The behavior of the observed polarization amplitudes with spatial resolution is a strong constraint on the nature and organization of solar magnetic fields below the resolution limit. We study the polarization of the very quiet Sun at different spatial resolutions using ground- and space-based observations. It is shown that 80% of the observed polarization signals do not change with spatial resolution, suggesting that, observationally, the very quiet Sun magnetism remains the same despite the high spatial resolution of space-based observations. Our analysis also reveals a cascade of spatial scales for the magnetic field within the resolution element. It is manifest that the Zeeman effect is sensitive to the microturbulent field usually associated to Hanle diagnostics. This demonstrates that Zeeman and Hanle studies show complementary perspectives of the same magnetism.