Recent Postings from Cosmology and Nongalactic

Astrophysical Constraints on Singlet Scalars at LHC [Cross-Listing]

We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model that incorporates the signal is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC. To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

Astrophysical Constraints on Singlet Scalars at LHC

We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model that incorporates the signal is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC. To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

SUSY-QCD corrections for the direct detection of neutralino dark matter and correlations with the relic density [Cross-Listing]

In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program \texttt{DMNLO}.

SUSY-QCD corrections for the direct detection of neutralino dark matter and correlations with the relic density

In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program \texttt{DMNLO}.

Estimating the GeV Emission of Millisecond Pulsars in Dwarf Spheroidal Galaxies

We estimate the conventional astrophysical emission intrinsic to dwarf spheroidal satellite galaxies (dSphs) of the Milky Way, focusing on millisecond pulsars (MSPs), and evaluate the potential for confusion with dark matter (DM) annihilation signatures at GeV energies. In low-density stellar environments, such as dSphs, the abundance of MSPs is expected to be proportional to stellar mass. Accordingly, we construct the $\gamma$-ray luminosity function of MSPs in the Milky Way disk, where $>90$ individual MSPs have been detected with the $\textit{Fermi}$ Large Area Telescope (LAT), and scale this luminosity function to the stellar masses of 30 dSphs to estimate the cumulative emission from their MSP populations. We predict that MSPs in the highest stellar mass dSphs, Fornax and Sculptor, produce a $\gamma$-ray flux $>500$ MeV of $\sim10^{-11}$~ph~cm$^{-2}$~s$^{-1}$, which is a factor $\sim10$ below the current LAT sensitivity at high Galactic latitudes. The MSP emission in ultra-faint dSphs, including targets with the largest J-factors, is expected to be several orders of magnitude lower, suggesting that these targets will remain clean targets for indirect DM searches in the foreseeable future. For a DM particle of mass 25 GeV annihilating to $b$ quarks at the thermal relic cross section (consistent with DM interpretations of the Galactic Center excess), we find that the expected $\gamma$-ray emission due to DM exceeds that of the MSP population in all of the target dSphs.

A Lower Bound on the Mass of Little Higgs Dark Matter [Cross-Listing]

In the Littlest Higgs model with $T$ parity (LHT), the $T$-odd heavy photon ($A_H$) is weakly interacting and can play the role of dark matter. We investigate the lower limit on the mass of $A_H$ dark matter under the constraints from Higgs data, EWPOs, $R_b$, Planck 2015 dark matter relic abundance, LUX 2013 direct detection and LHC-8 TeV monojet results. We find that (1) Higgs data, EWPOs and $R_b$ can exclude the mass of $A_H$ up to 99 GeV. To produce the correct dark matter relic abundance, $A_H$ has to co-annihilate with $T$-odd quarks ($q_H$) or leptons ($\ell_H$); (2) the LUX 2013 data can further exclude $m_{A_H}$ up to about 170 GeV for $\ell_H$-$A_H$ co-annihilation but will not constrain $m_{A_H}$ for $q_H-A_H$ co-annihilation; (3) LHC-8 TeV monojet result can give a strong lower limit, $m_{A_H}>540$ GeV, for $q_H$-$A_H$ co-annihilation; (4) future XENON1T (2017) experiment can fully cover the parameter space of $\ell_H$-$A_H$ co-annihilation and will push the lower limit of $m_{A_H}$ up to about 640 GeV for $q_H$-$A_H$ co-annihilation.

A Lower Bound on the Mass of Little Higgs Dark Matter

In the Littlest Higgs model with $T$ parity (LHT), the $T$-odd heavy photon ($A_H$) is weakly interacting and can play the role of dark matter. We investigate the lower limit on the mass of $A_H$ dark matter under the constraints from Higgs data, EWPOs, $R_b$, Planck 2015 dark matter relic abundance, LUX 2013 direct detection and LHC-8 TeV monojet results. We find that (1) Higgs data, EWPOs and $R_b$ can exclude the mass of $A_H$ up to 99 GeV. To produce the correct dark matter relic abundance, $A_H$ has to co-annihilate with $T$-odd quarks ($q_H$) or leptons ($\ell_H$); (2) the LUX 2013 data can further exclude $m_{A_H}$ up to about 170 GeV for $\ell_H$-$A_H$ co-annihilation but will not constrain $m_{A_H}$ for $q_H-A_H$ co-annihilation; (3) LHC-8 TeV monojet result can give a strong lower limit, $m_{A_H}>540$ GeV, for $q_H$-$A_H$ co-annihilation; (4) future XENON1T (2017) experiment can fully cover the parameter space of $\ell_H$-$A_H$ co-annihilation and will push the lower limit of $m_{A_H}$ up to about 640 GeV for $q_H$-$A_H$ co-annihilation.

Universal features of quantum bounce in loop quantum cosmology [Cross-Listing]

Loop quantum cosmology (LQC) provides an elegant resolution of the classical big bang singularity by a quantum bounce in the deep Planck era. The evolutions of the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background and its linear scalar and tensor perturbations are universal during the pre-inflationary phase. In this period the potentials of the perturbations can be well approximated by a P\"oschl-Teller (PT) potential, from which we find analytically the mode functions and then calculate the Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary models with a single scalar field. Matching them to those given in the slow-roll inflationary phase, we investigate the effects of the quantum bounce on the power spectra and find unique features that can be tested by current and forthcoming observations. In particular, fitting the power spectra to the Planck 2015 data, we find that the universe must have expanded at least 132 e-folds from the bounce until now.

Universal features of quantum bounce in loop quantum cosmology [Cross-Listing]

Loop quantum cosmology (LQC) provides an elegant resolution of the classical big bang singularity by a quantum bounce in the deep Planck era. The evolutions of the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background and its linear scalar and tensor perturbations are universal during the pre-inflationary phase. In this period the potentials of the perturbations can be well approximated by a P\"oschl-Teller (PT) potential, from which we find analytically the mode functions and then calculate the Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary models with a single scalar field. Matching them to those given in the slow-roll inflationary phase, we investigate the effects of the quantum bounce on the power spectra and find unique features that can be tested by current and forthcoming observations. In particular, fitting the power spectra to the Planck 2015 data, we find that the universe must have expanded at least 132 e-folds from the bounce until now.

Universal features of quantum bounce in loop quantum cosmology [Cross-Listing]

Loop quantum cosmology (LQC) provides an elegant resolution of the classical big bang singularity by a quantum bounce in the deep Planck era. The evolutions of the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background and its linear scalar and tensor perturbations are universal during the pre-inflationary phase. In this period the potentials of the perturbations can be well approximated by a P\"oschl-Teller (PT) potential, from which we find analytically the mode functions and then calculate the Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary models with a single scalar field. Matching them to those given in the slow-roll inflationary phase, we investigate the effects of the quantum bounce on the power spectra and find unique features that can be tested by current and forthcoming observations. In particular, fitting the power spectra to the Planck 2015 data, we find that the universe must have expanded at least 132 e-folds from the bounce until now.

Universal features of quantum bounce in loop quantum cosmology

Loop quantum cosmology (LQC) provides an elegant resolution of the classical big bang singularity by a quantum bounce in the deep Planck era. The evolutions of the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background and its linear scalar and tensor perturbations are universal during the pre-inflationary phase. In this period the potentials of the perturbations can be well approximated by a P\"oschl-Teller (PT) potential, from which we find analytically the mode functions and then calculate the Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary models with a single scalar field. Matching them to those given in the slow-roll inflationary phase, we investigate the effects of the quantum bounce on the power spectra and find unique features that can be tested by current and forthcoming observations. In particular, fitting the power spectra to the Planck 2015 data, we find that the universe must have expanded at least 132 e-folds from the bounce until now.

Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background [Cross-Listing]

Many extensions of Einstein's theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature $R$, coupling the Ricci curvature with scalar fields and generalized functions of $R$. In addition when viewed from the perspective of Supergravity (SUGRA) many of these theories may originate from the same SUGRA theory interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early Universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. In this review we give a detailed discussion on the standard model of cosmology ($\Lambda$CDM), inflation and cosmological perturbation theory. We survey the theories of gravity beyond Einstein's General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like Planck, Keck/BICEP. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.

Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background [Cross-Listing]

Many extensions of Einstein's theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature $R$, coupling the Ricci curvature with scalar fields and generalized functions of $R$. In addition when viewed from the perspective of Supergravity (SUGRA) many of these theories may originate from the same SUGRA theory interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early Universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. In this review we give a detailed discussion on the standard model of cosmology ($\Lambda$CDM), inflation and cosmological perturbation theory. We survey the theories of gravity beyond Einstein's General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like Planck, Keck/BICEP. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.

Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background

Many extensions of Einstein's theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature $R$, coupling the Ricci curvature with scalar fields and generalized functions of $R$. In addition when viewed from the perspective of Supergravity (SUGRA) many of these theories may originate from the same SUGRA theory interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early Universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. In this review we give a detailed discussion on the standard model of cosmology ($\Lambda$CDM), inflation and cosmological perturbation theory. We survey the theories of gravity beyond Einstein's General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like Planck, Keck/BICEP. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.

Cosmological Tests with the FSRQ Gamma-ray Luminosity Function [Cross-Listing]

The extensive catalog of $\gamma$-ray selected flat-spectrum radio quasars (FSRQs) produced by \emph{Fermi} during a four-year survey has generated considerable interest in determining their $\gamma$-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance $\Lambda$CDM and $R_{\rm h}=ct$ cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both $\Lambda$CDM and $R_{\rm h}=ct$. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour $R_{\rm h}=ct$ over $\Lambda$CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may nonetheless be used as a valuable independent check of other model comparisons based solely on geometric considerations.

Cosmological Tests with the FSRQ Gamma-ray Luminosity Function [Cross-Listing]

The extensive catalog of $\gamma$-ray selected flat-spectrum radio quasars (FSRQs) produced by \emph{Fermi} during a four-year survey has generated considerable interest in determining their $\gamma$-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance $\Lambda$CDM and $R_{\rm h}=ct$ cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both $\Lambda$CDM and $R_{\rm h}=ct$. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour $R_{\rm h}=ct$ over $\Lambda$CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may nonetheless be used as a valuable independent check of other model comparisons based solely on geometric considerations.

Cosmological Tests with the FSRQ Gamma-ray Luminosity Function

The extensive catalog of $\gamma$-ray selected flat-spectrum radio quasars (FSRQs) produced by \emph{Fermi} during a four-year survey has generated considerable interest in determining their $\gamma$-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance $\Lambda$CDM and $R_{\rm h}=ct$ cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both $\Lambda$CDM and $R_{\rm h}=ct$. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour $R_{\rm h}=ct$ over $\Lambda$CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may nonetheless be used as a valuable independent check of other model comparisons based solely on geometric considerations.

Simulating the Impact of X-ray Heating during the Cosmic Dawn

Upcoming observations of the 21-cm signal from the Epoch of Reionization will soon provide us with the first direct detection of this era. This signal is influenced by many astrophysical effects, including long range X-ray heating of the intergalactic gas. During the preceding Cosmic Dawn era the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest-volume (244~$h^{-1}$Mpc=349\,Mpc comoving) full numerical radiative transfer simulations to date of this epoch, including the effects of helium and multi-frequency heating, both with and without X-ray sources. We show that X-ray sources can contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared the common assumption of temperature saturation. The power spectrum is initially boosted on large scales before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolutions around 11~arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.

Comparison of dark energy models after Planck 2015

We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant $w$ model, and the $\alpha$ dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.

Comparison of dark energy models after Planck 2015 [Cross-Listing]

We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant $w$ model, and the $\alpha$ dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.

Comparison of dark energy models after Planck 2015 [Cross-Listing]

We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant $w$ model, and the $\alpha$ dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.

Comparison of dark energy models after Planck 2015 [Cross-Listing]

We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant $w$ model, and the $\alpha$ dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.

The influence of weak lensing on measurements of the Hubble constant with quad-image gravitational lenses

We investigate the influence of matter along the line of sight and in the strong lens vicinity on the properties of quad image configurations and on the measurements of the Hubble constant (H0). We use simulations of light propagation in a nonuniform universe model with the distribution of matter in space based on the data from Millennium Simulation. For a given strong lens and haloes in its environment we model the matter distribution along the line of sight many times, using different combinations of precomputed deflection maps representing subsequent layers of matter on the path of rays. We fit the simulated quad image configurations with time delays using nonsingular isothermal ellipsoids (NSIE) with external shear as lens models, treating the Hubble constant as a free parameter. We get a large artificial catalog of lenses with derived values of the Hubble constant, Hfit. The average and median of Hfit differ from the true value used in simulations by < 0.5 km/s/Mpc which includes the influence of matter along the line of sight and in the lens vicinity, and uncertainty in lens parameters, except the slope of the matter distribution, which is fixed. The characteristic uncertainty of Hfit is ~3 km/s/Mpc. Substituting the lens shear parameters with values estimated from the simulations reduces the uncertainty to ~2 km/s/Mpc.

An information theory based search for homogeneity on the largest accessible scale

We analyze the SDSS DR12 quasar catalogue to test the large-scale smoothness in the quasar distribution. We quantify the degree of inhomogeneity in the quasar distribution using information theory based measures and find that the degree of inhomogeneity diminishes with increasing length scales which finally reach a plateau at $\sim 250 \, h^{-1}\, {\rm Mpc}$. The residual inhomogeneity at the plateau is consistent with that expected for a Poisson point process. Our results indicate that the quasar distribution is homogeneous beyond length scales of $250 \, h^{-1}\, {\rm Mpc}$.

Development of wide-field low-energy X-ray imaging detectors for HiZ-GUNDAM

We are planning a future gamma-ray burst (GRB) mission HiZ-GUNDAM to probe the early universe beyond the redshift of z > 7. Now we are developing a small prototype model of wide-field low-energy X-ray imaging detectors to observe high-z GRBs, which cover the energy range of 1 - 20 keV. In this paper, we report overview of its prototype system and performance, especially focusing on the characteristics and radiation tolerance of high gain analog ASIC specifically designed to read out small charge signals.

The evolution of the galaxy content of dark matter haloes

We use the halo occupation distribution (HOD) framework to characterise the predictions from two independent galaxy formation models for the galactic content of dark matter haloes and its evolution with redshift. Our galaxy samples correspond to a range of fixed number densities defined by stellar mass and span $0 \le z \le 3$. We find remarkable similarities between the model predictions. Differences arise at low galaxy number densities which are sensitive to the treatment of heating of the hot halo by active galactic nuclei. The evolution of the form of the HOD can be described in a relatively simple way, and we model each HOD parameter using its value at $z=0$ and an additional evolutionary parameter. In particular, we find that the ratio between the characteristic halo masses for hosting central and satellite galaxies can serve as a sensitive diagnostic for galaxy evolution models. Our results can be used to test and develop empirical studies of galaxy evolution and can facilitate the construction of mock galaxy catalogues for future surveys.

Testing Galaxy Quenching Theories with Scatter in the Stellar to Halo Mass Relation

We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, halos of the same present-day mass but different formation histories will have different z=0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, $\sigma_{\log M\ast}$. For massive halos that undergo rapid quenching of star formation at z~2, different mechanisms that trigger this quenching yield different values of $\sigma_{\log M\ast}$. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass, and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find $\sigma_{\log M\ast}=0.16$ dex for 10^11 Msol galaxies. Under the assumption that the threshold is constant with time, such a low value of $\sigma_{\log M\ast}$ rules out all of these models with the exception of quenching by a stellar mass treshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why $\sigma_{\log M\ast}$ is so small may be key to understanding the physics of galaxy formation.

Constraining the Baryon-Dark Matter Relative Velocity with the Large-Scale 3-Point Correlation Function of the SDSS BOSS DR12 CMASS Galaxies

We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint $b_v < 0.01$ on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than $0.3\%$ rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well below the $1\%$ statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.

Detection of Baryon Acoustic Oscillation Features in the Large-Scale 3-Point Correlation Function of SDSS BOSS DR12 CMASS Galaxies

We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of $777,202$ Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance ($4.5\sigma$) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to $z=0.57$ to $1.7\%$ precision (statistical plus systematic). We find $D_{\rm V}= 2024\pm29\;{\rm Mpc\;(stat)}\pm20\;{\rm Mpc\;(sys)}$ for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10\%; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate significance ($2.6\sigma)$ detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.

Primordial Black Holes as Dark Matter

The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with particular emphasis on the currently allowed mass windows at $10^{16}$ - $10^{17}\,$g, $10^{20}$ - $10^{24}\,$g and $1$ - $10^{3}\,M_{\odot}$. The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing, dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise calculation of the PBH abundance (non-Gaussianity, non-sphericity, critical collapse and merging) are accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This applies for arbitrary constraints and a wide range of PBH formation models, and allows us to identify which model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in intermediate mass PBHs of $1$ - $10^{3}\,M_{\odot}$ is of special interest in view of the recent detection of black hole mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.

Primordial Black Holes as Dark Matter [Cross-Listing]

The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with particular emphasis on the currently allowed mass windows at $10^{16}$ - $10^{17}\,$g, $10^{20}$ - $10^{24}\,$g and $1$ - $10^{3}\,M_{\odot}$. The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing, dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise calculation of the PBH abundance (non-Gaussianity, non-sphericity, critical collapse and merging) are accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This applies for arbitrary constraints and a wide range of PBH formation models, and allows us to identify which model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in intermediate mass PBHs of $1$ - $10^{3}\,M_{\odot}$ is of special interest in view of the recent detection of black hole mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.

Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.

Energy-Momentum Squared Gravity

A new covariant generalization of Einstein's general relativity is developed which allows the existence of a term proportional to $T_{\alpha\beta}T^{\alpha\beta}$ in the action functional of the theory ($T_{\alpha\beta}$ is the energy-momentum tensor). Consequently the relevant field equations are different from general relativity only in the presence of matter sources. In the case of a charged black hole, we find exact solutions for the field equations. Applying this theory to a homogeneous and isotropic space-time, we find that there is a maximum energy density $\rho_{\text{max}}$, and correspondingly a minimum length $a_{\text{min}}$, at early universe. This means that there is a bounce at early times and this theory avoids the existence of an early time singularity. Moreover we show that this theory possesses a true sequence of cosmological eras. Also, we argue that although in the context of the standard cosmological model the cosmological constant $\Lambda$ does not play any important role in the early times and becomes important only after the matter dominated era, in this theory the "repulsive" nature of the cosmological constant plays a crucial role at early times for resolving the singularity.

Energy-Momentum Squared Gravity [Cross-Listing]

A new covariant generalization of Einstein's general relativity is developed which allows the existence of a term proportional to $T_{\alpha\beta}T^{\alpha\beta}$ in the action functional of the theory ($T_{\alpha\beta}$ is the energy-momentum tensor). Consequently the relevant field equations are different from general relativity only in the presence of matter sources. In the case of a charged black hole, we find exact solutions for the field equations. Applying this theory to a homogeneous and isotropic space-time, we find that there is a maximum energy density $\rho_{\text{max}}$, and correspondingly a minimum length $a_{\text{min}}$, at early universe. This means that there is a bounce at early times and this theory avoids the existence of an early time singularity. Moreover we show that this theory possesses a true sequence of cosmological eras. Also, we argue that although in the context of the standard cosmological model the cosmological constant $\Lambda$ does not play any important role in the early times and becomes important only after the matter dominated era, in this theory the "repulsive" nature of the cosmological constant plays a crucial role at early times for resolving the singularity.

Improving lensing cluster mass estimate with flexion

Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile as inferred from the statistics of ellipticity of background galaxies allows to probe the cluster intermediate and outer regions thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal - to - noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor 2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but extracting general trends is a difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination.

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of the limited deposited energy and the non-observation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and $\gamma$-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models.

A first demonstration of CIB delensing

Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck temperature maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16$\rm{\sigma}$, with an amplitude of $A_{\rm{delens}} = 1.12 \pm 0.07$ relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.

Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages

There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in-situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3x10^11 Msun reside at the centre of clusters with mass Mhalo>3x10^13 Msun. Spectral analysis supports ages >10 Gyrs, corresponding to a formation redshift z_form >2. We combine these two pieces of observationally-based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at z_form. These findings indicate that either only a relatively minor fraction of their present-day stellar mass was formed in-situ at z_form, or that these massive, central galaxies form in the extreme scenario where almost all of the baryons in the progenitor halo are converted into stars. Interestingly, the latter scenario would not allow for any substantial size growth since the galaxy's formation epoch either via mergers or expansion. We show our results hold irrespective of systematic uncertainties in stellar mass, abundances, galaxy merger rates, stellar initial mass function, star formation rate and dark matter accretion histories.

The far infra-red SEDs of main sequence and starburst galaxies

We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies ($M_{\star}\gtrsim10^{10}$ $h^{-1}$M$_{\odot}$) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass ($M_{\star}$) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and $M_\star$, up to redshift $z\sim6$. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts ($0.5\lesssim z\lesssim4$) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at $z\gtrsim2$, selected here to have elevated sSFRs$>10\times$ the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.

On dynamical systems approaches and methods in $f(R)$ cosmology [Cross-Listing]

We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in $f(R)$-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, $f(R) = R + \alpha R^2$, $\alpha > 0$, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to $f(R)$ cosmology and discuss their advantages and disadvantages.

On dynamical systems approaches and methods in $f(R)$ cosmology

We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in $f(R)$-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, $f(R) = R + \alpha R^2$, $\alpha > 0$, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to $f(R)$ cosmology and discuss their advantages and disadvantages.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy [Replacement]

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy [Cross-Listing]

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy [Cross-Listing]

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy [Replacement]

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Born-Infeld condensate as a possible origin of neutrino masses and dark energy [Replacement]

We discuss the possibility that a Born-Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born-Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

Is there a concordance value for $H_0$?

We test the theoretical predictions from a number of cosmological models against different observables, to compare the indirect estimates of the present expansion rate, coming from model fitting, with the direct measurements based on Cepheids data from Riess et al. (2016). We perform a statistical analysis of SN Ia, Hubble parameter and BAO data. A joint analysis of these datasets allows to better constrain cosmological parameters, but also to break the degeneracy that appears in the distance modulus definition between $H_0$ and the absolute B-band magnitude of SN Ia, $M_0$. From the theoretical side, we consider flat and non-flat $\Lambda$CDM, $w$CDM, and inhomogeneous LTB models. For the analysis of SN Ia we follow the approach suggested by Tr{\o}st Nielsen et al. (2015) to take into account the distributions of SN Ia intrinsic parameters. For the $\Lambda$CDM model we find that $\Omega_m=0.35\pm0.02$, $H_0=(67.8\pm1.0)\,$km$\,$s$^{-1}/$Mpc, while the corrected SN absolute magnitude has a Normal distribution ${\cal N}(19.13,0.11)$. The $w$CDM model provides the same value for $\Omega_m$, while $H_0=(66.5\pm1.8)\,$km$\,$s$^{-1}/$Mpc and $w=-0.93\pm0.07$. When an inhomogeneous LTB model is considered, the combined fit provides $H_0=(64.2\pm1.9)\,$km$\,$s$^{-1}/$Mpc. Both the Akaike Information Criterion and the Bayesian factor analysis cannot clearly distinguish between $\Lambda$CDM and $w$CDM cosmologies, while they clearly disfavour the LTB model. Concerning $\Lambda$CDM, our joint analysis of the SN Ia, the Hubble parameter and the BAO datasets provides $H_0$ values that are consistent with CMB-only Planck measurements, but $1.7\sigma$ and $2.5\sigma$ away from the values presented by Efstathiou (2014) and Riess et al. (2016), respectively. Therefore, the need to go beyond the concordance $\Lambda$CDM model still remains an open question.

Converting entropy to curvature perturbations after a cosmic bounce

We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

Converting entropy to curvature perturbations after a cosmic bounce [Cross-Listing]

We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

 

You need to log in to vote

The blog owner requires users to be logged in to be able to vote for this post.

Alternatively, if you do not have an account yet you can create one here.

Powered by Vote It Up

^ Return to the top of page ^