\sim10^{8}-10^{10.5}$M$_{\odot}$). We compute the ACF of LBGs at $z\sim3.8-z\sim5.9$ in the same surveys. A trend of increasing bias is found from $z=3.8$ ($b\sim3.0$) to $z=7.2$ ($b\sim8.6$), broadly consistent with galaxies at fixed luminosity being hosted in dark-matter halos of similar mass at $4<z<6$, followed by a slight rise in halo masses at $z\sim7$ ($\sim2\sigma$ confidence). Separating the data at the median luminosity of the $z=7.2$ sample ($M_{UV}=-19.4$) shows higher clustering at $z=5.9$ for bright galaxies ($r_{0}=5.5^{+1.4}_{-1.5}h^{-1}$cMpc, $b=6.2^{+1.2}_{-1.5}$) compared to faint galaxies ($r_{0}=1.9^{+1.1}_{-1.0}h^{-1}$cMpc, $b=2.7\pm1.2$) implying a constant mass-to-light ratio $\frac{dlogM}{dlogL}\sim1.2^{+1.8}_{-0.8}$. A similar trend is present in the $z=7.2$ sample with larger uncertainty. Finally, our bias measurements allow us to investigate the fraction of dark-matter halos hosting UV-bright galaxies (the duty-cycle, $\epsilon_{DC}$). At $z=7.2$ values near unity are preferred, which may be explained by the shortened halo assembly time at high-redshift.

Evidence from the Very Long Baseline Array that J1502SE/SW are Double Hotspots, not a Supermassive Binary Black Hole

SDSS J150243.09+111557.3 is a merging system at z = 0.39 that hosts two confirmed AGN, one unobscured and one dust-obscured, offset by several kiloparsecs. Deane et al. recently reported evidence from the European VLBI Network (EVN) that the dust-obscured AGN exhibits two flat-spectrum radio sources, J1502SE/SW, offset by 26 mas (140 pc), with each source being energized by its own supermassive black hole (BH). This intriguing interpretation of a close binary BH was reached after ruling out a double-hotspot scenario, wherein both hotspots are energized by a single, central BH, a configuration occuring in the well-studied Compact Symmetric Objects. When observed with sufficient sensitivity and resolution, an object with double hotspots should have an edge-brightened structure. We report evidence from the Very Long Baseline Array (VLBA) for just such a structure in an image of the obscured AGN with higher sensitivity and resolution than the EVN images. We thus conclude that a double-hotspot scenario should be reconsidered as a viable interpretation for J1502SE/SW, and suggest further VLBA tests of that scenario. A double-hotspot scenario could have broad implications for feedback in obscured AGNs. We also report a VLBA detection of high-brightness-temperature emssion from the unobscured AGN that is offset several kiloparsecs from J1502SE/SW.

An extremely low gas-to-dust ratio in the dust-lane lenticular galaxy NGC 5485

Evidence is mounting that a significant fraction of the early-type galaxy population contains substantial reservoirs of cold interstellar gas and dust. We investigate the gas and dust in NGC 5485, an early-type galaxy with a prominent minor-axis dust lane. Using new Herschel PACS and SPIRE imaging data, we detect 3.8 x 10^6 Msun of cool interstellar dust in NGC 5485, which is in stark contrast with the non-detection of the galaxy in sensitive HI and CO observations from the ATLAS3D consortium. The resulting gas-to-dust ratio upper limit is Mgas/Md < 14.5, almost an order of magnitude lower than the canonical value for the Milky Way. We scrutinize the reliability of the dust, atomic gas and molecular gas mass estimates, but these do not show systematic uncertainties that can explain the extreme gas-to-dust ratio. Also a warm or hot ionized gas medium does not offer an explanation. A possible scenario could be that NGC 5485 merged with an SMC-type metal-poor galaxy with a substantial CO-dark molecular gas component and that the bulk of atomic gas was lost during the interaction, but it remains to be investigated whether such a scenario is possible.

Using Red Clump Stars to Decompose the Galactic Magnetic Field with Distance

A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry, however the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line of sight structure of the sky-projected Galactic magnetic field. Two example lines-of-sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. toward the Outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. toward the Inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams to an extended tilted ring, disc and bulge [Replacement]

We study the buildup of angular momentum (AM) in high-z galaxies using zoom-in hydro-cosmological simulations. The disc AM originates in a few co-planar streams of cold gas and merging galaxies tracing filaments of the cosmic web and undergo 4 phases of evolution. In phase I, outside the halo virial radius (Rv), the elongated streams gain AM by tidal torques with a specific AM (sAM) ~1.7 times that of the dark matter (DM) due to the gas’ higher quadrupole moment. This AM is expressed as stream impact parameters, from ~0.3Rv to occasional counter rotation. In phase II, in the outer halo, while the incoming DM mixes with the existing halo of lower sAM to a spin $\lambda_{\rm dm}\sim0.04$, the cold streams transport the AM to the inner halo such that their spin in the halo is $\sim3\lambda_{\rm dm}$. In phase III, near pericenter, the streams dissipate and form a non-uniform, rotating ring extending to ~0.3Rv and tilted relative to the inner disc. Torques exerted partly by the disc make the gas ring lose AM, spiral in, and settle into the disc within one orbit. The ring is observable with 30% probability as a damped Lyman-$\alpha$ absorber. In phase IV, within the disc, torques associated with violent disc instability drive AM out and baryons in to a central bulge, while outflows remove low-spin gas. Despite the different AM histories of gas and dark matter, the spin of the disc is only moderately smaller than that of the DM halo.

Four phases of angular-momentum buildup in high-z galaxies:from cosmic-web streams to an extended tilted ring, disc and bulge

We study the buildup of angular momentum (AM) in high-z galaxies using zoom-in hydro-cosmological simulations. The disc AM originates in a few co-planar streams of cold gas and merging galaxies tracing filaments of the cosmic web and undergo 4 phases of evolution. In phase I, outside the halo virial radius (Rv), the elongated streams gain AM by tidal torques with a specific AM (sAM) ~1.7 times that of the dark matter (DM) due to the gas’ higher quadrupole moment. This AM is expressed as stream impact parameters, from ~0.3Rv to occasional counter rotation. In phase II, in the outer halo, while the incoming DM mixes with the existing halo of lower sAM to a spin $\lambda_{\rm dm}\sim0.04$, the cold streams transport the AM to the inner halo such that their spin in the halo is $\sim3\lambda_{\rm dm}$. In phase III, near pericenter, the streams dissipate and form a non-uniform, rotating ring extending to ~0.3Rv and tilted relative to the inner disc. Torques exerted partly by the disc make the gas ring lose AM, spiral in, and settle into the disc within one orbit. The ring is observable with 30% probability as a damped Lyman-$\alpha$ absorber. In phase IV, within the disc, torques associated with violent disc instability drive AM out and baryons in to a central bulge, while outflows remove low-spin gas. Despite the different AM histories of gas and dark matter, the spin of the disc is only moderately smaller than that of the DM halo.

Scalar Field Dark Matter mass model and evolution of rotation curves for Lsb galaxies

We study the evolution of gas rotation curves within the scalar field dark matter (SFDM) model. In this model the galactic haloes are astronomical Bose-Einstein Condensate drops of scalar field. These haloes are characterized by a constant-density core and are consistent with observed rotation curves of dark matter dominated galaxies, a missing feature in CDM haloes resulting from DM-only simulations. We add the baryonic component to the SFDM haloes and simulate the evolution of the dark matter tracer in a set of grid-based hydrodynamic simulations aimed to analyse the evolution of the rotation curves and the gas density distribution in the case of dark matter dominated galaxies. Previous works had found that when considering an exact analytic solution for a static SF configuration, the free parameters of the model allows for good fits to the rotation curves, we confirm that in our simulations but now taking into account the evolution of the baryonic component in a static dark matter and stellar disk potential. Including live gas is a step forward from the previous work using SFDM, as for example, the rotation velocity of the gas is not always exactly equal to the circular velocity of a test particle on a circular orbit. Contrasting with the data the cored mass model presented here is preferred instead of a cuspy one.

The EAGLE project: Simulating the evolution and assembly of galaxies and their environments

We introduce the Virgo Consortium’s EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to $\lesssim 0.2$ dex over the full mass range, $10^8 < M_*/M_\odot \lesssim 10^{11}$, a level of agreement close to that attained by semi-analytic models, and unprecedented for hydrodynamical simulations. We compare our results to a representative set of low-redshift observables not considered in the calibration, and find good agreement with the observed galaxy specific star formation rates, passive fractions, Tully-Fisher relation, total stellar luminosities of galaxy clusters, and column density distributions of intergalactic CIV and OVI. While the mass-metallicity relations for gas and stars are consistent with observations for $M_* \gtrsim 10^9 M_\odot$, they are insufficiently steep at lower masses. The gas fractions and temperatures are too high for clusters of galaxies, but for groups these discrepancies can be resolved by adopting a higher heating temperature in the subgrid prescription for AGN feedback. EAGLE constitutes a valuable new resource for studies of galaxy formation.

Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H]<-2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduces an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.

Star Formation at $4 < z < 6$ From the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH)

Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) observations on the 1.8 deg$^2$ Cosmological Evolution Survey (COSMOS) we estimate the masses and star formation rates of 3398 $M_*>10^{10}M_\odot $ star-forming galaxies at $4 < z < 6$ with a substantial population up to $M_* \gtrsim 10^{11.5} M_\odot$. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the "main sequence" of star-forming galaxies) extends to $z\sim6$. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to $z \sim 6$ or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.

Do magnetic fields influence gas rotation in galaxies?

We aim to estimate the contribution of the radial component of the Lorentz force to the gas rotation in several types of galaxies. Using typical parameters for the exponential scale of synchrotron emission and the scale length of HI gas, under the assumption of equipartition between the energies of cosmic rays and total magnetic fields, we derive the Lorentz force and compare it to the gravitational force in the radial component of the momentum equation. We distinguish the different contributions between the large-scale and the small-scale turbulent fields by Reynolds averaging. We compare these findings with a dynamical dynamo model. We find a possible reduction of circular gas velocity in the very outer parts and an increase inside a radius of four times the synchrotron scale length. Sufficiently localized radial reversals of the magnetic field may cause characteristic modulations in the gas rotation curve with typical amplitudes of 10-20 km/s. It is unlikely that the magnetic field contributes to the flat rotation in the outer parts of galaxies. If anything, it will \emph{impede} the gravitationally supported rotation, demanding for an even higher halo mass to explain the observed rotation profile. We speculate that this may have consequences for ram pressure stripping and the truncation of the stellar disc.

The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology

The wealth of incoming and future cosmological observations will allow us to map out the structure and evolution of the observable universe to an unprecedented level of precision. Among these observations is the weak gravitational lensing of galaxies, e.g., cosmic shear that measures the minute distortions of background galaxy images by intervening cosmic structure. Weak lensing and cosmic shear promise to be a powerful probe of astrophysics and cosmology, constraining models of dark energy, measuring the evolution of structure in the universe, and testing theories of gravity on cosmic scales. However, the intrinsic alignment of galaxies — their shape and orientation before being lensed — poses a great challenge to the use of weak gravitational lensing as an accurate cosmological probe, and has been identified as one of the primary physical systematic biases in cosmic shear studies. Correlations between this intrinsic alignment and the lensing signal can persist even for large physical separations, and isolating the effect of intrinsic alignment from weak lensing is not trivial. A great deal of work in the last two decades has been devoted to understanding and characterizing this intrinsic alignment, which is also a direct and complementary probe of structure formation and evolution in its own right. In this review, we report in a systematic way the state of our understanding of the intrinsic alignment of galaxies, with a particular emphasis on its large-scale impact on weak lensing measurements and methods for its isolation or mitigation. (Abridged)

New Clues to the Cause of Extended Main Sequence Turn-Offs in Intermediate-Age Star Clusters in the Magellanic Clouds

We use the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) to obtain deep, high resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass ($\approx$ $10^4$ $M_{\odot}$) and significantly different core radii, namely NGC2209 and NGC2249. For comparison purposes, we also re-analyzed archival HST images of NGC1795 and IC2146, two other relatively low mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main sequence turnoff (MSTO) regions in NGC2209 and NGC2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC1795 and IC2146 are not. We determine the evolution of the clusters’ masses and escape velocities from an age of 10 Myr to the present age. We find that the differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC2209 and IC2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC2249 and NGC1795). Under this assumption, we find that NGC2209 and NGC2249 have estimated escape velocities $V_{\rm esc}$ $\geq$ 15 km s$^{-1}$ at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have $V_{\rm esc}$ $\leq$ 12 km s$^{-1}$ at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

On the reliability of protostellar disc mass measurements and the existence of fragmenting discs

We couple non-magnetic, hydrodynamical simulations of collapsing protostellar cores with radiative transfer evolutionary models to generate synthetic observations. We then use these synthetic observations to investigate the extent to which a simple method for measuring protostellar disc masses used in the literature recovers the intrinsic masses of the discs formed in the simulations. We evaluate the effects of contamination from the surrounding core, partially resolving out the disc, optical depth, fixed assumed dust temperatures, inclination, and the dust opacity law. We show that the combination of these effects can lead to disc mass underestimates by up to factors of 2-3 at millimeter wavelengths and up to an order of magnitude or larger at submillimeter wavelengths. The optically thin portions of protostellar discs are generally cooler in the Class I stage than the Class 0 stage since Class I discs are typically larger and more optically thick, and thus more shielded. The observed disc mass distribution closely resembles the intrinsic distribution if this effect is taken into account, especially at millimeter wavelengths where optical depth effects are minimized. Approximately 50%-70% of protostellar discs observed to date with this method are consistent with the masses of the gravitationally unstable discs formed in the simulations, suggesting that at least some protostellar discs are likely sufficiently massive to fragment. We emphasize key future work needed to confirm these results, including assembling larger, less biased samples, and using molecular line observations to distinguish between rotationally supported, Keplerian discs and magnetically supported pseudodiscs.

Seeing Red in M32: Constraints on the Stellar Content from Near- and Mid-Infrared Observations and Applications for Studies of More Distant Galaxies

The properties of asymptotic giant branch (AGB) stars in the Local Group galaxy M32 are investigated using ground and space-based observations that span the 1 – 8um wavelength interval, with the goal of demonstrating the utility of infrared observations as probes of stellar content. Comparisons with isochrones indicate that the brightest resolved stars in M32 have ages of a few Gyr, and are younger on average than AGB stars with the same intrinsic brightness in the outer disk of M31. Accounting for stellar variability is shown to be essential for modelling AGB luminosity functions (LFs). Model LFs that assume the star-forming history measured by Monachesi et al. (2012, ApJ, 745, 97) and the variability properties of Galactic AGB stars match both the K and [5.8] LFs of M32. Models also suggest that the slope of the [5.8] LF between M_[5.8] = -8.5 and –10.0 is sensitive to the mix of stellar ages, and a sizeable fraction of the stars in M32 must have an age older than 7 Gyr in order to match the [5.8] LF. The structural properties of M32 in the infrared are also investigated. The effective radii that are computed from near-infrared and mid-infrared isophotes are similar to those measured at visible wavelengths, suggesting that the stellar content of M32 is well-mixed. However, isophotes at radii > 16 arcsec (> 60 parsecs) in the near and mid-infrared are flatter than those at visible wavelengths. The coefficient of the fourth-order cosine term in the fourier expansion of isophotes changes from `boxy’ values at r < 16 arcsec to `disky’ values at r > 48 arcsec in [3.6] and [4.5]. The mid-infrared colors near the center of M32 do not vary systematically with radius, providing evidence of a well-mixed stellar content in this part of the galaxy.

Chemical evolution models: GRB host identification and cosmic dust predictions

The nature of some GRB host galaxies has been investigated by means of chemical evolution models of galaxies of different morphological type following the evolution of the abundances of H, He, C, N, O, $\alpha$-elements, Ni, Fe, Zn, and including also the evolution of dust. By comparing predictions with abundance data, we were able to constrain nature and age of GRB hosts. We also computed a theoretical cosmic dust rate, including stellar dust production, accretion and destruction, under the hypotheses of pure luminosity evolution and strong number density evolution of galaxies. We suggest that one of the three GRB hosts is a massive proto-spheroid catched during its formation, while for the other two the situation is more uncertain, although one could perhaps be a spheroid and the other a spiral galaxy. We estimated the chemical ages of the host galaxies which vary from 15 to 320 Myr. Concerning the cosmic effective dust production rate in an unitary volume of the Universe, our results show that in the case of pure luminosity evolution there is a first peak between redshift $z=8$ and $9$ and another at $z\sim 5$, whereas in the case of strong number density evolution it increases slightly from $z=10$ to $z\sim 2$ and then it decreases down to $z=0$. Finally, we found tha the total cosmic dust mass density at the present time is: $\Omega_{dust} \sim 3.5\cdot 10^{-5}$in the case of pure luminosity evolution and $\Omega_{dust} \sim 7\cdot 10^{-5}$ in the case of number density evolution.

Evolution of Prolate Molecular Clouds at HII Boundaries: I. Formation of fragment-core structures

The evolution of a prolate cloud at an Hii boundary is investigated using Smoothed Particle Hydrodynamics (SPH). The prolate molecular clouds in our investigation are set with their semi-major axis perpendicular to the radiative direction of a plane parallel ionising Extreme Ultraviolet (EUV) flux. Simulations on three high mass prolate clouds reveal that EUV radiation can trigger distinctive high density core formation embedded in a final linear structure. This contrasts with results of the previous work in which only an isotropic Far Ultraviolet (FUV) interstellar background flux was applied. A systematic investigation on a group of prolate clouds of equal mass but different initial densities and geometric shapes finds that the distribution of the cores over the final linear structure changes with the initial conditions of the prolate cloud and the strength of the EUV radiation flux. These highly condensed cores may either scatter over the full length of the final linear structure or form two groups of high density cores at two foci, depending on the value of the ionising radiation penetration depth d_EUV, the ratio of the physical ionising radiation penetration depth to the minor axis of the cloud. Data anlysis on the total mass of the high density cores and the core formation time finds that the potential for EUV radiation triggered star formation efficiency is higher in prolate clouds with shallow ionisation penetration depth and intermediate major to minor axial ratio, for the physical environments investigated. Finally, it is suggested that the various fragment-core structures observed at Hii boundaries may result from the interaction between ionising radiation and pre-existing prolate clouds of different initial geometrical and physical conditions.

Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

(Abridged) In this second paper of a series, we present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of host galaxies from the Sloan Digital Sky Survey (SDSS) in different stages of galaxy-galaxy interaction. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more type Ia SNe, reflecting the change of the specific star formation rate (SFR). The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant host galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the SFRs and morphologies of host galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to AGN activity classes of host galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.

Cold Molecular Gas in Merger Remnants: I. Formation of Molecular Gas Disks

We present < 1 kpc resolution CO imaging study of 37 optically-selected local merger remnants using new and archival interferometric maps obtained with ALMA, CARMA, SMA and PdBI. We supplement a sub-sample with single-dish measurements obtained at the NRO 45 m telescope for estimating the molecular gas mass (10^7 – 10^11 M_sun), and evaluating the missing flux of the interferometric measurements. Among the sources with robust CO detections, we find that 80 % (24/30) of the sample show kinematical signatures of rotating molecular gas disks (including nuclear rings) in their velocity fields, and the sizes of these disks vary significantly from 1.1 kpc to 9.3 kpc. The size of the molecular gas disks in 54 % of the sources is more compact than the K-band effective radius. These small gas disks may have formed from a past gas inflow that was triggered by a dynamical instability during a potential merging event. On the other hand, the rest (46 %) of the sources have gas disks which are extended relative to the stellar component, possibly forming a late-type galaxy with a central stellar bulge. Our new compilation of observational data suggests that nuclear and extended molecular gas disks are common in the final stages of mergers. This finding is consistent with recent major-merger simulations of gas rich progenitor disks. Finally, we suggest that some of the rotation-supported turbulent disks observed at high redshifts may result from galaxies that have experienced a recent major merger.

Planetary nebulae: the universal mass-metallicity relation for Local Group dwarf galaxies and the chemistry of NGC 205

Here we study 16 planetary nebulae (PNe) in the dwarf irregular galaxy NGC 205 by using GMOS@Gemini spectra to derive their physical and chemical parameters. The chemical patterns and evolutionary tracks for 14 of our PNe suggest that there are no type I PNe among them. These PNe have an average oxygen abundance of 12+log(O/H)=8.08$\pm$0.28, progenitor masses of 2-2.5M$_{\odot}$ and thus were born ~1.0-1.7Gyr ago. Our results are in good agreement with previous PN studies in NGC 205. The present 12+log(O/H) is combined with our previous works and with the literature to study the PN metallicity trends of the Local Group (LG) dwarf galaxies, in an effort to establish the PN luminosity- and mass-metallicity relations (LZR and MZR) for the LG dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs). Previous attempts to obtain such relations failed to provide correct conclusions because were based on limited samples (Richer & McCall 1995; Gon\c{c}calves et al. 2007). As far as we are able to compare stellar with nebular metallicities, our MZR is in very good agreement with the slope of the MZR recently obtained for LG dwarf galaxies using spectroscopic stellar metallicities (Kirby et al. 2013). Actually, we found that both dIrr and dSph galaxies follow the same MZR, at variance with the differences claimed in the past. Moreover our MZR is also consistent with the global MZR of star-forming galaxies, which span a wider stellar mass range ($\sim10^6$ – $\sim10^{11}$M$\odot$).

Star formation associated with a large-scale infrared bubble

Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study for a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. The large-scale infrared bubble shows a half-shell morphology at 8 um. H II regions G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J=1-0 components of the three H II regions, we found that the 8 um emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), as well as three H II regions and two small-scale bubbles are found located in the G54.09-0.06 complex, indicating an active massive star-forming region. C18O J=1-0 emission presents four cloud clumps on the northeastern border of H II region G53.54-0.01. Via comparing the spectral profiles of 12CO J=1-0, 13CO J=1-0, and C18O J=1-0 peak at each clump, we found the collected gas in the three clumps, except for the clump coincided with a massive YSO (IRAS 19282+1814). Using the evolutive model of H II region, we derived that the age of H II region G53.54-0.01 is 1.5*10^6 yr. The significant enhancement of several Class I and Class II YSOs around G53.54-0.01 indicates the presence of some recently formed stars, which may be triggered by this H II region through the collect and collapse (CC) process.

Metal distribution in sloshing galaxy clusters: the case of A496

We report results from a detailed study of the sloshing gas in the core of A496. We detect the low temperature/entropy spiral feature found in several cores, we also find that conduction between the gas in the spiral and the ambient medium must be suppressed by more than one order of magnitude with respect to Spitzer conductivity. Intriguingly, while the gas in the spiral features a higher metal abundance than the surrounding medium, it follows the entropy vs metal abundance relation defined by gas lying outside the spiral. The most plausible explanation for this behavior is that the low entropy metal rich plasma uplifted through the cluster atmosphere by sloshing, suffers little heating or mixing with the ambient medium. While sloshing appears to be capable of uplifting significant amounts of gas, the limited heat exchange and mixing between gas in and outside the spiral implies that this mechanism is not at all effective in: 1) permanently redistributing metals within the core region and 2) heating up the coolest and densest gas, thereby providing little or no contribution to staving of catastrophic cooling in cool cores.

The Properties of Lyman Alpha Nebulae: Gas Kinematics from Non-resonant Lines

[Abridged] With VLT/X-shooter, we obtain optical and NIR spectra of six Ly-alpha blobs at z~2.3. Using three measures — the velocity offset between the Lya line and the non-resonant [OIII] or H-alpha line (Dv_Lya), the offset of stacked interstellar metal absorption lines, and the spectrally-resolved [OIII] line profile — we study the kinematics of gas along the line of sight to galaxies within each blob center. These three indicators generally agree in velocity and direction, and are consistent with a simple picture in which the gas is stationary or slowly outflowing at a few hundred km/s from the embedded galaxies. The absence of stronger outflows is not a projection effect: the covering fraction for our sample is limited to <1/8 (13%). The outflow velocities exclude models in which star formation or AGN produce "super" or "hyper" winds of up to ~1000km/s. The Dv_Lya offsets here are smaller than typical of LBGs, but similar to those of compact LAEs. The latter suggests that outflow speed cannot be a dominant factor in driving extended Lya emission. For one Lya blob (CDFS-LAB14), whose Lya profile and metal absorption line offsets suggest no significant bulk motion, we use a simple radiative transfer model to make the first column density measurement of gas in an embedded galaxy, finding it consistent with a DLA system. Overall, the absence of clear inflow signatures suggests that the channeling of gravitational cooling radiation into Lya is not significant over the radii probed here. However, one peculiar system (CDFS-LAB10) has a blueshifted Lya component that is not obviously associated with any galaxy, suggesting either displaced gas arising from tidal interactions among blob galaxies or gas flowing into the blob center. The former is expected in these overdense regions, and the latter might signify the predicted but elusive cold gas accretion along filaments.

Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models

A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low H$\alpha$ emission and high gas fractions that indicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S$^4$G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.

Unbiased water and methanol maser surveys of NGC 1333

We present the results of unbiased 22 GHz H2O water and 44 GHz class I CH3OH methanol maser surveys in the central 7×10 arcmin area of NGC 1333 and two additional mapping observations of a 22 GHz water maser in a ~3x3arcmin area of the IRAS4A region. In the 22 GHz water maser survey of NGC 1333 with sensitivity of sigma~0.3Jy, we confirmed masers toward H2O(B) in the region of HH 7-11 and IRAS4B. We also detected new water masers at ~20arcsec away in the western direction of IRAS4B or ~25arcsec away in the southern direction of IRAS4A. We could not however find young stellar objects or molecular outflows associated with them. They showed two different velocity components of ~0 and ~16 km/s, which are blue- and red-shifted relative to the adopted systemic velocity of ~7 km/s for NGC 1333. They also showed time variabilities in both intensity and velocity from multi-epoch observations and an anti-correlation between the intensities of the blue- and the red-shifted velocity components. We suggest that the unidentified powering source of these masers might be in the earliest evolutionary stage of star formation before the onset of molecular outflows. Finding this kind of water masers is only possible by an unbiased blind survey. In the 44 GHz methanol maser survey with sensitivity of sigma~0.5 Jy, we confirmed masers toward the IRAS4A2 and the eastern shock region of the IRAS2A. Both sources are also detected in 95 and 132 GHz methanol maser lines. In addition, we had new detections of methanol masers at 95 and 132 GHz toward IRAS4B. In terms of the isotropic luminosity, we detected the methanol maser sources brighter than ~5×1025 erg/s from our unbiased survey.

The Spatial Distribution of Satellite Galaxies Within Halos: Measuring the Very Small Scale Angular Clustering of SDSS Galaxies [Replacement]

We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7-320") in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr< -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. 2012 while using different clustering measurements and modeling methodology.

The Spatial Distribution of Satellite Galaxies Within Halos: Measuring the Very Small Scale Angular Clustering of SDSS Galaxies

We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7-320") in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr< -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. 2012 while using different clustering measurements and modeling methodology.

Deep Spectroscopy of the $M_V\sim -14.8$ Host Galaxy of a Tidal Disruption Flare in A1795

A likely tidal disruption of a star by the intermediate-mass black hole (IMBH) of a dwarf galaxy was recently identified in association with Abell 1795. Without deep spectroscopy for this very faint object, however, the possibility of a more massive background galaxy or even a disk-instability flare from a weak AGN could not be dismissed. We have now obtained 8 hours of Gemini spectroscopy which unambiguously demonstrate that the host galaxy is indeed an extremely low-mass $(M_\ast\sim 3\times 10^8\; {\rm M}_{\odot})$ galaxy in Abell 1795, comparable to the least-massive galaxies determined to host IMBHs via other studies. We find that the spectrum is consistent with the X-ray flare being due to a tidal disruption event rather than an AGN flare. We also set improved limits on the black hole mass $({\rm log}[M_{\bullet}/{\rm M}_{\odot}] \sim 5.3 – 5.7)$ and infer a 15-year X-ray variability of a factor of $> 10^4$. The confirmation of this galaxy-black hole system provides a glimpse into a population of galaxies that is otherwise difficult to study, due to the galaxies’ low masses and intrinsic faintness, but which may be important contributors to the tidal disruption rate.

Physical Nature of the [S II]-bright Shell Nebulae N70 and N185

N70 and N185 are two large, $\ge$100 pc in diameter, shell nebulae in the Large Magellanic Cloud (LMC). Their high [S II]/H$\alpha$ ratios rival those of supernova remnants (SNRs), but they are not confirmed as SNRs. To study their physical nature, we have obtained XMM-Newton X-ray observations and high-dispersion long-slit echelle spectroscopic observations of these two nebulae. The X-ray spectra of both nebulae can be well interpreted with an optically thin thermal ($\sim$0.2 keV) plasma with the average LMC abundance in a collisional ionization equilibrium. N70 encompasses the OB association LH114. Although N70 has a modest expansion velocity and essentially thermal radio emission, its diffuse X-ray luminosity, $\sim6.1\times10^{35}$ erg s$^{-1}$, is higher than that from a quiescent superbubble with N70′s density, size, and expansion velocity; thus, N70 is most likely a superbubble that is recently energized by an interior SNR. N185 does not contain any known OB association, and its X-ray luminosity is an order of magnitude lower than expected if it is a quiescent superbubble. N185 has nonthermal radio emission and has high-velocity material expanding at nearly 200 km s$^{-1}$, similar to many known SNRs in the LMC. Its X-ray luminosity, $\sim1.9\times10^{35}$ erg s$^{-1}$, is also consistent with that of an evolved SNR. We therefore suggest that N185 is energized by a recent supernova.

On the nature of star-forming filaments: I. Filament morphologies

We use a suite of high resolution molecular cloud simulations carried out with the moving mesh code Arepo to explore the nature of star-forming filaments. The simulated filaments are identified and categorised from column density maps in the same manner as for recent Herschel observations. When fit with a Plummer-like profile the filaments are in excellent agreement with observations, and have shallow power-law profiles of p~2.2 without the need for magnetic support. The derived filament widths depend on the data range that is fitted. When data within 1 pc of the filament centre is fitted with a Gaussian function, the average FWHM is ~0.3 pc, in agreement with predictions for accreting filaments. However, if the fit is constructed using only data within 0.35 pc of the centre, in order to better match the procedure used to derive filament widths from Herschel observations, the resulting FWHM is only ~0.2 pc. This value is larger than that measured in IC 5146 and Taurus, but is similar to that found in the Planck Galactic Cold Cores and in Cygnus X. The simulated filaments have a range of widths rather than a constant value. When the column density maps are compared to the 3D gas densities, the filaments seen in column density do not belong to a single structure. Instead, they are made up of a network of short ribbon-like sub-filaments reminiscent of those seen in Taurus. The sub-filaments seen in 3D have flattening radii of the order of the Jeans radius, consistent with them being thermally supported. The sub-filaments are pre-existing within the simulated clouds, and are not primarily formed through fragmentation of the larger filament seen in column density. Instead, small filamentary clumps are swept together into a single column density structure by the large-scale collapse of the cloud. This increases the density of the sub-filaments and may induce future star formation within them.

Quenching depends on morphologies: implications from the ultraviolet-optical radial color distributions in Green Valley Galaxies

In this Letter, we analyse the radial UV-optical color distributions in a sample of low redshift green valley (GV) galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation distribute in these galaxies. We find that the dust-corrected $u-r$ colors of early-type galaxies (ETGs) are flat out to $R_{90}$, while the colors turn blue monotonously when $r>0.5R_{50}$ for late-type galaxies (LTGs). More than a half of the ETGs are blue-cored and have remarkable positive NUV$-r$ color gradients, suggesting that their star formation are centrally concentrated; the rest have flat color distributions out to $R_{90}$. The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that $\sim$50 % ETGs have EW(H$\rm \alpha$)$>6.0$ \AA. For the LTGs, 95% of them show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable "blue-cored" and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general picture that quenching first occur in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI.

The SCUBA-2 Cosmology Legacy Survey: the submillimetre properties of Lyman break galaxies at z=3-5

We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infrared Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0×10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.

From the ashes: JVLA observations of water fountain nebula candidates show the rebirth of IRAS 18455+0448

[abridged] The class of water fountain nebulae is thought to represent the stage of the earliest onset of collimated bipolar outflows during the post-Asymptotic Giant Branch phase. They thus play a crucial role in the study of the formation of bipolar Planetary Nebulae (PNe). To date, 14 water fountain nebulae have been identified. The identification of more sources in this unique stage of stellar evolution will enable us to study the origin of bipolar PNe morphologies in more detail. We present the results of seven sources observed with the JVLA that were identified as water fountain candidates in an Effelsberg 100m telescope survey of 74 AGB and early post-AGB stars. We find that our sample of water fountain candidates displays strong variability in their 22 GHz H2O maser spectra. The JVLA observations show an extended bipolar H2O maser outflow for one source, the OH/IR star IRAS 18455+0448. This source was previously classified as a ‘dying’ OH/IR star based on the exponential decrease of its 1612 MHz OH maser and the lack of H2O masers. We therefore also re-observed the 1612, 1665, and 1667 MHz OH masers. We confirm that the 1612 MHz masers have not reappeared and find that the 1665/1667 MHz masers have decreased in strength by several orders of magnitude during the last decade. The OH/IR star IRAS 18455+0448 is confirmed to be a new addition to the class of water fountain nebulae. Its kinematic age is approximately 70 yr, but could be lower, depending on the distance and inclination. Previous observations indicate, with significant uncertainty, that IRAS 18455+0448 has a surprisingly low mass compared to available estimates for other water fountain nebulae. The available historical OH maser observations make IRAS 18455+0448 unique for the study of water fountain nebulae and the launch of post-AGB bipolar outflows…

The Distribution of Satellites Around Central Galaxies in a Cosmological Hydrodynamical Simulation

Observations have shown that the spatial distribution of satellite galaxies is not random, but rather, it is aligned with the major axes of central galaxies. The strength of the alignment is dependent on the properties of both satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of central galaxies. Using hydrodynamical simulations including gas cooling, star formation and feedback, we carry out a study of galaxy alignment and its dependence on galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo, where the shape of central galaxy traces better the dark matter distribution. The dependence of alignment on the color of central galaxies arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.

Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope

We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5-m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6-m Bolshoy Telescope Azimutal’ny (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redhifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.

A volume-limited sample of X-ray galaxy groups and clusters - II. X-ray cavity dynamics

We present the results of our study of a volume-limited sample (z <= 0.071) of 101 X-ray galaxy groups and clusters, in which we explore the X-ray cavity energetics. Out of the 101 sources in our parent sample, X-ray cavities are found in 30 of them, all of which have a central cooling time of less than3 Gyr. New X-ray cavities are detected in three sources. We focus on the subset of sources that have a central cooling time of less than 3 Gyr, whose active galactic nucleus (AGN) duty cycle is approximately 61 percent (30/49). This rises to over 80 percent for a central cooling time of less than 0.5 Gyr. When projection effects and central radio source detection rates are considered, the actual duty cycle is probably much higher. In addition, we show that data quality strongly affects the detection rates of X-ray cavities. After calculating the cooling luminosity and cavity powers of each source with cavities, it is evident that the bubbling process induced by the central AGN has to be, on average, continuous, to offset cooling. We find that the radius of the cavities, r, loosely depends on the ambient gas temperature as T^0.5, above about 1.5 keV, with much more scatter below that temperature. Finally, we show that, at a given location in a group or cluster, larger bubbles travel faster than smaller ones. This means that the bubbles seen at larger distances from cluster cores could be the result of the merging of several smaller bubbles, produced in separate AGN cycles.

Numerical Simulations of a Shock Interacting with Multiple Magnetized Clouds

We present 2D adiabatic magnetohydrodynamic (MHD) simulations of a shock interacting with groups of two or three cylindrical clouds. We study how the presence of a nearby cloud influences the dynamics of this interaction, and explore the resulting differences and similarities in the evolution of each cloud. The understanding gained from this small-scale study will help to interpret the behaviour of systems with many 10′s or 100′s of clouds. We observe a wide variety of behaviour in the interactions studied, which is dependent on the initial positions of the clouds and the orientation and strength of the magnetic field. We find: i) some clouds are stretched along their field-lines, whereas others are confined by their field-lines; ii) upstream clouds may accelerate past downstream clouds (though magnetic tension can prevent this); iii) clouds may also change their relative positions transverse to the direction of shock propagation as they "slingshot" past each other; iv) downstream clouds may be offered some protection from the oncoming flow as a result of being in the lee of an upstream cloud; v) the cycle of cloud compression and re-expansion is generally weaker when there are nearby neighbouring clouds; vi) the plasma $\beta$ in cloud material can vary rapidly as clouds collide with one another, but low values of $\beta$ are always transitory. This work is relevant to studies of multi-phase regions, where fast, low-density gas interacts with dense clouds, such as in circumstellar bubbles, supernova remnants, superbubbles and galactic winds.

Radial orbit instability in dwarf dark matter haloes

Using N-body simulations we study the phenomenon of radial orbit instability occurring in dark matter haloes of the size of a dwarf galaxy. We carried out simulations of seven spherical models, with the same standard NFW density profile but different anisotropy profiles of particle orbits. Four of them underwent instability: two with a constant positive anisotropy, one with an anisotropic core and an isotropic envelope and one with a very small isotropic core and an anisotropic envelope. Haloes affected by the instability become approximately axisymmetric and prolate, with the profile of the shortest-to-longest axis ratio increasing with radius. The lower limit for the central value of this axis ratio is 0.3 for an NFW halo. The density profiles of the haloes did not change significantly, whereas the velocity distributions became axisymmetric. The total angular momentum rose due to large-amplitude oscillations of its components perpendicular to the symmetry axis of the halo. We also studied orbits of individual particles assigning them to classical orbit families in triaxial potentials. We find that the membership of a given particle in a family depends on its initial total angular momentum and its components along the principal axes of matter distribution.

Formation and evolution of molecular hydrogen in disk galaxies with different masses and Hubble types

We investigate the physical properties of molecular hydrogen (H2) in isolated and interacting disk galaxies with different masses and Hubble types by using chemodynamical simulations with H2 formation on dust grains and dust growth and destruction in interstellar medium (ISM). We particularly focus on the dependences of H2 gas mass fractions (f_H2), spatial distributions of HI and H2, and local H2-scaling relations on initial halo masses (M_h), baryonic fractions (f_bary), gas mass fractions (f_g), and Hubble types. The principal results are as follows. The final f_H2 can be larger in disk galaxies with higher M_h, f_bary, and f_g. Some low-mass disk models with M_h smaller than 10^10 M_sun show extremely low f_H2 and thus no/little star formation, even if initial f_g is quite large (>0.9). Big galactic bulges can severely suppress the formation of H2 from HI on dust grains whereas strong stellar bars can not only enhance f_H2 but also be responsible for the formation of H2-dominated central rings. The projected radial distributions of H2 are significantly more compact than those of HI and the simulated radial profiles of H2-to-HI-ratios (R_mol) follow roughly R^-1.5 in MW-type disk models. Galaxy interaction can significantly increase f_H2 and total H2 mass in disk galaxies. The local surface mass densities of H2 can be correlated with those of dust in a galaxy. The observed correlation between R_mol and gas pressure (R_mol ~ P_g^0.92) can be well reproduced in the simulated disk galaxies.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^